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The goal of this paper is to prove that the quotient of a first order Appell-Lerch series by a suitable theta-function can be written, near every given root of unity, as the sum of two functions, one of which has a finite limit and the other one has an asymptotic behavior like as one Jacobi's theta-function when q tends to this root. In order to simplify the exposition, we propose the definition of what we mean almost theta-type function, false theta-type function and mock theta-type function. The utilization of continued fractions and linear fractional transformations plays a central role in this paper.
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Introduction

The Ramanujan's mock-theta functions have a ultimate link with Appell-Lerch series. For this nice subject, one can see the short paper [START_REF] Ono | Personal Reflections, and Gordonâs Work on Modular Forms and Mock Theta Functions[END_REF] of K. Ono in the Notices of the AMS or, more extensively, the classical references such as [START_REF] Watson | The final problem: An account of the mock theta functions[END_REF], [START_REF] Fine | Basic hypergeometric series and applications[END_REF], [START_REF] Andrews | Mock theta functions. Theta functions[END_REF], [START_REF] Gordon | Modular transforma-tions of Ramanujanâs fifth and seventh order mock theta functions[END_REF], [START_REF] Zwegers | Mock θ-functions and real analytic modular forms[END_REF], [START_REF] Zagier | Ramanujan's mock theta functions and their applications (after Zwegers and Ono-Bringmann)[END_REF], etc .... The goal of our paper is to study the asymptotic behaviour of these series near every root of unity, in the hope of contributing later to a best possible knowledge of the world of the Ramanujan's mock-theta functions. 0.1. Appell-Lerch series, q-difference equations and Gevrey asymptotics. In [START_REF] Lerch | Bemerkungen zur Theorie der elliptischen Funktionen[END_REF], one can find the following definition of Appell-Lerch series R k :

(0.1) R k (z, w | τ ) = ∞ n=-∞ q kn 2 /2 e 2knzπi 1 -q n e 2wπi = ∞ n=-∞
e( 1 2 n 2 kτ + nkz) 1 -e(nτ + w) ,

where k ∈ Z >0 , z ∈ C, w ∈ C \ Z ⊕ τ Z , τ ∈ H and where e(.) is defined by the relation e(a) = e 2πia for all a ∈ C. By considering the relation 1 -e(nτ + w) = 1 -e(knτ + kw) 1 + e(nτ + w) + ... + e (k -1)nτ + (k -1)w , one finds from (0.1) that

(0.2) R k (z, w | τ ) = k-1 =0 e( w) R 1 (kz + τ, kw | kτ ) provided that w / ∈ 1 k Z ⊕ τ Z.
This implies that the first order Appell-Lerch series R 1 (z, w | τ ) plays a basic role.

By direct computation, two functional equations can be easily found: on the one hand, In the above, one sees that each series R 1 (z, w | τ ) can be considered as special solution of some functional equations using difference operators of the form z → z + τ , as in the classical theory of elliptic functions. In fact, in [START_REF] Appell | Sur les fonctions doublement périodiques de troisième espèce[END_REF] and [START_REF] Appell | Sur les fonctions doublement périodiques de troisième esp èce[END_REF], Appell studied elementary decomposition of the elliptic functions of the third kind, introduced by Hermite [START_REF] Hermite | Remarques sur la décomposition en éléments simples des fonctions doublement périodiques[END_REF]. Later, Lerch [START_REF] Lerch | Bemerkungen zur Theorie der elliptischen Funktionen[END_REF] studied several series with the view of writing a general elliptic function as linear combination of simple ones, where the factors may be theta functions. These series appeared also in the analytic theory of numbers and in particular in the theory of quadratic forms; see [START_REF] Lerch | Essais sur le calcul du nombre des classes de formes quadratiques binaires aux coefficients entiers[END_REF].

R k (z + τ, w + τ | τ ) = ∞ n=-∞
Remember that the traditional elliptic functions are all meromorphic functions in C that have two periods. The corresponding multiplicative model is to say that an elliptic function is simply a meromorphic function in C * that is left invariant by the q-difference operator x → qx. As in the theory of differential equations, a qdifference equation may be singular and the structure of its analytic solutions may be made depending on whether the singular point is Fuchsian or non-Fuchsian; see [START_REF] Sauloy | Galois theory of Fuchsian q-difference equations[END_REF], [START_REF] Ramis | Local analytic classification of q-difference equations[END_REF] and the references therein. It will be useful to observe that the relation of R 1 (z, w | τ ) in (0.5) can be transformed into a non-homogeneous and non-Fuchsian linear q-difference equation of the first order. This is why, in this paper, we shall take the point of view of singular-irregular q-difference equations. Namely, apart from a factor of theta function, R 1 (z, w | τ ) is exactly the sum-function along a spiral for the q-Euler series Ê(x; q) ( [START_REF] Ramis | Développements asymptotiques q-Gevrey et fonction thêta de Jacobi[END_REF], [START_REF] Zhang | Une sommation discrète pour des équations aux q-différences linéaires et à coefficients analytiques: théorie générale et exemples[END_REF]): (0.6) Ê(x; q) = n≥0 q -n(n-1)/2 (-x) n .

Moreover, to this same divergent series is associated one other family of sumfunctions by means of Gaussian kernel [START_REF] Zhang | Développements asymptotiques q-Gevrey et séries Gq-sommables[END_REF], which contains the well-known Mordell integrals [START_REF] Mordell | The Definite Integral ∞ -∞ e ax 2 +bx e cx + d dx and the Analytic Theory of Numbers[END_REF]; see also [START_REF] Andrews | Mordell integrals and Ramanujan's "lost" notebook[END_REF]. Comparing these different sum-functions will furnish exponentially-small functions, that are in fact of modular-like type. In other words, modular-like transforms, exponential-scales changes or Stokes phenomena may come together. This implies the role that the singularities analysis of qdifference equation may play inside the theory of theta-like functions.

Beside, Watson has written several papers about Ramanujan's mock-theta functions, and one of the most popular may be [START_REF] Watson | The final problem: An account of the mock theta functions[END_REF]. At p. 78 of this paper, he said: It can be proved that these expansions possess the property that (for α complex) the error due to stopping at any term never exceeds in absolute value the first term neglected; in addition, for α positive, the error is of the same sign as that term*. The footnote here is the following: This property... It is the fact that these expansions are asymptotic (and not terminating series) which shows that mock theta-functions are of a more complex character than ordinary theta-functions.

This quotation shows that G. N. Watson knew well the natural role played by the asymptotic expansions for the mock-theta functions of Ramanujan. In the following, we will make use of the theory of Gevery asymptotic expansions, whose origin can go back to G. N. Watson [START_REF] Watson | A theory of asymptotic series[END_REF], with his famous Lemma. In fact, the theory of Gevrey asymptotic expansion is an exponential-type asymptotic analysis, and such an approach provides a framework around which the exponentially smallness appears in a natural fashion; see [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF] or [START_REF] Ramis | Gevrey Asymptotics and Applications to Holomorphic Ordinary Differential Equations[END_REF]. 0.2. Organization of the paper. The rest of this paper is divided into five sections, the last one being included in Appendix. In §1, we shall propose the definition of what we mean theta-type function, by establishing that the classical Jacobi theta functions are really theta-type. This definition suggests how to distinguish one mock theta-type function from one false theta-type. By using all that, we will arrive at the statement of our main result of this paper, Theorem 1.3. This implies the following one:

The quotient of R 1 (z, w | τ ) by a suitable theta-function can be written, near every given root of unity, as the sum of two functions, one of which has a finite limit and the other one has an asymptotic behavior like as one Jacobi's theta-function when q tends to this root.

In the above, the decomposition will depend of the root of unity about what we study the asymptotic behavior. It will be important to notice that the finite part can not be uniformly bounded for all roots except a very few number of cases which are related to the half-periods. This is an essential distinction existing between one false theta function and one mock theta function, as observed by Ramanujan himself.

In §2, we will start with the analytic continuation of a Mordell integral G(x; q), that is a sum-function of the divergent series Ê(x; q) given in (0.6). The central result of this section is Theorem 2.1, which allows one to consider this Gq-summation even for complex q of module |q| < 1. Found by means of Laplace transform, this result implies the analytic obstruction with respect to the parameter x of this sumfunction on the one hand and a generalized reciprocity law for Gauss sums on the other hand. See Theorems 2.2 and 2.5.

The sum-function L(x, µ; q) of Ê(x; q) will be studied in §3, and one will see that this is related to R 1 (z, w | τ ) via some theta-function factor. This sum-function and G(x; q) yield a modular-like formula, and using this with continued fractions and linear fractional transformations allows one to get the asymptotic behavior of L(x, µ; q) at every root of unity of q. So, Subsection 3.3 and Theorem 3.6 play an important role for this section. Notice that Theorems 3.7 and 3.11 give conditions about the parameters x and µ or, equivalently, about z and w, for obtaining a false-theta type function.

In order to keep the reading smooth and easy, we will complete the proof of certain statements in §4. Finally, in §A, we will give some definitions and properties that we need in this paper in matter of Gevrey asymptotic analysis and q-Borel-Laplace summations.

Notations, definitions and main result

Let D be the open unit disc |q| < 1, and let D * = D \ {0}. As usual, we let H denote the Poincaré's half-plane z > 0. By the map e : τ → e(τ ) = e 2πiτ , the analytic space H is identified to the universal covering of D * . In the whole paper, U denotes the set of all roots of unity, that will be identified with Q ∩ [0, 1) via the relation U = e Q ∩ [0, 1) . By convention, e(α) = 0 when α = i∞.

In order to be able to use the linear fractional transformations for discussing the asymptotic behavior at a given root of unity, we shall extend the usual radial convergence into what we will mean almost radial convergence, and this will be defined in §1.1. Thus, in §1.2, we will give the definition of an almost theta-type function and that of false-theta or mock-theta in this class of functions. Some general properties of these functions, like as the algebraic structure between them and their dominant terms, will be described in §1. [START_REF] Andrews | Ramanujan's 'Lost' Notebook VII: The Sixth Order Mock Theta Functions[END_REF].

As basic examples of theta-type functions, we will discuss Jacobi theta-functions in §1.4, that will be used later for the mock-type properties stated for Appell-Lerch series. Some functional relations will be mentioned in §1.5 for these series, before giving the main result of this paper, Theorem 1.3, in §1.6.

1.1. Modular group, radial convergence and exponential smallness. For any given a ∈ ∂D * , by radially symmetric sector at a inside D * we mean any sector V a (d, r) defined for d ∈ (0, π) and r ∈ (0, 1) in the following way: if a = 0,

(1.1) V a (d, r) = q ∈ D * : | arg(1 - q a )| < d 2 , |q -a| < r ; otherwise, one writes (1.2) V 0 (d, r) = q ∈ D * : | arg q| < d 2 , |q| < r .
With a view to extending the usual notion of radial convergence, we shall say that q almost-radially tends towards a ∈ ∂D * and we will write q a.r.

-→ a, if q → a within some radially symmetric sector at a inside D * .

Let α ∈ ∂H ∪{i∞}; by vertically symmetric sector at α in H we mean any sector V α (δ | ρ) defined for δ ∈ (0, π) and ρ > 0 as follows: if α = i∞,

(1.3) V α (δ | ρ) = τ ∈ H : | arg( τ -α i )| < δ 2 , |τ -α| < ρ ; otherwise, one sets (1.4) V i∞ (δ | ρ) = τ ∈ H : | arg τ i | < δ 2 , |τ | > ρ .
We shall say that τ almost-vertically tends towards α and we will write τ a.v.

-→ α, if τ → α inside some vertically symmetric sector at α in H. See Remark A.1.

The modular group SL(2; Z) acts naturally on H by the linear fractional transformation τ → M τ for all M ∈ SL(2; Z). One can find that this action is compatible with the above-introduced convergence notions in the following manner. Let a ∈ ∂D * , α ∈ ∂H ∪ {i∞}, and assume that a = e(α). Then the following conditions are equivalent for q = e(τ ):

(1) q a.r.

-→ a;

(2) τ a.v.

-→ α;

(3) M τ a.v.

-→ M α for any M ∈ SL(2; Z). Moreover, if A r a and A v α denote respectively the sheaves of germs of analytic functions in radially symmetric sector V a (d, r) and in vertically symmetric sector V α (δ | ρ), with a = e(α), then one can notice the following one-to-one correspondence:

(1.5) A r a f → f • e ∈ A v α .
A function ϕ ∈ A v α will be called exponentially small as τ a.v.

-→ α and written ϕ ∈ E v,0 α , if there exist δ ∈ (0, π), ρ > 0 and κ > 0 such that ϕ(τ ) = o(e -κ/|τ -α| ) on V α (δ | ρ). Here and in the following, the local coordinate τ -α needs to be read as 1/τ if α = i∞.

1.2. Definition of almost theta-type functions. Given a ∈ ∂D∪{0}, we let G r a to be the space of all f ∈ A r a that has a Gevrey asymptotic expansion as q a.r.

-→ a, this implies particularly that f (q) = O(1) as q a.r.

-→ a for every f ∈ G r a . With the help of the application f → f given in (1.5), one can define the sub-space G v α inside A v α . See (A.3) and Remark A.2 for more details. If no confusion is possible, we will drop the upper indices r and v and simply write G a and G α there.

In order to understand what might mean Ramanujan mock theta functions, we will make use of the following Definition 1.1. Let q = e(τ ), τ ∈ H, a = e(α) ∈ U ∪ {0}, and let f ∈ A r a .

(1) One says that f (q) is of theta-type as q a.r.

-→ a and one writes f ∈ T a , if for all N ∈ Z ≥0 , there exist (υ, λ) ∈ Q × R, a finite set I = I a,N ⊂ R and a C * -valued map γ = γ a,N on I such that the following relation holds for τ a.v.

-→ α:

(1.6) f (q) = i τ υ e(λτ ) k∈I γ(k) q k 1 + o(q N 1 )
,

where τ = τ -α and q 1 = e(-1 τ ). ( 2) One says that f is of almost theta-type as q a.r.

-→ a and one writes f ∈ Ta , if there exists ϑ ∈ T a such that f -ϑ ∈ G a

In (1.6) and in what follows, we make use of the following notational convention.

(1) For all k ∈ R, q k 1 = e(-k τ ) as q 1 = e(-1 τ ). (2) When a = 0 and α = i∞, τ should be read as -1 τ , and q = q 1 . (3) The summation k∈I (...) should be read as null whenever I = ∅. Definition 1.2. Let f be an analytic function defined in D * or in the universal covering D * .

(1) One says that f is a theta-type function and one writes

f ∈ T, if f ∈ T ζ for all ζ ∈ U ∪ {0}. (2)
One says that f is a false theta-type function and one writes f ∈ F, if f / ∈ T and there exists ϑ ∈ T such that f (q) -ϑ(q) ∈ G ζ for all ζ ∈ U ∪ {0} and that, furthermore,

(1.7) sup ζ∈U lim q a.v.
-→ζ (f (q) -ϑ(q)) < ∞ .

(3) One says that f is a mock theta-type function and one writes f ∈ M, if f ∈ Tζ for all ζ = U ∪ {0} and, moreover, f is not a false theta-type function.

In his last letter to Hardy, Ramanujan emphasized the boundedness condition (1.7) that appeared for Rogers false theta-functions; see [START_REF] Watson | The final problem: An account of the mock theta functions[END_REF]. However, as most of mathematicians of his time, Ramanujan used the usual notion of asymptotic expansion instead of the Gevrey one, what would be latter initiated in [START_REF] Watson | A theory of asymptotic series[END_REF] by Watson. Beside, in [13, p. 98-99], one can find the definition of a mock θ-function and that of a strong mock θ-function; see also [START_REF] Andrews | Ramanujan's 'Lost' Notebook VII: The Sixth Order Mock Theta Functions[END_REF]. Our above definition in (3) may be seen to be situated between these two definitions. In order to avoid the confusion, we choose to call them theta-type instead of theta.

1.3. Some general properties of almost theta-type functions. With regard to the uniqueness of the decomposition of a theta-type function at a given point, one can notice the following Remark 1.1. Given f be as in (1.6), if I a,N = ∅ for some non-negative integer N , then the pair (υ, λ) is uniquely determined, independently of N . Moreover, I a,N ⊂ I a,M and γ a,M I a,N = γ a,N for all M > N .

Indeed, let I a = ∪ N ≥0 I a,N , and write I a = {k 0 , k 1 , k 2 , ...} as an strictly increasing sequence. If c 0 = γ(k 0 ), taking the logarithm for both sides of (1.6) gives that

(1.8) log f (q) = -2πi k 0 τ + υ log i τ + log c 0 + λ τ + o(e -κ/|τ | ) ,
where κ > 0. This implies the uniqueness of (υ, λ, c 0 ). The next coefficients γ(k n ) for n > 0 can be determined successively by replacing in (1.8) the function f with its k n -th remainder given as follows:

f (q) - i τ υ e(λτ ) k∈Ia,k<kn γ(k) q k 1 . 2 
For simplify, we shall call respectively dominant term of f at a and principal part of f at a, the expressions t a (f ) and P a (f ) given as follows:

(1.9) t a (f )(q) = c 0 i τ υ e(λτ ) q k0 1 and

(1.10)

P a (f )(q) = i τ υ e(λτ ) k∈Ia,0 γ(k) q k 1 .
In (1.9) in the above, c 0 = γ(k 0 ) and k 0 = inf{k ∈ I a,N : N ∈ Z ≥0 }; by convention, t a (f ) = 0 if I a,N = ∅ for all N ≥ 0. In this way, if t a (f ) = 0, (1.6) implies that (1.11) f (q) = t a (f )(q) 1 + o(q κ 1 ) for some κ > 0. Beside, for any

I = I a,N , N ∈ Z >0 , (1.12) f (q) = P a (f )(q) + i τ υ e(λτ ) k∈I,k>0 γ(k) q k 1 + o(q N 1 ) .
Consequently, f is exponentially small if, and only if, P a (f ) = 0. As to the algebraic structures of T, one can notice the following Proposition 1.1.

(1) The sets T a and T are stable for the product between two functions.

(2) If T * a = {f ∈ T a : t a (f ) = 0}, then T * a constitutes a multiplicative group.

(3) T is stable by the ramification operator q → q υ for all υ ∈ Q >0 .

Proof. (1) This follows directly from (1.6). Indeed, let I and J be two increasing sequences in R without (finite) accumulation point. Their sum

I + J = {k + k : (k, k ) ∈ I × J}
represents also an increasing sequence that admits no finite limit in R. This together with (1.6) imply that f g ∈ T a if everyone of f and g is given in T a .

(2) Let f ∈ T * a . If one writes f = t a (f ) (1 + ϕ) instead of (1.11), then one can easily see that (1 + ϕ) -1 ∈ T a , which implies that 1 f ∈ T a . Thus, one gets that T * a is a multiplicative group, in view of the assertion given in (1) for T a .

(3) It suffices to observe that each ramification operator gets roots of unity moving ones from others.

In what follows, we will see in what manner the decomposition of f ∈ Ta into f a + ϑ a ∈ G a + T a may be unique or almost unique. We start with the following Proposition 1.2. Let a = e(α) ∈ U ∪ {0}, τ = τ -α, and let f ∈ T a . One has f ∈ G a if, and only if, P a (f ) is of the form P a (f )(q) = c τ n e(λτ ), where c ∈ C, n ∈ Z ≥0 and λ ∈ R.

Proof. f ∈ G a implies that, as τ a.v.

-→ 0, one can find complex numbers a n such that

f (q) = M n=0 a n τ n + O(τ M +1 )
for any non-negative integer M . Let n 0 = inf{n : a n = 0}. (i) If n 0 < ∞, taking the logarithm of both sides of this last asymptotic relation on f (q) yields that log f (q) = n 0 log τ + log(a n0 ) + O(τ ) .

In view of (1.8), this may be possible if, and only if, υ = -n 0 and k 0 = 0. In this way, one finds that I a,0 = {0} and υ ∈ Z ≤0 . By (1.10), this gives that P a (f )(q) = c τ n e(λτ ), with c ∈ C * , n = -υ ∈ Z n≥0 and λ ∈ R.

(ii) If n 0 = ∞, f (q) is Gevrey flat, so this is exponentially small for τ a.v.

-→ 0; see [25, p. ??]. This is equivalent to say that P a (f ) = 0, by (1.12).

In view of (1.12), Proposition 1.2 gives the following

Remark 1.2. For every f ∈ G a ∩ T a , one can find n ∈ Z ≥0 , c ∈ C, λ ∈ C and κ > 0 such that f (q) = τ n e(λτ ) c + o(e -κ/|τ | ) for τ a.v. -→ 0. 2 
With regard to writing an almost theta-type function in terms of theta-type functions, the following result will be useful.

Proposition 1.3. Let a = e(α) ∈ U ∪ {0}, τ = τ -α, and let (ϑ 1 , ϑ 2 ) ∈ T a × T a .
The following conditions are equivalent.

(1)

ϑ 1 -ϑ 2 ∈ G a . ( 2 
) P a (ϑ 1 ) -P a (ϑ 2 ) ∈ G a . (3) There exist (n, d) ∈ Z 2 ≥0 , (c 1 , c 2 ) ∈ C 2 , (λ 1 , λ 2 ) ∈ R 2 and κ > 0 such that ϑ 1 (q) -ϑ 2 (q) = τ n c 1 e(λ 1 τ ) + c 2 τ d e(λ 2 τ ) + o(e -κ/|τ | ) for τ a.v. -→ 0.
Proof. The conditions included in (1) and ( 2) are trivially equivalent. Furthermore, the implication (3) ⇒ (1) is clear. For seeing (2) ⇒ (3), one observes that (2) implies that P a (ϑ 1 ) = P a (ϑ 2 ), for ϑ 1 -ϑ 2 is bounded near q = a; see (1.11). Thus, one deduces the condition in (3) by applying to both ϑ 1 and ϑ 2 the relation given in (1.12), with the help of Proposition 1.2.

The condition in Proposition 1.3 (3) requires that the exponent υ in (1.6) is a non-positive integer for both ϑ 1 and ϑ 2 . This implies immediately the following

Proposition 1.4. Let a = e(α) ∈ U ∪ {0}, f ∈ Ta , (g 1 , ϑ 1 ) ∈ G a × T a , (g 2 , ϑ 2 ) ∈ G a × T a ,
and assume that f = g 1 + ϑ 1 = g 2 + ϑ 2 . If P a (ϑ 1 ) = 0 and the exponent υ in the expression of P a (ϑ 1 ) given by (1.10) is not a non-negative integer, then g 1 -g 2 is exponentially small for q a.r.

-→ a.

2

1.4. First examples of almost theta-type functions. Given (C, λ) ∈ C × R,
it is obvious to see that the function q = e(τ ) → Ce(λτ ) is a theta-type function.

Especially, one finds that any constant function is theta-type.

Proposition 1.5. Any theta-type function f that is assumed to be analytic at every point τ = α ∈ Q in C is necessarily of the form Ce(λτ ), where C ∈ C and λ ∈ R.

Proof. Choose some α ∈ Q and let a = e(α). Unless f ≡ 0, the analyticity of f at τ = α implies the equality I a,N = I a,0 = {0} holds in (1.6) for all N > 0. See also Remark 1.2.

One of the most simple false theta-type functions may be f (q) = 1+q = 1+e(τ ). Indeed, as τ a.v.

-→ 0, τ = τ and f ∈ G 1 , for f is analytic there. Thus, applying Remark 1.2 yields that f / ∈ T 1 , so f is not a theta-type function. This gives directly that f ∈ F. In this same manner, one can observe the following Proposition 1.6. Let I be a finite set of R possessing at least two elements, γ be a C * -valued map on I, and let f (q) = k∈I γ(k) e(kτ ).

(1) f ∈ F if, and only if, the set I ∩ R <0 admits at most one element.

(2) f ∈ M if, and only if, the set I ∩ R <0 admits at least two elements.

Proof. One sees that f ∈ T 0 ∩ G ζ for all ζ ∈ U, for f is analytic at τ = r for all r ∈ Q. First, assume that I ∩ R <0 = ∅. As f is exponentially small for τ a.v.

-→ i∞, f ∈ G 0 , this implies that f ∈ F.

Next, assume that I contains one unique negative number, denoted by k 0 . By letting g = f -γ(k 0 ) e(k 0 τ ) and ϑ = γ(k 0 ) e(k 0 τ ), one finds that f ∈ F, in view of Proposition 1.5.

Finally, assume that I contains two negative numbers k 0 and k 1 . By noticing that e(k 0 τ ) and e(k 1 τ ) are unbounded for τ a.v.

-→ i∞, none of these terms may belong to the Gevrey part of the decomposition of f for τ a.v.

-→ i∞. Beside, by Proposition 1.5, γ(k 0 ) e(k 0 τ ) + γ(k 1 ) e(k 1 τ ) / ∈ T ζ for all ζ ∈ U. This gives that f ∈ M.

In line with Proposition 1.6 in the above, one may consider situations in which the set I contains an infinitely many points. This will be the case for the classical Jacobi's theta-functions. We shall see that their specializations on R⊕τ R are really of theta-type in the sense of Definitions 1.1 and 1.2.

For all z ∈ C, we define θ(z | τ ) to be the following Jacobi theta-function:

(1.13) θ(z | τ ) = n∈Z e( 1 2 n(n -1)τ + nz .
By comparing this with the definition of ϑ k (v | τ ) in [20, p. 166, (76.1)] for k = 1, 2, 3, and 4, where q should be read as e( 1 2 τ ), it follows that

ϑ 1 (z | τ ) = e - z 2 + τ 8 + 1 4 θ(z + 1 2 | τ ) , (1.14) ϑ 2 (z | τ ) = e - z 2 + τ 8 θ(z | τ ) , (1.15) ϑ 3 (z | τ ) = θ(z + τ 2 | τ ) , (1.16) ϑ 4 (z | τ ) = θ(z + τ 2 + 1 2 | τ ) . (1.17)
See also the right-hand sides of the expression in (0.4) for ϑ 3 .

Let (p, m) ∈ Z × Z >0 be such that p ∧ m = 1, and assume that (α, [20, p. 180, (80.8)], τ = τ -p m , and observe that mτ -p = mτ . By making use of (1.14), one obtains that

β) ∈ Z 2 satisfying βm-αp = 1. Let a b c d = α -β m -p in
(1.18) θ(z + 1 2 | τ ) = 1 √ m i τ e 1 8 (τ -τ ) + 1 2 (1 - 1 mτ )z - z 2 2τ θ( z mτ + 1 2 | τ ) ,
where 1 = 1 (α, -β, m, -p) denotes an 8-th root of unity and

(1.19) τ = ατ -β mτ -p = - 1 m 2 τ + α m .
By noticing that τ -τ = -1 m 2 τ -τ and that

- 1 8m 2 τ - z 2mτ - z 2 2τ = - 1 2τ (z + 1 2m ) 2 ,
the relation in (1.18) can be written as follows:

(1.20)

θ(z + 1 2 | τ ) = 1 √ m i τ e - 1 2τ (z + 1 2m ) 2 - τ 8 θ( z mτ + 1 2 | τ ) . Given z ∈ R τ = R ⊕ τ R, we will write (1.21) ρ(z | τ ) = 1 z 1 / ∈ Z |1 -e(z 0 )| z 1 ∈ Z . It is worth noticing that ρ(z | τ ) = 0 if, and only if, z ∈ Z ⊕ τ Z. Lemma 1.1. Let z = z 0 + z 1 τ , (z 0 , z 1 ) ∈ R 2 , and let f (q) = θ(z + 1 2 | τ ). Then f ∈ T 0 . Moreover, if (1.22) κ = κ(z | τ, ∞) = 1 2 min ∈Z z 1 - 1 2 - 2 , one can find c ∈ C such that |c| = ρ(z | τ ) and t 0 (f )(q) = c q -1 2 (z1-1 2 ) 2 +κ .
This follows immediately from the fact that, by definition, θ(z + 1 2 | τ ) is a sum of exponential functions with respect to τ . For the proof, see §4.1.

Theorem 1.1. Let f (q) = θ(z + 1 2 | τ ) be as in Lemma 1.1. Then f ∈ T. Furthermore, let r = p m , m > 0, α -β m -p ∈ SL(2, Z), ζ = e(r), τ = τ -r, q 1 = e -1 τ
, and let τ as in (1.19). One assumes that τ a.v.

-→ r. If

(1.23) κ = κ(z | τ, r) = 1 2 min ∈Z mz 0 + pz 1 - 1 2 - 2 and z = (αz 0 + βz 1 ) -(mz 0 + pz 1 )τ , one can find c ∈ C such that |c| = ρ(z | τ ) and (1.24) t ζ (f )(q) = c √ m i τ e - 1 8 ((2z 1 ) 2 + 1) τ q κ/m 2 1
.

The strategy is to use the modular relation in (1.20) for leading any rational point τ = r into τ = ∞, in such a way one can apply Lemma 1.1. For more details on the proof, see §4.2.

Applying Proposition 1.1 (2) gives the following

Corollary 1.1. Given u 1 , ..., u and v 1 , ..., v m two finite families of elements in (R ⊕ τ R) \ (Z ⊕ τ Z), if f (q) = θ(u 1 + 1 2 | τ ) ... θ(u + 1 2 | τ ) θ(v 1 + 1 2 | τ ) ... θ(v m + 1 2 | τ ) , then f ∈ T. 2 
Using the expressions of ϑ 1 , ..., ϑ 4 given in (1.14) -(1.17 1.5. Appell-Lerch series and functional equations. In the literature, every Appell-Lerch series is associated with an order k as indicated in (0.1). In addition to the decomposition formula of R k in terms of R 1 as given in (0.2), it is useful to recall the following important Theorem 1.2 (M. Lerch [START_REF] Lerch | Bemerkungen zur Theorie der elliptischen Funktionen[END_REF]). Let k ∈ N * and let R k (z, w | τ ) be as in (0.1). Then:

(1.25) R k (z, w | τ ) = k-1 s=0 C s (z, w | τ ) R 1 (kw + k + kτ 2 , kz + sτ - k + kτ 2 | kτ ) ,
where

(1.26) C s (z, w | τ ) = e kz + sw + (s - 5k 8 + 1 8 )τ θ(kz + (s + k 2 )τ | kτ ) θ(kw -1 2 | kτ )
.

Proof. This is due to M. Lerch [16, ??], who gave the following expression for C s (z, w):

C s (z, w | τ ) = e kz + (s - k 2 )w + (s -k + 1 8 )τ + 1 4 ) ϑ 3 (kz + sτ | kτ ) ϑ 1 (kw | kτ ) .
In view of the relations in (1.14) and (1.16), this is equivalent to the above expression stated in (1.26).

In the whole paper, we shall consider only the case of k = 1. Write ϑ 3 in terms of θ as in (1.16), and consider the functional equation

(1.27) θ(z | τ ) = e(z) θ(z + τ | τ ) .
One obtains from (0.4) that

(1.28) R 1 (z, w | τ ) θ(z + τ 2 | τ ) -e(w -z - τ 2 ) R 1 (z + τ, w | τ ) θ(z + 3 2 τ | τ ) = 1 ,
what suggests the following Definition 1.3. For all (z, w) ∈ C 2 such that neither w nor w -z belong to Z⊕τ Z, define

(1.29) L(z, w | τ ) = R 1 (w -z -τ 2 + 1 2 , w | τ ) θ(w -z + 1 2 | τ )
.

Given τ ∈ H, let π τ be the associated real parametrization of C, that is the map defined from R 2 onto C by π τ (z 0 , z 1 ) = z = z 0 + z 1 τ . In this way, it is possible to see L(z, w | τ ) as a function of τ possessing four real parameters z 0 , z 1 , w 0 and w 1 . We shall study the asymptotic behavior of this function in relation to these parameters when τ

a.v. -→ r ∈ Q. If R τ = π τ (R 2
), one sees that R τ will be reduced into the real axis when τ = r, so our study concerns the platitude of the parameters space

C 2 towards R 2 . Definition 1.4. Let π τ as in the above, R τ = π τ (R 2 ), Z τ = π τ (Z 2
), and let

(1.30) Ω = (- 1 2 , 1 2 ] × [- 1 2 , 1 2 ) 
,

Ω τ = π τ (Ω) .
We define

(1.31) R 2, * 1⊕τ = (z, w) ∈ R τ × R τ : w = 0, w = z mod Z τ and (1.32) Ω 2, * 1⊕τ = R 2, * 1⊕τ ∩ Ω τ × Ω τ .
To any given ( , m) ∈ Z 2 can be associated the translation (a, b) → (a + , b + m) on R 2 . This gives rise to the usual action of the (sub-)group Z τ on R τ . By extending this action on R 2, * 1⊕τ , one sees that the corresponding fundamental domain is merely Ω 2, * 1⊕τ . With regard to the effect of this action on L(z, w | τ ), we notice the following Proposition 1.7. The following relations hold for (z, w) ∈ R 2, * 1⊕τ :

(1.33) L(z + , w | τ ) = L(z, w + m + nτ | τ )
for all ( , m, n) ∈ Z 3 , and

(1.34) L(z, w | τ ) + e(z) L(z -τ, w | τ ) = 1 .
Proof.

(1) From (0.3) (with k = 1) and (1.27), it follows that L(z, w + τ | τ ) = L(z, w | τ ). Furthermore, one sees that both R 1 and θ are left invariant when their respective arguments z and w are increased by one. This implies that

L(z + 1, w | τ ) = L(z, w + 1 | τ ) = L(z, w | τ
). Thus, one gets (1.33).

(2) This is equivalent to (1.28).

Let n ∈ Z >0 , and let

(1.35) P n (z | τ ) = n-1 k=0 (-1) k e k(z + nτ - k -1 2 τ ) .
By iterating the functional equation in (1.34), one gets that

L(z + nτ, w | τ ) = 1 -e(z + nτ ) L(z + (n -1)τ | τ ) = ... , what gives (1.36) L(z + nτ, w | τ ) = P n (z | τ ) + (-1) n e n(z + n + 1 2 τ ) L(z, w | τ ) .
Replacing z with z -nτ in both sides of (1.36) yields that

(1.37) L(z -nτ, w | τ ) = P -n (z | τ ) + (-1) n e -n(z + -n + 1 2 τ ) L(z, w | τ ) ,
where

P -n (z | τ ) = (-1) n+1 e n(-z + n -1 2 τ ) P n (z -nτ | τ ) .
By using the definition of 

P n (z | τ ) in (1.35), one can find that (1.38) P -n (z | τ ) = - n k=1 (-1) k e -k(z -nτ - -k -1 2 τ ) . Proposition 1.8. Let n ∈ Z, ζ ∈ U, and let (z, w) ∈ R 2, * 1⊕τ . Then L(z +nτ, w | τ ) ∈ Tζ if,
+ ±n + 1 2 τ ) ∈ T ζ ∩ G ζ .
Since both T ζ and G ζ are stable for the product of functions (see Proposition 1.1 (1)), one obtains the desired equivalence with the help of the relations in (1.36) and (1.37).

1.6. Main result and basic steps of the proof. The goal of the rest of this paper is to obtain the following

Theorem 1.3. Let (z, w) ∈ Ω 2, * 1⊕τ , and consider f (q) = L(z, w | τ ) be given in (1.29). Then f ∈ M except in the following cases: (1) z ∈ { 1 2 , 1 2 -τ 2 , -τ 2 } and w ∈ { 1 2 , 1 2 -τ 2 , -τ 2 }, in which case f is a constant function. (2) z ∈ { 1 2 , 1 2 -τ 2 , -τ 2 } and w / ∈ { 1 2 , 1 2 -τ 2 , -τ 2 }, in which case f is a false theta-type function that is not analytic at any τ = r ∈ Q.
As to the proof of Theorem 1.3, letting k = 1 in the middle expression of (0.1) and expanding this with respect to q implies that R 1 (z, w | τ ) ∈ T 0 when q a.r.

-→ 0 exponentially. By considering both Proposition 1.1 (2) and Lemma 1.1, the expression in (1.29) yields that L(z, w | τ ) ∈ T 0 . To treat any root of unity instead of 0, the step to be followed is to find a modular-like formula like as (1.20) for the θ-function. We shall see that such formula can be obtained by a viewpoint of the analytic theory of q-difference equations. Indeed, to the functional equation in (1.34) corresponds a singular q-difference that admits two natural solutions coming from a same formal power series. One of these solutions being L(z, w | τ ), the other, denoted in the below by G(z | τ ), can be expressed by means of Mordell integral. This is to say, a certain Stokes analysis will give some modular-like relation. After all that, we shall consider the analytic continuation of G(z | τ ) on one hand and the linear fractional transformations on the other hand. In this way, we shall complete the proof in §3.8.

Finally, in view of the functional relations in (1.33) and Proposition 1.8, Theorem 1.3 implies the following

Corollary 1.3. Let (z, w) ∈ R 2, *
1⊕τ , and consider

f (q) = L(z, w | τ ). (1) If z / ∈ { 1 2 , 1 2 -τ 2 , -τ 2 } mod Z ⊕ τ Z, then f ∈ M. (2)
Otherwise, f is either a finite combination of e(λτ ) with λ ≥ 0 or a false theta-type function that is not regular at any τ = r ∈ Q. 2

1.7. Symmetry on parameters and generate cases. Letting k = 1 and taking -n instead of n in the summation formula of (0.1) yields that

(1.39) R 1 (z, w | τ ) = -e(-w) R 1 (τ -z, -w | τ ) .
Furthermore, letting k = 1 and s = 0 in (1.26) gives that

C 0 (z, w | τ ) = e(z - τ 2 ) θ(z + τ 2 | τ ) θ(w -1 2 | τ ) = θ(z -τ 2 | τ ) θ(w -1 2 | τ )
.

Thus, by (1.25), one finds that

(1.40) R 1 (z, w | τ ) = θ(z -τ 2 | τ ) θ(w -1 2 | τ ) R 1 (w + τ 2 + 1 2 , z - τ 2 - 1 2 | τ ) .
Proposition 1.9. The following identities hold for (z, w) ∈ R 2, * 1⊕τ :

(1.41) L(z -τ, w | τ ) = e(-z) L(-z -τ, -w | τ )
and

(1.42) L(z -τ, w | τ ) = e(-z) L(-z -τ, w -z | τ ) .
Proof. By using (1.29), one deduces respectively (1.41) from (1.39) and (1.42) from (1.40).

The identity in (1.41) will be useful for finding the special values under the condition 2w ∈ Z⊕τ Z; see §3.7. Beside, by (1.34), the relation in (1.42) is equivalent to the following one:

(1.43) L(z -τ, w | τ ) + L(-z, w -z | τ ) = 1 .
This last identity permits to interchange the conditions w ∈ Z ⊕ τ Z and z -w / ∈ Z ⊕ τ Z, to what the parameters z and w are assumed to be subject in Theorem 1.3.

By using (0.1) with k = 1 and (1.29), one finds the following residues at w = 0 for R 1 and L:

Res R 1 (z, w | τ ) : w = 0 = i 2π and Res L(z, w | τ ) : w = 0 = i 2π θ(-z + 1 2 | τ )
.

This together with (1.43) suggest us to introduce the following Definition 1.5.

(1) For any z ∈ C, we define

(1.44) R 1 (z | τ ) = R * 1 (z, 0 | τ ) = lim w→0 R 1 (z, w | τ ) - i 2πw
.

(

) If z / ∈ Z ⊕ τ Z, we define (1.45) L(z | τ ) = L * (z, 0 | τ ) = lim w→0 L(z, w | τ ) - i 2πw θ(-z + 1 2 | τ ) and (1.46) L * (z | τ ) = L * (z, z | τ ) = lim w→0 L(z, z + w | τ ) + i 2πw θ(-z + 1 2 | τ ) . Since 1 θ(-z+ 1 2 | τ ) satisfies the homogeneous equation associated with (1.34), namely y(z) + e(z) y(z -τ ) = 0, one finds that L(z, w | τ ) - i 2πw θ(-z+ 1 2 | τ ) satisfies (1.34). This implies that (1.47) L(z | τ ) + e(z) L(z -τ | τ ) = 1 . 2 
Similarly, one obtains that

(1.48) L * (z | τ ) + e(z) L * (z -τ | τ ) = 1 .
Proposition 1.10. The following relations holds for z / ∈ Z ⊕ τ Z:

(1.49) L(z | τ ) = 1 θ(-z + 1 2 | τ ) R 1 (-z - τ 2 + 1 2 | τ ) - i 2π θ (-z + 1 2 | τ ) θ(-z + 1 2 | τ )
, where θ (-z + 1 2 | τ ) denotes the derivative of θ(z | τ ) with respective to the variable z at -z + 1 2 , and

(1.50) L(z | τ ) = 1 -L * (-z -τ | τ ) .
Proof.

(1) By observing that, as w → 0,

R 1 (w -z - τ 2 + 1 2 , w | τ ) = R 1 (-z - τ 2 + 1 2 , w | τ ) + O(w) , one deduces from (1.44) that R 1 (w -z - τ 2 + 1 2 , w | τ ) = R 1 (-z - τ 2 + 1 2 | τ ) + i 2π w + O(w) .
Thus, considering the second order Taylor series of θ(w -z + 1 2 | τ ) at w = 0 allows one to write the relation in (1.29) into the following form:

L(z, w | τ ) = R 1 (-z -τ 2 + 1 2 , w | τ ) + i 2π w θ(-z + 1 2 | τ ) 1 - θ (-z + 1 2 | τ ) θ(-z + 1 2 | τ ) w + O(w) .
This implies immediately (1.49).

(2) This follows immediately from (1.43).

In view of (1.50), one will consider only the function L(z | τ ). Theorem 1.3 can be completed as follows.

Theorem 1.4. Given z ∈ Ω τ \ {0}, let f (q) = L(z | τ ). Then f ∈ M except when z ∈ { 1 2 , 1 2 -τ 2 , -τ 2 }.
Moreover, the following identities hold:

(1.51) L( 1 2 | τ ) = 1 , L( 1 2 - τ 2 | τ ) = L(- τ 2 | τ ) = 1 2 .
By using the functional equation in (1.47), one obtains that

L(z | τ ) = n-1 k=0 (-1) k e kz - 1 2 k(k -1)τ + (-1) n e nz - 1 2 n(n -1)τ L(z -nτ | τ )
for all positive integer n. Thus, one deduces from Theorem 1.4 the following statement, which completes Corollary 1.3.

Corollary 1.4. Given z ∈ (R ⊕ τ R) \ (Z ⊕ τ Z), let f (q) = L(z | τ ). (1) If z / ∈ { 1 2 , 1 2 -τ 2 , -τ 2 } mod Z ⊕ τ Z, then f ∈ M. (2) Otherwise, there exists a finite numbers of pairs (c n , λ n ) ∈ R × R ≥0 , 0 ≤ n ≤ N , such that f = N k=0 c n e(λ n τ ). 2 
The above Theorem 1.4 will be proved in §3.9.

Asymptotic behavior of Mordell integral

Let (z, w) ∈ R 2, * 1⊕τ , and consider L(z, w | τ ) in (1.29). If one writes x = e(z), u = e(w) and

(2.1) L(x, u; q) = L(z, w | τ ) ,
where q = e(τ ), then the equation in (1.34) becomes

(2.2) y(x) + x y( x q ) = 1 .
This q-difference equation admits x = 0 as singular irregular point, following [START_REF] Ramis | Local analytic classification of q-difference equations[END_REF] and [START_REF] Zhang | Développements asymptotiques q-Gevrey et séries Gq-sommables[END_REF]. Let Ê(x; q) = n≥0 q -n(n-1)/2 x n . This is a formal solution of (2.2), and is divergent for all x = 0 in C because of |q| < 1. In §3, the function L(x, u; q) of (2.1) will be seen as a q-Borel sum of Ê(x; q) defined by (A.10); see (3.1).

In this section, we will consider the q-Borel-sum of this series defined with the help of (A.9). Indeed, applying this together with (A.6) to Ê(x; q) yields the following q-sum over the whole Riemann surface C * of the logarithm:

(2.3) G(x; q) = ∞ 0 ω(ξ/x; q) 1 + ξ dξ ξ .
In the above, the integration path is any straight-line starting from 0 to infinity in the principal cut-plane C \ (-∞, 0]. One can verify that G(x; q) is solution of the q-difference equation included in (2.2), as said by Proposition A.3. Putting ξ = e σ in the integral of (2.3) yields the following expression:

G(x; q) = 2 q -3/8 2πx ln(1/q) ∞ -∞ e (σ-log(qx)) 2 /2 ln q cosh(σ/2) dσ ,
where the integration is taken along a horizontal line with a distance at most π from the real axis. Thus, the integral appearing in (2.3) is of Mordell type; see [START_REF] Mordell | The Definite Integral ∞ -∞ e ax 2 +bx e cx + d dx and the Analytic Theory of Numbers[END_REF], [START_REF] Andrews | Mordell integrals and Ramanujan's "lost" notebook[END_REF] and [START_REF] Zhou | On summability of formal solutions to a Cauchy problem and generalization of Mordelltheorem[END_REF].

Proposition 2.1. The function G(x; q) satisfies the following modular-type relation:

(2.4) G( x q ; q) = 2πi ω(e πi x; q) G(e 2πi log(xe 2πi ) ln q ; e 4π 2 ln q ) . The proof will be given in §4.3, by considering the link between both q-Borel-sum functions G(x; q) and L(x, u; q); see (3.2) and its equivalent form (4.8).

Remember that in (2.3), G(x; q) is defined for x ∈ C * and q ∈ (0, 1). In §2.1, we shall consider the analytic continuation of G(x; q) with respect to q when the "parameter" x represents a germ of analytic function of q; see Theorem 2.1. This permits to find the analytic obstruction for the composed function to become analytic at q = 1 in C; see Theorem 2.2. One will see that the analyticity depends of whether the parameter x belongs to the set of half-periods {±q n : 2n ∈ Z}.

In line with Theorem 2.1, we will define the function G(z | τ ) and consider the asymptotic behavior of this function for τ -→ i∞; see Theorem 2.4 in §2.4. The last three subsections of this section will concern the evaluation of G(z | τ ) when z represents one half-period or when τ is reduced to a rational number. Especially, we will give a proof of a law of reciprocity on some generalized Gaussian sums; see Theorem 2.5 in §2.6.

a.v. -→ 0 when z ∈ R τ = R ⊕ τ R and τ ∈ C \ [0, -i∞). See Definition 2.

Analytic continuation of Mordell integral.

The function G(x; q) defined by (2.3) is not uniform for the argument x. Indeed, if the integration-path [0, ∞) is replaced with [0, ∞e -2πi ) in (2.3), the corresponding integral gives G(xe 2πi ; q). Applying the Cauchy residue theorem to this integral over the contour composed of two half straight-lines -[0, ∞) (= [∞, 0]) and [0, ∞e -2πi ) yields that (2.5) G(xe 2πi ; q) = G(x; q) -2πiω( e -πi x ; q) .

Let ϕ denote a germ of analytic function at t = 0 ∈ C such that ϕ(0) = 0. We shall choose an argument of ϕ(0), consider ϕ as an analytic function valued in C * and then get the composed function G(ϕ( ); e -) for ∼ 0 + in R >0 . In view of (2.5), we shall assume that arg(ϕ(0)) ∈ (-π, π].

Theorem 2.1. For any R > 0, let ∇ R = { ∈ C * : | | < R, | arg | < 3π/2}
. Let ϕ to be a germ of analytic function at t = 0 in C such that ϕ(0) = 0, and define

(2.6) ϕ( ) = G(ϕ( ); e -)
for all enough small > 0. Then ϕ can be continued to be an analytic function in ∇ R for some suitable R > 0. Moreover, one has the following properties.

(1) If arg(ϕ(0)) ∈ (-π, π] and ϕ(0) = -1, then ϕ( ) admits a Gevrey asymptotic expansion as → 0 in ∇ R and

ϕ( ) = 1 1 + ϕ(0) + O( ) .
(

) If ϕ(0) = -1 = e iπ , ϕ(t) = -e t(ψ(t)+ 1 2 ) and (2.7) φ( ) = ϕ( ) + i π 2 e -2 (ψ( )) 2 , 2 
then φ( ) admits a Gevrey asymptotic expansion as → 0 in ∇ R and

φ( ) = 1 + ϕ (0) + O( ) .
Proof. With the help of (A.8), writing x = e s and ξ = e σ+s-2 in (2.3) yields that

G(e s ; e -) = 1 √ 2π ∞+ic -∞+ic e -σ 2 2 1 + e σ+s-2 dσ ,
where the real number c will be chosen in such manner that c + (s) ∈ (-π, π).

Letting s = log(ϕ( )), the above integral shows that

(2.8) ϕ( ) = 1 √ 2π ∞+ic -∞+ic e -σ 2 2 1 + ϕ( ) e σ-2 dσ .
If R > 0 is chosen enough small such that ϕ(t) is well defined in the disc |t| < R, one can get an analytic function for ∈ ∇ R by replacing the horizontal integration-path with oblique lines L in (2.8) as shown in the the following figure. shows that ϕ has a Gevrey asymptotic expansion. Indeed, let σ = σ 2 /2, write the integration path as union of two segments both starting from 0 to infinity on the two sides of the plan, and define (2.9)

E -1 0 ∞ • • • • • • E E E E E -∞ + ic ∞ + ic a a + 4πi a + 6πi L The values "•" of log(-1 ϕ( ) ) -2 constitue the barrier for L B B B B B B B B B
F ( , σ) = 1 1 + ϕ( ) e σ-2 + 1 1 + ϕ( ) e -σ-2 .
It follows that

ϕ( ) = 1 √ 2π ∞ 0 F ( , σ)e -σ dσ √ 2σ , (2.10)
where the integration-path, initially equal to [0, +∞) for arg(ϕ(0)) = π, needs to be deformed with a half-circle when arg(ϕ(0)) becomes π; see Figure 2 in the below.

Therefore, applying Proposition A.1 to this last integral in (2.10) yields the expansion of ϕ. Namely, since

F (0, σ) = 2 1 + ϕ(0) (1 + O(σ)), ∞ 0 e -σ dσ √ σ = Γ( 1 2 ) √ = √ π ,
one finds the limit of ϕ( ) for → 0. Otherwise, suppose that ϕ(0) = -1 = e πi , so that one can write ϕ( ) = -e (ψ( )+ 1 2 ) , with ψ( ) ∈ C{ }. From (2.8), it follows that where c ∈ (-2π, 0). By making use of Residues Theorem, one can find that (2.12)

(2.11) ϕ( ) = e -1 2 (ψ( )) 2 √ 2π Ψ( ), Ψ( ) = ∞+ic -∞+ic e -σ 2 2 +ψ( ) σ 1 -e σ dσ , E 0 E ∞ • • • • • a a + 2πi -a E E E E a = ln(-1 ϕ(0) ) < 0 E 0 E ∞ • • • • a a + 2πi -a E E E E a = ln(-1 ϕ(0) ) > 0
∞+ic -∞+ic + -∞-ic ∞-ic e -σ 2 2 +ψ( ) σ 1 -e σ dσ = -2πi . Let (2.13) H( , σ) = 1 2 e ψ( ) σ 1 -e σ + e -ψ( ) σ 1 -e -σ , I( ) = ∞+ic -∞+ic H( , σ) e -σ 2 2 dσ .
By observing that

I( ) = 1 2 ∞+ic -∞+ic - -∞-ic ∞-ic e -σ 2 2 +ψ( ) σ
1 -e σ dσ , from (2.12) one gets the following expression for the function Ψ defined in (2.11):

Ψ( ) = I( ) -πi ; consequently, one finds that

(2.14) ϕ( ) = e -1 2 (ψ( )) 2 √ 2π (I( ) -πi) , φ( ) = e -1 2 (ψ( )) 2 √ 2π I( ) .
Moreover, the function H( , σ) defined by (2.13) can be continued to be an even analytic function for σ ∈ C \ (2πiZ * ), with H( , 0) = 1 2 -ψ( ). Thus, one can choose c = 0 in the integral in (2.13), in such manner that one obtains the Gevrey asymptotic expansion of I( ) as → 0, with

I( ) ∼ H(0, 0) ∞ -∞ e -σ 2 2 dσ = √ 2π 1 2 -ψ(0) = √ 2π 1 + ϕ (0) .
This finishes the proof. Theorem 2.2. In Theorem 2.1, the Gevrey function ϕ( ) or φ( ) can be continued to be analytic at = 0 in C if, and only if, there exists some n ∈ Z such that

ϕ(t) = e (n+ 1 
2 )t or ϕ(t) = e iπ+ n 2 t , respectively.

Proof. Let

∇ - R = { ∈ ∇ R : arg ∈ (- 3π 2 , - π 2 )}.
The function ϕ can be continued to be a germ of analytic function at = 0 if, and only if, ϕ( e 2πi ) = ϕ( ) in ∇ - R . Consider the integral representation of ϕ( ) in (2.8) and express the difference (ϕ( e 2πi ) -ϕ( )) by a contour integral. By the Residues Theorem, one finds that, for < 0 enough closed to zero,

ϕ( e 2πi ) -ϕ( ) = -2πi k≥0 e -(a-2kπi) 2 2 -e -(a+2(k+1)πi) 2 2 , (2.15)
where a = log(-1 ϕ( ) ) -2 , -π < (a) < c (see Figure 1). Let α = (a) and, for all integer k, let α k = (a) -2kπ; it follows that

e -(a-2kπi) 2 2 = e α 2 k -α 2 e -αα k i .
Thus, by considering the dominant terms in the right-hand side of (2.15) as → 0 + , one finds that ϕ( e 2πi ) = ϕ( ) if and only if

α 2 k = α 2 1-k , e αα k i = e αα 1-k i
for all k ∈ Z ≥0 . It follows that α 0 = π and 2α ∈ Z, which gives that a = πi + n 2 for some n ∈ Z.

Beside, when ϕ(0) = -1, we consider the integral representation of I( ) given by (2.13). By writing the function H( , σ) in the following form:

H( , σ) = 1 -e (1-2ψ( ))σ 2(1 -e σ ) e ψ( )σ ,
it follows that H( , σ) is analytic for all σ ∈ C if, and only if 2ψ( ) ∈ Z; thus, in view of (2.14), one finds the condition for φ( ) to be analytic at = 0 in C.

The choice arg(ϕ(0)) ∈ (-π, π] in Theorem 2.1 can be replaced with the opposite choice arg(ϕ(0)) ∈ [-π, π). Indeed, the change ξ → 1 ξ of the integration-variable in (2.3) implies that

(2.16) G( x q ; q) = 1 x G( 1 qx ; q) .
Remark 2.1. Let ϕ(t) be as given in Theorem 2.1 and let

ϕ 1 (t) = e 2t ϕ(t) , ϕ 1 ( ) = G(ϕ 1 ( ); e -) .
(1) If ϕ(0) = -1 and arg((ϕ(0)) ∈ (-π, π], then arg(ϕ 1 (0)) ∈ [-π, π) and ϕ 1 ( ) admits a Gevrey asymptotic expansion as → 0 in some sector ∇ R .

(2) If ϕ(0) = -1 = e πi , ϕ(t) = -e (ψ(t)-1 2 )t and φ1 
( ) = G(ϕ 1 ( ); e -) -i π 2 e -2 (ψ( )-1)(ψ( )+3) ,
then ϕ 1 (0) = e -πi and φ1 ( ) admits a Gevrey asymptotic expansion as → 0 in some sector ∇ R .

Furthermore, if φ( ) and φ1 ( ) are the asymptotic expansion of ϕ and ϕ 1 or φ and φ1 respectively, the following identity holds in the algebra C[[ ]] of formal power series of the variable :

(2.17) φ1 ( ) = e -ϕ( ) φ( ) .

Proof. The relation in (2.17) follows immediately from (2.16). We omit the details.

Thus, for any given germ of analytic function ϕ(t) at t = 0 in C such that ϕ(0) = -1, the asymptotic expansion of G(ϕ( ); e -) can be found by considering either arg ϕ(0) ∈ (-π, π] or arg ϕ(0) ∈ [-π, π). However, by (2.5), one can notice that, when ϕ(0) ∈ (-∞, 0), the choice of arg((ϕ(0)) = π or -π yields one plat function with respect to ; in other words, the difference between the corresponding functions becomes infinitely small as = -log q → 0.

2.3. Asymptotic behavior of Mordell integral at unity. Theorem 2.1 implies that, if ϕ(t) is defined and analytic in the whole complex plane, then the corresponding function G(ϕ( ); e -) can be continued to be an analytic function in ∇ R , with R = ∞. Thus, for any given (z 0 , z 1 ) ∈ C 2 , letting = -2πiτ and ϕ( ) = e(z 0 + z 1 τ ) yields that the function τ → G(e(z 0 + z 1 τ ); e(τ )) can be continued to be analytic for all τ ∈ Ĥ, where Ĥ = {τ ∈ C * : -π < arg τ < 2π}.

Here, the Poincaré's half-plane H is identified to be a subset of H.

In the rest of this paper, we will make use of the following notation:

(2.18) H = {τ ∈ C * : - π 2 < arg τ < π 3 } = C \ [0, -i∞) .
It is worth noticing that H contains the real axis excepted the point at origin. Especially, by the definition of ω(u; q) in (A.8), one can obtain that

(2.20) ω(z | τ ) = 1 2π i τ e 1 2τ (z - τ 2 ) 2 .
It follows that

ω(z + 1 | τ ) = -e z + 1 2 τ ω(z | τ ) and (2.21) ω(z + τ ) = e(z) ω(z | τ ) = ω(-z | τ ) .
The relation in (2.5) can be read as follows:

(2.22)

G(z + 1 | τ ) = G(z | τ ) -2πi ω(-z + 1 2 | τ ) .
This suggests us to consider only the case of (z 0 ) ∈ (- [START_REF] Ono | Personal Reflections, and Gordonâs Work on Modular Forms and Mock Theta Functions[END_REF], and let H as in (2.18). Then τ → G(z | τ ) represents an analytic function for τ ∈ H possessing the following asymptotic behavior as τ → 0 there.

1 2 , 1 2 ]. Theorem 2.3. Given z = z 0 + z 1 τ with (z 0 , z 1 ) ∈ C 2 , let G(z | τ ) as in (2.
(1) If (z 0 ) ∈ (-1 2 , 1 2 ] and z 0 = 1 2 , then G(z | τ ) admits a Gevrey asymptotic expansion as τ → 0 in H, with -→0

G(z | τ ) = 1 1 + e(z 0 ) .

(2) If z 0 = 1 2 , then the function G(z | τ ) can be put into the following form:

(2.24) G(z | τ ) = - i 2 i τ e τ 2 (z 1 + 1 2 ) 2 + g(z 1 | τ ) ,
where g(z 1 | τ ) admits a Gevrey asymptotic expansion as τ → 0 in H, with

lim τ a.v. -→0 g(z 1 | τ ) = 1 + z 1 .
Proof. It suffices to apply Theorem 2.1, by observing that

= -2πiτ, ϕ(t) = e(z 0 ) e -z1t , ϕ(0) = e(z 0 ), ψ(t) = - 1 2 -z 1 .
2.4. Asymptotic behavior of Mordell integral at origin. To every q = e(τ ) with τ ∈ H will be associated the pair (τ 1 , q 1 ) as follows:

(2.25)

q 1 = e(τ 1 ), τ 1 = - 1 τ .
It is obvious to see that τ a.v.

-→ i∞ in H if, and only if, τ 1 a.v.

-→ 0 there; in this case, q goes to 0 exponentially rapidly.

From the functional equation of G(x; q) in (2.2), one finds that

(2.26) G(z | τ ) = 1 + e(z + 1 2 ) G(z -τ | τ ) ;
thus, one can consider only the case of (z 1 ) ∈ (-1 2 , 1 2 ]. Theorem 2.4. Let z = z 0 + z 1 τ , with z 0 , z 1 ∈ C. One has the following properties.

(1) If (z 1 ) ∈ (-1 2 , 1 2 ] and z 1 = 1 2 , then G(z | τ ) can be put into the following form:

(2.27) G(z | τ ) = 1 -i i τ e (z -1 2 + τ 2 ) 2 2τ ϕ(τ ) ,
where ϕ(τ ) admits a Gevrey asymptotic expansion as τ a.v.

-→ i∞ in H with

(2.28) lim τ a.v.
-→i∞ ϕ(τ ) = e(z 1 ) 1 + e(z 1 ) .

(

) If z 1 = 1 2 , then G(z | τ 2 
) can be put into the following form:

(2.29) G(z | τ ) = 1 - 1 2 e(z 0 + τ 2 ) -i i τ e (z 0 -1 2 + τ ) 2 2τ 1 -g(-z 0 | - 1 τ ) ,
where g is the function defined in Theorem 2.3 (2) by (2.24).

Proof. We shall apply Theorem 2.3 together with the modular-like relation given in (2.4). By making use of the notation in (2.25), one can write (2.4) into the following equivalent form:

(2.30)

G(z -τ | τ ) = 2πi ω(z + 1 2 | τ ) G(-(z + 1)τ 1 | τ 1 ) . As z = z 0 + z 1 τ , from (2.21) it follows that (2.31) G(z | τ ) = 2πi ω(-z - 1 2 | τ ) G(z 1 + 1 -(z 0 + 1)τ 1 | τ 1 )
.

By using both (2.26) and (2.22) with q 1 instead of q, one finds successively that

G(z 1 + 1 -(z 0 + 1)τ 1 | τ 1 ) = e(-z 1 + z 0 τ 1 ) 1 -G(z 1 + 1 -z 0 τ 1 | τ 1 ) = e(-z 1 + z 0 τ 1 ) 1 -G(z 1 -z 0 τ 1 | τ 1 ) +2πiω(- 1 2 -z 1 + z 0 τ 1 | τ 1 ) . A direct computation shows that ω(-z - 1 2 | τ ) e(-z 1 + z 0 τ 1 ) = -ω(-z + 1 2 | τ )
and that

ω(-z + 1 2 | τ ) ω(- 1 2 -z 1 + z 0 τ 1 | τ 1 ) = 1 4π 2 .
Thus, the relation in (2.31) can be expressed as follows: 

G(z | τ ) = 1 -2πi ω(-z + 1 2 | τ ) 1 -G(z 1 -z 0 τ 1 | τ 1 ) = 1 -i i τ e (z -1 2 + τ 2 ) 2 2τ 1 -G(z 1 -z 0 τ 1 | τ 1 ) . (2.32) When (z 1 ) ∈ (-1 2 , 1 2 ] and z 1 = 1 2 , one writes ϕ(τ ) = 1 -G(z 1 -z 0 τ 1 | τ 1 )
-→ i∞ iff τ 1 a.v. -→ 0. When z 1 = 1 2 , (2.24) with τ 1 = -1 τ implies that G( 1 2 -z 0 τ 1 | τ 1 ) = - i 2 τ i e - (z 0 -1 2 ) 2 2τ + g(-z 0 | - 1 τ )
which allows one to deduce (2.29) from (2.32).

2.5.

Values of Mordell integral at half-periods. We shall consider some special values of the function g(z 1 | τ ) introduced in the above by (2.24). Letting

z = 1 2 + z 1 τ in (2.26) gives -e(z 1 τ ) G(z -τ ) + G(z | τ ) = 1,
that together with (2.24) imply that

(2.33) g(z 1 | τ ) = 1 + e(z 1 τ ) g(z 1 -1 | τ ) .
When z 1 = 0 or 1 2 , one will find that

(2.34) g(0 | τ ) = 1, g( 1 2 | τ ) = 1 + 1 2 e( τ 2 
) , by considering the following Remark 2.2. The following relations hold for all τ ∈ H:

(2.35) G(- τ 2 | τ ) = 1 2 , (2.36) G(± 1 2 | τ ) = 1 ∓ i 2 i τ e( τ 8 
) ,

and

(2.37)

G(± 1 2 + τ 2 | τ ) = 1 + 1 2 e( τ 2 ) ∓ i 2 i τ e( τ 2 
) .

Proof. Since G(-τ 2 | τ ) = G( 1 √ q ; q), putting ϕ = 2 into (2.9) yields thatF ( , σ) = 1, so (2.12) gives (2.35). Another way to obtain that is to use (2.16) and the functional equation (2.26).

Putting z = e(-1 2 ) in (2.22) yields that

G( 1 2 | τ ) = G(- 1 2 | τ ) -2πi ω(0 | τ ) .
By gathering (2.26) together with (2.16), one finds that

(2.38) G(e -πi x; q) = 1 + x -xG( e πi x ; q) .
Applying this to x = 1 = e(0) gives that

G( 1 2 | τ ) + G(- 1 2 | τ ) = 2 ,
which implies the values given in (2.36) for G(±

1 2 | τ ). Putting x = e( τ 2 ) = √ q in the relation (2.38) yields that G(- 1 2 + τ 2 | τ ) = 1 + e( τ 2 ) - √ q G( e πi √ q ; q) = 2 + e( τ 2 ) -G( 1 2 + τ 2 | τ ) ,
where the last implication is obtained with the help of the functional equation (2.26). Thus, by combining this with (2.22) for z = τ 2 , one obtains that

G(± 1 2 + τ 2 | τ ) = 1 + 1 2 e( τ 2 ) ∓ πi ω(- τ 2 | τ ) ,
which are equivalent to (2.37).

By (2.24) and (2.33), one finds that, for any integer n, every function g( n 2 | τ ) can be expressed as polynomials of e(± τ 2 ). Furthermore, by taking into account the functional equations in (2.26) and (2.22), the above formulas in (2.35), (2.36) and (2.37) allow one to obtain explicit expressions for the functions G(k

+ (n + 1 2 )τ | τ ) and G(k + 1 2 + n 2 τ | τ ) when k, n ∈ Z.
This shows that, as stated in Theorem 2.2, the corresponding functions ϕ( ) and φ( ) are all analytic at = 0 in C, with = -2πiτ . 

Reciprocity law for generalized Gauss sums. In order to evaluate

G(z | τ ) for τ ∈ Q \ {0}, we let ζ = e(r), r = p m ∈ (0, 1), (p, m) ∈ Z ≥1 × Z ≥1 , p ∧ m = 1. If x = e(z), we define (2.39) h(x; ζ) = h(z | r) = m-1 n=0 x n ζ n(n-
G(z + p | r) = G(z | r) + e(- 1 8 
)

m p d(z | r) .
Proof. Let q = ζ = e(r). By (2.22), it follows that, for all integer n,

G(z + n + 1 | r) = G(z + n | r) -i i r e 1 2r ( 1 2 + z + n + r 2 ) 2 ,
what together with (2.40) imply (2.42), by noticing that -i √ i = e(-1 8 ). Theorem 2.5. The following identities hold for G(z | r), where r = p m ∈ (0, 1), p ∧ m = 1.

(1) If mz + 1 2 / ∈ Z, then:

(2.43) G(z | r) = h(z + 1 2 | -r) -e(-1 8 ) m p d(z | r) 1 + e(mz)
.

(2) If mz = + 1 2 and ∈ Z, then: 

(2.44) h(z + 1 2 | -r) = e(- 1 
G(z + mr | r) = 1 -e z + mr G(z + (m -1)r | r) = 1 -e z + mr 1 -e(z + (m -1)) G(z + (m -2)r | r) = ... = m-1 n=0 (-1) n e nz - 1 2 n(n -1)r -e(mz) G(z | r) .
Thus, by using the function h(x; ζ) defined in (2.39), one gets that

(2.46) G(z + p | r) = -e(mz) G(z | r) + h(z + 1 2 | -r) .
(1) When e(mz) = -1, gathering (2.46) with (2.42) yields (2.43) .

(2) When e(mz) = -1, it follows that the relations in (2.46) and (2.42) must be the same, so one finds the equality in (2.44). Furthermore, by taking the limit z → z = 

h 1 (z | ζ) = 1 2πi ∂ ∂z h(z | r), d 1 (z | ζ) = 1 2πi ∂ ∂z d(z | r) .
Thus, (2.45) can be read as follows:

(2.48)

G(z | r) = - 1 m h 1 (z + 1 2 | -r) -e(- 1 8 
)

m p d 1 (z | r) .
Remark 2.4.

(1) If p is even, then:

(2.49) h(- r 2 + 1 2 | -r) -e(- 1 8 
)

m p d(- r 2 | r) = 1 .
(2) If p is odd, then:

(2.50) h(- r 2 + 1 2 | -r) = e(- 1 8 
)

m p d(- r 2 | r)
and

(2.51) h 1 (- r 2 + 1 2 | -r) -e(- 1 8 
)

m p d 1 (- r 2 | r) = - m 2 .
(3) If m is even, then:

(2.52) h(0 | -r) -e(- 1 8 
)

m p d(± 1 2 | r) = 2 ∓ e 1 8 (3 + p m ) m p and (2.53) h( r 2 | -r) -e(- 1 8 
)

m p d(± 1 2 + r 2 | r) = 2 + e( p 2m ) 1 ∓ e( 3 8 
) m p .

(4) If m is odd, then:

(2.54) h(0 | -r) = e(- 1 8 
)

m p d(± 1 2 | r) , (2.55) h( r 2 | -r) = e(- 1 8 
)

m p d(± 1 2 + r 2 | r) , (2.56) h 1 (0 | -r) -e(- 1 8 
) m p d 1 (± 1 2 | r) = - m 2 2 ∓ e 1 8 (3 + p m ) m p , and 
(2.57) h 1 ( r 2 | -r)-e(- 1 8 
) m p d 1 (± 1 2 + r 2 | r) = - m 2 2+e( p 2m ) 1∓e( 3 8 ) m p .
Proof. This follows from Remark 2.2, with the help of Theorem 2.5 and (2.48). Moreover, one sees that some of these formulas can be found by elementary method as in [9, p. 44, 9 and 10 ].

Remark 2.5. When z = 0, there is no close-form for G(0 | r) but one can make use of the following relation:

(2.58) G(0 | r) = 1 2 h( 1 2 | -r) -e(- 1 8 
) m p d(0 | r) .

Asymptotic bahavior of Appell-Lerch series

As in [START_REF] Zhang | Une sommation discrète pour des équations aux q-différences linéaires et à coefficients analytiques: théorie générale et exemples[END_REF] and [START_REF] Ramis | Développements asymptotiques q-Gevrey et fonction thêta de Jacobi[END_REF], we will call a q-spiral any set of the form {aq n : n ∈ Z}, where a ∈ C * . This set will be denoted as aq Z or [a; q]. By following (A.6) and (A.10), to every given u ∈ C * \ [1; q] can be associated the q-Borel sum of Ê(x; q) along the q-spiral [-u; q]. Let S [-u;q] Ê denote this sum-function, this is to say:

S [-u;q] Ê(x; q) = ξ∈[-u;q] 1 1 + ξ 1 θ( ξ x ; q)
, where θ(t; q) = n∈Z q n(n-1)/2 t n . By the functional relation θ(q n t; q) = t -n q -n(n-1)/2 θ(t; q) (n ∈ Z), it follows that

S [-u;q] Ê(x; q) = n∈Z 1 1 -uq n 1 θ(-u x ; q) (- u x ) n q n(n-1)/2 .
Comparing this with the definition of L(x, u; q) in (2.1) and the expression of

L(z, w | τ ) in (1.29) gives that (3.1) L(x, u; q) = S [-u;q] Ê(x; q) .
In other words, L(x, u; q) is the q-Borel sum of Ê(x; q) along the spiral [-u; q]. In §3.1 in the below, we will recall a modular-like relation for L(z, w | τ ) that can be found by a viewpoint of Stokes analysis on sum-functions of divergent power series. By means of this formula, we will deduce, in §3.2, that L(z, w | τ ) is of almost theta-type for q a.r.

-→ 1; see Theorem 3.5. In order to extend this approach to any root of unity, we will introduce, like in the classical theory of elliptic functions, a family of linear fractional transformations associated to any given root of unity in §3.3.

From §3.4, we shall consider the asymptotic behavior of L(z, w | τ ) when q tends to any non-trivial root of unity. By Theorem 3.6, we shall show that this function can be decomposed by a natural manner into a Gevrey function plus a theta-type function. This key result will be proved at the end of §3.5. In §3.6, we shall see that, even the Gevrey part of L(z, w | τ ) at each root ζ = e( p m ) has a finite limit, this limit becomes increasing as m → ∞ except for very few special values of z. These values are non-zero half-periods, for what the associated function L(z, w | τ ) is constant or false-theta; see Theorem 3.9 in §3.7. Finally, in §3.8, we will complete the proof of Theorem 1.3.

Modularity viewed from Stokes phenomenon.

The above sum-function L(x, u; q) is the unique solution of the q-difference equation in (2.2) that is analytic for x ∈ C * \ [u; q] and admits a simple pole at each point of the spiral [u; q]. Beside, the Mordell integral G(x; q) of (2.3) is also a solution of (2.2) and a sum-function of the q-Euler series Ê(x; q). Thus L(x, u; q) -G(x; q) satisfies the homogeneous equation y(x) + xy( x q ) = 0 and is infinitely flat when x → 0. This is a Stokes phenomenon as currently observed in the analytic theory of ODE. In this way, one can find the following L(x, u; q) = G(xe -2πi ; q) -2πi ω( e πi x ; q) L(e 2πi log x log q , e 2πi log u log q ; e 4π 2 log q ).

Proof. Putting α = -π in [START_REF] Zhou | On summability of formal solutions to a Cauchy problem and generalization of Mordelltheorem[END_REF]Theorem 1.2], one can find that f α (e -πi √ q x, √ q ) = G(x; q) , which implies (3.2), for g λ (-√ q x, √ q ) = L(x, λ; q).

The above relation in (3.2) will play an important role for what follows. Indeed, this is a modular-like relation, for L(x, u; q) is expressed by means of the modular variable (x 1 , u 1 , q 1 ) = e( log x log q ), e( log u log q ), e(-2πi log q ) . Theorem 3.2. For all (z, w) ∈ R 2, * 1⊕τ ,

(3.3) L(z, w | τ ) = G(z | τ ) + C(z | τ ) L( z τ , w τ | - 1 τ ) -1 ,
where

(3.4) C(z | τ ) = -2πi ω( e πi e(z) ; q) = -2πi ω(-z + 1 2 | τ ) .
Proof. Using (2.1), (2.19) and (3.4) allows one to write the relation in (3.2) into the following form:

(3.5) L(z, w | τ ) = G(z -1 | τ ) + C(z | τ ) L( z τ , w τ | - 1 τ
) .

Thus, one reduces (3.3) from the functional equation in (2.22) for G(z | τ ).

By considering the definition of w(z | τ ) in (2.20) and the classical modular formula for θ(x; q) [4, p. 626, (D.4.2)], the factor C(z | τ ) defined in the above by (3.4) has the following alternative expressions:

(3.6) C(z | τ ) = -i i τ e (z + τ 2 -1 2 ) 2 2τ = 1 τ θ(-z τ + 1 2 | -1 τ ) θ(-z + 1 2 | τ )
.

Remind that the second expression requests that z / ∈ Z ⊕ τ Z. Beside, from the definition of L(z, w | τ ) in (1.29), it follows that

(3.7) R 1 (z, w | τ ) = θ(z + τ 2 | τ ) L(-z + w - τ 2 + 1 2 , w | τ ) .
Theorem 3.3. The following relation holds for all z ∈ C and w ∈ C \ (Z ⊕ τ Z):

(3.8) R 1 (z, w | τ ) = θ(z + τ 2 | τ ) G(-z + w - τ 2 - 1 2 | τ ) + C(z, w | τ ) R 1 ( z τ , w τ | - 1 τ ) ,
where

(3.9) C(z, w | τ ) = 1 τ C(-z + w -τ 2 + 1 2 | τ ) C(-z -τ 2 + 1 2 | τ )
.

Proof. This follows directly from the relation in (3.5).

3.2.

Almost theta-type properties at origin and unity. By Lemma 1.1, one knows that θ(z | τ ) ∈ T 0 for all z ∈ R τ = R ⊕ τ R. In a similar way, one can prove the following

Lemma 3.1. Given (u, v) ∈ R τ × R τ , one has R 1 (u, v | τ ) ∈ T 0 provided that v / ∈ Z ⊕ τ Z.
This follows directly from the definition of R 1 in (0.1) with k = 1. For the proof, see §4.4. By considering Proposition 1.1 (2) and both Lemmas 1.1 and 3.1, one gets immediately the following

Proposition 3.1. Given (z, w) ∈ R 2, * 1⊕τ , it follows that L(z, w | τ ) ∈ T 0 . 2 
This can be easily generalized as follows.

Remark 3.1. Let I be a finite set of real numbers and γ be a C * -valued function on

I. If f (q) = L(z, w | τ ) + k∈I γ(k) e(kτ ) , then f ∈ T 0 provided that (z, w) ∈ R 2, * 1⊕τ . 2 
We shall give the dominant term of L(z, w | τ ) for τ a.v.

-→ i∞. As often as possible, we will denote by ∅ for any function that is exponentially small.

Proposition 3.2. Let u = u 0 + u 1 τ , v = v 0 + v 1 τ , with u j , v j ∈ R, (v 0 , v 1 ) / ∈ Z 2 , and let f (q) = R 1 (u, v | τ ). One assumes that u 1 ∈ (-1 2 , 3 2 ) and τ a.v. 
-→ i∞ in H (1) If v 1 ∈ (-1, 0) and u + v = -τ 2 mod Z, then:

(3.10) f (q) = e(u + τ 2 ) -e(-v) (1 + ∅) .
(2) If v 1 ∈ (-1, 0) and u + v = -τ 2 mod Z, then:

(3.11) f (q) = e(τ ) -e(-2v) (1 + ∅) 2v + τ / ∈ Z 0 2v + τ ∈ Z . (3) If v 1 = 0, then f (q) = 1 
1-e(v0) (1 + ∅). The proof can be done by direct calculations; see §4.5. Proposition 3.2 and Lemma 1.1 give the following

Theorem 3.4. Let (z, w) ∈ R 2, * 1⊕τ , z = z 0 + z 1 τ , w = w 0 + w 1 τ , and let f (q) = 1-L(z, w | τ ). One assumes that τ a.v. -→ i∞. If either w 1 < z 1 ≤ 1 2 and w 1 ∈ (-1 2 , 0] or z 1 ∈ [-1 2 , 1 2 ] and w 1 ∈ (0, 1 
2 ), then P 0 (f ) = 0. The proof will be given in §4.6. Indeed, one can find c ∈ C * and κ > 0, depending of (z 0 , z 1 , w 0 , w 1 ), such that t 0 (f )(q) = c e κτ in each of the cases involved in Theorem 3.4.

Remark 3.2. Given (z, w) ∈ Ω 2, * 1⊕τ , let f (q) = L(z, w | τ ). If either w 1 > 0 or w 1 ≤ 0 but z 1 > w 1 , then t 0 (f )(q) = 1.
This follows from Theorem 3.4, for L(z, w | τ ) = 1 -f 1 (q) and P 0 (f 1 ) = 0. 2 Theorem 3.5. Given (z, w) ∈ Ω 2, * 1⊕τ , the function L(z, w | τ ) belongs to T1 .

Proof. Let f (q) = L(z, w | τ ). When q a.r.

-→ 1, it follows that τ = τ a.v.

-→ 0, -

-→ i∞ and that q 1 = e(-1 τ )

a.r.

-→ 0 exponentially. By Remark 3.1, it follows that

L( z τ , w τ | -1 τ ) -1 ∈ T 1 .
Thus, by considering the fact that C(z | τ ) ∈ T, applying Proposition 1.1 (2) to the last term of the relation in (3.3) 

implies that f (q) - G(z | τ ) ∈ T 1 .
On the one hand, Theorem 2.3 [START_REF] Andrews | Mordell integrals and Ramanujan's "lost" notebook[END_REF] gives that

G(z | τ ) ∈ G 1 provided that z = z 0 + z 1 τ , z 0 ∈ (-1 2 , 1 2 
). Under this last condition, one obtains that f ∈ T1 , in view of Definition 1.1 [START_REF] Andrews | Mordell integrals and Ramanujan's "lost" notebook[END_REF].

On the other hand, assume z = 1 2 + z 1 τ , apply (2.24) of Theorem 2.3, and make use of the first expression of C(z | τ ) in (3.6). It follows that (3.12) G(

1 2 + z 1 τ | τ ) -C( 1 2 + z 1 τ | τ ) = g(z 1 | τ ) ,
where g admits a Gevrey expansion for τ a.v.

-→ 0 in H as stated by Theorem 2.3 (2). Thus, (3.3) becomes

f (q) = g(z 1 | τ ) + C(z | τ ) L( z τ , w τ | - 1 τ ) ,
what gives that f ∈ T1 .

3.3. Continued fractions and modular transforms. In the above, the asymptotic behavior of L(z, w | τ ) stated by Theorem 3.5 for q a.r.

-→ 1 or τ a.v.

-→ 0 was found by means of the modular-like relation in (3.3). It is worth noticing that L(z, w | τ ) is left invariant if one increases or decreases by an integer anyone of the entries z, w and τ . This idea applied to both sides of (3.3) leads one to make use of the continued fractions to reach any root of unity for q, as in the classical theory of theta-functions.

As usual, let [a] and {a} denote the integral and fractional parts of any real a:

(3.13) [a] ∈ Z ∩ (a -1, a] ; {a} = a -[a] ∈ [0, 1) .
Given r ∈ (0, 1) ∩ Q, we define r 0 = r and, for n ≥ 0,

r n+1 = -1 r n , m n = - -1 r n . (3.14) 
Let ν to denote the positive integer such that r ν-1 = 0 and r ν = 0, this is to say, r ν-1 becomes the inverse of certain positive integer, 1 mν-1 . By convention, we will write m ν = 0. By using the standard notation [., ., ...] [5, ??], r can be represented by the following continued fraction:

(3.15) r = 0, m 0 , -m 1 , ..., (-1) ν m ν .
First, to the sequence (r n , m n ) of (3.14) will be associated a family of linear fractional transformations (τ → τ n ) as follows:

(3.16) τ 0 = τ, τ n+1 = -1 τ n + m n (n ∈ Z ∩ [0, ν]) . Letting M -1 = 1 0 0 1 and M n = m n -1 1 0 for n ≥ 0, one finds that τ n+1 =
M n (τ n ), this means that τ n+1 is the Möbius transformation of τ n associated with M n ∈ SL(2, Z) on H. In this way, one gets that, for all integer n in [0, ν + 1]:

(3.17)

τ n = Mn (τ 0 ) = Mn (τ ), Mn = M n-1 ...M -1 . Lemma 3.2. Let r = p m ∈ (0, 1) ∩ Q, (p, m) ∈ Z 2 >0 , p ∧ m = 1
, and let τ n as in (3.16) or in (3.17). Then:

(3.18) τ a.v. -→ r ⇐⇒ τ n a.v. -→ r n ⇐⇒ τ ν a.v.
-→ 0 where 0 < n < ν, and

(3.19) τ 0 τ 1 ... τ ν = m(τ -r) .
Moreover, there exists α ∈ Z such that m ∧ α = 1 and

(3.20) τ ν+1 = - 1 m 2 (τ -r) + α m .
Proof. Comparing (3.14) with (3.16) yields directly the relations of equivalence included in (3.18). Let A(τ ) = τ 0 τ 1 ... τ ν . By the definition of τ n given in (3.17), let

(3.21) τ n = α n τ + β n γ n τ + δ n , Mn = α n β n γ n δ n ∈ SL(2, Z) .
The relation Mn+1 = M n Mn implies that

(α n+1 , β n+1 ) = m n (α n , β n ) -(γ n , δ n ) , (γ n+1 , δ n+1 ) = (α n , β n ) .
Thus, one finds that A(τ ) = α ν τ +β ν . By (??), it follows that α ν = m and β ν = -p, which gives the equality in (3.19). Furthermore, the foregoing consideration on (α ν , β ν ) gives that Mν+1 is of the following form:

(3.22) Mν+1 = α -β m -p ∈ SL(2, Z) .
In this way, (3.21) with n = ν + 1 implies the expression of τ ν+1 in (3.20).

Secondly, given z = z 0 + z 1 τ ∈ Ω τ , we define the sequence (ẑ n ) for 0 ≤ n ≤ ν + 1 as follows: ẑn = z n,0 + z n,1 τ n ∈ Ω τn with

(3.23) z n+1,0 -z n+1,1 = M n z n,0 -z n,1 + δ 0 ,
where δ ∈ Z. In the above, ẑ0 = z, so z 0,k = z k for k = 0 or 1. It can be easily seen that

(3.24) ẑn+1 = ẑn τ n (mod Z) , z n,0 -z n,1 = Mn z 0 -z 1 + δ n,0 δ n,1 ,
where δ n,0 , δ n,1 ∈ Z.

Lemma 3.3. The sequence (ẑ n ) defined in (3.23) has the following properties.

(1) ẑn = 0 if, and only if, ẑn+1 = 0.

(

) ẑn ∈ { 1 2 , -1 2 τ n , 1 2 -1 2 τ n } if, and only if, ẑn+1 ∈ { 1 2 , -1 2 τ n+1 , 1 2 -1 2 τ n+1 }. (3) κ(z | τ, r) = κ(ẑ n | τ n , r n ) = κ(ẑ ν+1 | τ ν+1 , ∞), where κ(z | τ, ∞) and κ(z | τ, r) 2 
are defined in (1.22) and in (1.23).

Proof. The relations of equivalence stated in (1) and (2) follow directly from the second relation in (3.24).

(

) For n ≤ ν, let r n = pn dn , (p n , d n ) ∈ Z ≥0 × Z >0 , p n ∧ d n = 1. By (3.14), it follows that -dn pn = pn+1 dn+1 -m n , thus (3.25) d n+1 = p n , p n+1 = m n p n -d n . 3 
By the second relation in (3.24), z n+1,0 = m n z n,0 + z n,1 + δ and z n+1,1 = -z n,0 , where δ ∈ Z. Thus, (1.23). By combining this together with (1.22), one obtains the same equality for n = ν, with d ν+1 = p ν = 0 and p ν+1 = -d n = -1.

d n+1 z n+1,0 + p n+1 z n+1,1 = d n z n,0 + p n z n,1 + δp n , what implies κ(ẑ n+1 | τ n+1 , r n+1 ) = κ(ẑ n | τ n , r n ) for n < ν, by
Letting n = ν + 1 in (3.24) gives the following Remark 3.3. Let α, β be as in (3.22). Then:

(3.26) ẑν+1 = (αz 0 + βz 1 ) -(mz 0 + pz 1 )τ ν+1 mod (Z ⊕ τ ν+1 Z) .
In what follows, we consider two examples for illustrating the general results established in the above. Remark 3.4. For r = 1 m , where m ∈ Z ≥2 , it follows that m 0 = m, ν = 1,

τ 1 = - 1 τ + m , τ 2 = - 1 m 2 τ - 1 m ,
where τ = τ -r. Thus, the definition of (ẑ n ) in (3.23) becomes:

ẑ0 = z = z 0 + z 1 τ , ẑ1 = z 1,0 + z 1,1 τ 1 = (mz 0 + z 1 + δ) -z 0 τ 1 and (3.27) ẑ2 = z 2,0 + z 2,1 τ 2 = -z 0 + δ -(mz 0 + z 1 + δ)τ 2 ,
where δ and δ denote some suitable integers.

Remark 3.5. Let p ∈ Z ≥2 , k ∈ Z ≥2 and m = kp -1. For r = p m , m 0 = k, r 1 = 1 p , m 1 = p, ν = 2, τ 1 = - 1 τ + k , τ 2 = - 1 k 2 (τ -1 k ) + p - 1 k , τ 3 = - 1 m 2 τ - k m .
By (3.23), ẑ0 = z = z 0 + z 1 τ , ẑ1 = (kz 0 + z 1 + δ) -z 0 τ 1 , ẑ2 = mz 0 + pz 1 + δ -(kz 0 + z 1 + δ)τ 2 and

(3.28) ẑ3 = z 3,0 + z 3,1 τ 3 = -kz 0 -z 1 + δ -(mz 0 + pz 1 + δ )τ 3 .
In the above, δ, δ and δ belong to Z.

3.4. Modular-like formula at an arbitrary root of unity. Let r ∈ Q ∩ (0, 1), and keep the corresponding construction of (r n , m n ) and τ n in (3.14) 

⇐⇒ (ẑ n , ŵn ) ∈ Ω 2, * 1⊕τn (1 ≤ n ≤ ν + 1
). This relation in (3.29) in the above implies that once L(z, w | τ ) is well-defined, the functions L(ẑ n , ŵn | τ n ) continue to be well-defined till n = ν + 1. By using the first relation in (3.24) and iterating the modular-like formula in (3.3), one finds that

(3.30) L(z, w | τ ) = g n (z | τ ) + C n (z | τ ) L(ẑ n+1 , ŵn+1 | τ n+1 ) ,
where g n and C n are determined recursively as follows. We let g -1 (z | τ ) = 0 and

C -1 (z | τ ) = 1; for n ∈ [0, ν] ∩ Z, (3.31) C n (z | τ ) = C n-1 (z | τ ) C(ẑ n | τ n ) and (3.32) g n (z | τ ) = g n-1 (z | τ ) + C n-1 (z | τ ) G(ẑ n | τ n ) -1 .
Remark 3.6. For n ∈ [0, ν) ∩ Z, both C n (z | τ ) and g n (z | τ ) are analytic at τ = r in the cut-plane C \ [0, -i∞). Moreover, it follows that

(3.33) C ν-1 (z | τ ) |τ=r = √ m .
Indeed, from (3.31), one gets that

(3.34) C n (z | τ ) = n k=0 C(ẑ k | τ k ) .
Combining this together with the first expression of C(z | τ ) in (3.6) yields that

C n (z | τ ) = (-i) n+1 n k=0 i τ k e (2ẑ k + τ k -1) 2 8τ k . (3.35)
By (3.18), it follows that, as τ a.v.

-→ r, τ k a.v.

-→ r k ∈ (0, 1) for k ≤ n < ν. Thus, each new variable τ k describes a neighborhood of r k in C \ [0, -i∞) when τ remains in an enough small open-disc centered at r in this cut-plane. In this way, one finds that τ → C n (z | τ ) is analytic at τ = r. This implies also the analyticity of g n , for each G(ẑ k | τ k ) is analytic for τ k ∼ r k = 0 as stated by Theorem 2.3.

By combining (3.19) with (3.20), it follows that

τ 0 ...τ ν-1 = m τ τ ν = -m τ τ ν+1 = 1 m -α τ .
Thus, letting τ a.v.

-→ r yields that r 0 ...r ν-1 = 1 m . One deduces immediately (3.33) from (3.35).

2 Letting n = ν into (3.30) yields that

(3.36) L(z, w | τ ) = g ν (z | τ ) + C ν (z | τ ) L(ẑ ν+1 , ŵν+1 | τ ν+1 ) .
This relation extends the modular-like formula of (3.3) to the case of r ∈ (0, 1) ∩ Q.

In order to identify this parameter r, we let

(3.37) C(z | τ, r) = C ν (z | τ ) = ν k=0 C(ẑ k | τ k ) , (3.38) g(z | τ, r) = g ν (z | τ ) -ς C(z | τ, r) and (3.39) ϑ(z, w | τ, r) = C(z | τ, r) L(ẑ ν+1 , ŵν+1 | τ ν+1 ) + ς .
Here, we set ς = 0 or 1 when z ν,0 = 1 2 or z ν,0 = 1 2 . By (3.24) and (3.26), it follows that z ν,0 = -z ν+1,1 = mz 0 + pz 1 mod Z. Thus, ς = 0 or 1 when mz 0 + pz 1 + 1 2 = 0 or = 0 mod Z.

Consequently, (3.36) can be read as follows: The proof will be given in §3.5 in the below.

3.5.

Almost theta property at an arbitrary root of unity. We begin with the following Lemma 3.4. Let z ∈ Ω τ and let C(z | τ, r) be in (3.37).

(1) If z = 0, then:

(3.41) C(z | τ, r) = θ(-ẑ ν+1 + 1 2 | τ ν+1 ) m(τ -r) θ(-z + 1 2 | τ )
.

(2) If z = 0, then there exists an 8-th root of unity, ζ 8 , such that 

(3.42) C(0 | τ, r) = ζ 8 √ m i τ -
C(z | τ, r) = 1 τ 0 τ 1 ...τ ν ν k=0 θ(-ẑk τ k + 1 2 | -1 τ k ) θ(-ẑ k + 1 2 | τ k ) = 1 τ 0 τ 1 ...τ ν ν k=0 θ(-ẑ k+1 + 1 2 | τ k+1 ) θ(-ẑ k + 1 2 | τ k )
. gives (3.42), with the help of (3.19). This achieves the proof.

Consequently
Comparing (1.19) with (3.20) yields that τ = τ ν+1 , i.e.:

(3.44)

τ ν+1 = τ = - 1 m 2 τ + α m , α ∧ m = 1.
In this way, Lemma 3.4 implies the following

Proposition 3.3. Given z ∈ Ω τ , one has C(z | τ, r) ∈ T ζ . Proof. Let f (q) = C(z | τ, r) ∈ T ζ .
First, assume z = 0 and let (3.45)

f 1 = θ(-ẑ ν+1 + 1 2 | τ ν+1 ), f 2 (q) = m(τ -r) θ(-z + 1 2 | τ ).
The relation in (3.41) gives that f (q) = f1(q) f2(q) . By Theorem 1.1, one knows that both f 1 , f 2 ∈ T ζ and that t ζ (f 2 ) = 0, so Proposition 1.1 [START_REF] Andrews | Mock theta functions. Theta functions[END_REF] 

implies that f ∈ T ζ .
Next, assume that z = 0. By (3.44) and the fact that τ = τ + r, (3.42) becomes:

(3.46) C(0 | τ, r) = c √ m i τ e 1 8 (τ + 1 m 2 τ ) ,
where c ∈ U. This implies C(0 | τ, r) ∈ T ζ .

Proof of Theorem 3.6. Let f (q) = L(z, w | τ ). We shall make use of the decomposition of f (q) given in (3.40) 

g ν (z | τ ) = g ν-1 (z | τ ) + C ν-1 (z | τ ) G(ẑ ν | τ ν ) -1 .
By Remark 3.6, both g ν-1 (z | τ ) and C ν-1 (z | τ ) are analytic at τ = r. As τ a.v.

-→ 0, one knows that τ ν a.v.

-→ 0; see Lemma 3.2. Following Theorem 2.3, we shall distinguish two cases: ẑν = z ν,0 + z ν,1 τ ν with z ν,0 ∈ (-1 2 , 1 2 ) or z ν,0 = 1 2 . First, assume z ν,0 ∈ (-1 2 , 1 2 ); it follows that g(z | τ, r) = g ν (z | τ ) and ς = 0 in (3.38). On the one hand, by Theorem 2. Next, assume z ν,0 = 1 2 ; it follows that ς = 1 in both (3.38) and (3.39). Similarly to the relation in (3.12) in the second part of the proof of Theorem 3.5, one finds that

G(ẑ ν | τ ν ) = C( 1 2 + z ν,1 τ ν | τ ν ) + g(z ν,1 | τ ν ) .
Thus, comparing (3.36) with (3.40) gives

(3.48) g(z | τ, r) = g ν-1 (z | τ ) + C ν-1 (z | τ ) g(z ν,1 | τ ν ) -1 .
Applying Theorem 2. 

(q) = C(z | τ, r) be as in (3.37). If (3.49) κ = 1 2 (mz 0 + pz 1 -δ - 1 2 ) 2 with δ ∈ Z ∩ (mz 0 + pz 1 -1 2 , mz 0 + pz 1 + 1 2 ], then there exists c ∈ C * such that (3.50) t ζ (f )(q) = c √ m i τ e 1 8 ((2z 1 ) 2 + 1) τ q -κ/m 2 1 . Moreover, |c| = ρ(ẑν+1 | τν+1) ρ(z | τ ) or |c| = 1 if z = 0 or z = 0, respectively.
For the definition of ρ(z | τ ), see (1.21). It is easy to observe that (3.46) gives, in fact, (3.50) for z = 0. Thus, assume z = 0 and let f 1 and f 2 be as in (3.45). By (3.44), one knows that q 1 = e(m 2 τ ν+1 ). In view of the relation t

ζ (f ) = t ζ (f1) t ζ (f2) , applying (1.22) to f 1 and (1.23) to f 2 yields (3.50) with κ = 1 2 (z ν+1,1 + 1 2 ) 2 -κ(ẑ ν+1 | τ ν+1 , ∞) + κ(z | τ, r) . By Lemma 3.3 (3), κ(ẑ ν+1 | τ ν+1 , ∞) = κ(z | τ, r).
So, the expression of ẑν+1 in (3.26) gives immediately the relation stated for κ in (3.49). 2

Remark 3.8. Let r, ζ, τ , q 1 be as in Remark 3.7, and let f (q) = ϑ(z, w | τ, r) be as in (3.39). One can find c ∈ C * and κ > 0 such that 

(3.51) t ζ (f )(q) = c i τ e 1 8 ((2z 1 ) 2 + 1)τ q -κ 1 provided that either (i) w ν+1,1 > 0 or (ii) w ν+1,1 ≤ 0 but z ν+1,1 > w ν+1,1 . Indeed, let f 1 (q) = C(z | τ, r) and f 2 (q) = L(ẑ ν+1 , ŵν+1 | τ ) + ς. The relation in (3.39) says that f = f 1 f 2 . By Remark 3.2, t 0 (f 2 )(q) = 1 + ς = 0 in
m ) = g ν-1 (z 0 + p m z 1 | p m ) - e(z ν,0 ) 1 + e(z ν,0 ) C ν-1 (z 0 + p m z 1 | p m ) ,
where (3.33). This implies that, in general, γ(z, p m ) is unbounded as m → ∞. See Theorems 3.7 and 3.11 in the below.

z ν,0 = 1 2 , or (3.54) γ(z, p m ) = g ν-1 (z 0 + p m z 1 | p m ) + z ν,1 C ν-1 (z 0 + p m z 1 | p m ) when z ν,0 = 1 2 . In the above, |C ν-1 (z 0 + p m z 1 | p m )| = √ m, by
In order to simplify the exposition, we shall consider the case of r = 1 m , m ∈ Z ≥2 , for which case both τ n and ẑn have been given in Remark 3.4; see (3.27).

Theorem 3.7. Let M ⊂ Z ≥2 be such that #M = ∞. The following conditions are equivalent.

(

) sup m∈M |γ(z, 1 m )| < ∞. (2) z ∈ { 1 2 , 1 2 -1 2 τ, - 1 
2 τ }. The proof will be given at the end of this section. For doing that, it will be convenient to introduce the following notation:

(3.55) E(z) = E(z | τ ) = {m ∈ Z ≥2 : mz 0 + z 1 = 1 2 mod Z} and (3.56) N(z) = N(z | τ ) = Z ≥2 \ E(z | τ ) .
Remark 3.9.

(1) #E(z) = ∞ if, and only if, #E(z) ≥ 2. If this is the case, then z ∈ Q ⊕ τ Q.

(2) When z 0 = 0, either E(z) = ∅ or N(z) = ∅. This last equality holds if, and

only if, z = -1 2 τ . (3) When z = -1 2 τ , #N(z) = ∞. (4) When z 0 = 1 2 , #E(z) = ∞ if, and only if, z 1 ∈ {0, - 1 2 } 
. Indeed, if both m and m + d belong to E(z), where d > 0, then dz 0 ∈ Z, thus one gets that z 0 ∈ Q and z 1 ∈ Q. Furthermore, one sees that m + nd ∈ E(z) for all n ∈ Z ≥1 , what implies the assertion stated in [START_REF] Andrews | Mordell integrals and Ramanujan's "lost" notebook[END_REF]. The other assertions can be directly seen from (3.55) and (3.56).

2 In what follows, we shall assume that z ∈ Ω τ \ {-1 2 τ }. By Remark 3.9 (3), N(z) contains an infinitely many integers.

Proposition 3.4. Let z = z 0 + z 1 τ ∈ Ω τ \ {-1 2 τ }.
We assume that m → +∞ in N(z).

(1) If z 0 = 1 2 , then:

(3.57) γ(z, 1 m ) = U (z, m) 1 + e(z 1 + mz 0 ) √ m - e(z 0 ) 1 + e(z 0 ) + O( 1 m ) , where |U (z, m)| = 1. (2) If z 0 = 1 2 , then: (3.58) γ(z, 1 m ) = A(z, m) e 1 2m (z 1 + 1 2 ) 2 + 7 8 √ m + z 1 + O( 1 m ) ,
where

A(z, m) = 1 1 + (-1) m e(z 1 ) - 1 2 .
Proof. By the definition of N(z) in (3.56), it follows that z 1,0 = 1 2 . Thus, letting p = 1 and ν = 1 in (3.53) gives that

(3.59) γ(z, 1 m ) = G(z 0 + z 1 m | 1 m ) -1 - e(mz 0 + z 1 ) 1 + e(mz 0 + z 1 ) C(z 0 + z 1 m | 1 m
) .

(1) First, assume that z 0 = 1 2 . By Theorem 2.3 (1), it follows that, as m → +∞,

(3.60) G(z 0 + z 1 m | 1 m ) = 1 1 + e(z 0 ) + O( 1 m 
) .

This together with (3.59) and (3.33) (with ν = 1) imply (3.57).

(2) Now, assume that (1) If z 0 = 1 2 , then:

z 0 = 1 2 . Letting τ = 1 m in (2.24) gives that G( 1 2 + z 1 m | 1 m ) = - i 2 i 1/m e 1 2m (z 1 + 1 2 ) 2 + g(z 1 | 1 m ) = - 1 2 C(z 0 + z 1 m | 1 m ) + g(z 1 | 1 m ) . (3.61) By Theorem 2.3 (2), one knows that g(z 1 | 1 m ) = 1+z 1 +O( 1 m ) for m → +∞.
(3.62) γ(z, 1 m ) = V (z, m) √ m - e(z 0 ) 1 + e(z 0 ) + O( 1 m ) ,
where

|V (z, m)| = |z 0 |. (2) If z 0 = 1 2 , then γ(z, 1 m ) = z 1 + O( 1 m
). Proof. By (3.55), it follows that z 1,0 = 1 2 . Thus, due to (3.54), (3.59) needs to be modified as follows:

(3.63) γ(z | 1 m ) = G(z 0 + z 1 m | 1 m ) -1 -z 0 C(z 0 + z 1 m | 1 m ) ,
where -z 0 = z 1,1 , by Remark 3.4. This allows one to complete the proof by using (3.60), (3.61) and (3.33) (with ν = 1). We omit the details.

Proof of Theorem 3.7. Let M 0 = M∩N(z) and M 1 = M∩E(z). By hypothesis, #M = ∞, so one can find at least one of M 0 and M 1 that contains an infinitely many integers. Assume first that z 0 = 1 2 . By considering both (3.57) and (3.62), one obtains that sup m∈M |γ(z, 1 m )| < ∞ implies that #M 0 < ∞, #M 1 = ∞ and that z 0 = 0. Furthermore, in view of Remark 3.9 (2), this is possible only if z = -1 2 τ . Now, consider the case of z 0 = 1 2 . On the one hand, if #M 0 = ∞, (3.58) implies that sup m∈M0 |γ(z, 1 m )| < ∞ if, and only if, A(z, m) = 0 for m ∈ M 0 . Thus, one finds that (-1) m = e(z 1 ), so z 1 ∈ {0, - 1 2 }. On the other hand, in view of Remark 3.9 (4), the case (2) of Proposition 3.5 in the above occurs only for z = 1 2 and z = 1 2 -1 2 τ . This achieves the proof.

3.7.

False theta-type functions and half-periods. One knows that Z τ = Z ⊕ τ Z is the period set for the elliptic functions associated with double periods 1 and τ . Assume w ∈ Ω τ such that 2w ∈ Z τ and w = 0. This means exactly that w ∈ ∆ τ if one lets 

(3.64) ∆ τ = 1 2 , - τ 2 , 1 2 - τ 2 . Since L(z, -w | τ ) = L(z, w | τ ), putting z = 1 2 in the "reflection" relation (1.41) yields that L( 1 2 -τ, w | τ ) = 0. Thus, L( 1 2 , w | τ ) = 1,
(-z -τ, w | τ ) = e(z) L(z -τ, w | τ ) = 1 -L(z, w | τ ) One obtains that L(z, w | τ ) = 1
2 when 2z = -τ mod Z. This gives the following Remark 3.10. The following statements hold.

(1)

If z = 1 2 and w ∈ {-τ 2 , 1 2 -τ 2 }, then L( 1 2 , w | τ ) = 1. (2) If z ∈ {-τ 2 , 1 2 -τ 2 } and w ∈ ∆ τ \ {z}, then L(z, w | τ ) = 1 2 . 2 
The set ∆ τ defined in (3.64) contains the non-zero half-periods of the fundamental domain Ω τ . One can also notice that Remark 3.10 is similar to Remark 2.2 for G(z | τ ). The following result is certainly known in the classical theory of elliptic functions or q-series, although one can rediscover it from [10, Theorem 3.13 & Remark 3.14].

3.8. Mock theta-type properties and the proof of Theorem 1.3. Let (z, w) ∈ Ω 2, * 1⊕τ , and consider f (q) = L(z, w | τ ). We start with the following Theorem 3.10. Let ϑ ∈ T, and define g(q) = f (q) -ϑ(q). One assumes that g ∈ G ζ for all ζ ∈ U. If z / ∈ ∆ τ , then one can find U ⊂ U such that (3.68) sup lim q a.r.

-→ζ g(q) : ζ ∈ U = ∞ .

In order to find such set U of roots of unity satisfying (3.68), we shall make use of the following Proposition 3.6. Let r ∈ (0, 1) ∩ Q, ζ = e(r), and let γ(z, r) be as in (3.52). Let (g, ϑ) be as in Theorem 3.10. If w ν+1,1 > 0 or if w ν+1,1 ≤ 0 but z ν+1,1 > w ν+1,1 , then:

(3.69) lim q a.r.

-→ζ g(q) = γ(z, r) .

Proof. Let g(q) = g(z | τ, r) and θ(q) = ϑ(z, w | τ, r). The identity in (3.40) says that f = g + θ. By Theorem 3.6, one knows that g ∈ G ζ and θ ∈ T ζ . Moreover, Remark 3.8 implies that P ζ ( θ) = 0 when w ν+1,1 > 0 or when w ν+1,1 ≤ 0 but z ν+1,1 > w ν+1,1 . Thus, applying Proposition 1.4 gives that g is, in fact, exponentially close to g as q tends to ζ radially. This implies (3.69).

In what follows, we shall consider two species of roots of unity: By Remark 3.5, one obtains that z 1,0 = kz 0 + z 1 + δ ∈ (-1 2 , 1 2 ), where δ ∈ Z. Proposition 3.7. Let z, r, p, m and k be as in the above. As {z 1 } ∈ [0, 1), it is easy to see that the dominant term of θ(z + 1 2 | τ ) for τ a.v.

-→ i∞ equals to 1 or 1 -e(z 0 ) if {z 1 } = 0 or {z 1 } = 0. Replacing [z 1 ] with z 1 -{z 1 } in (4.4) gives k(z 1 ) = -1 2 (z 1 -1 2 ) 2 + κ, where κ = 1 2 ({z 1 } - -→ r, it follows that τ a.v.

-→ 0 and τ a.r.

-→ i∞; see (1.19). On the one hand, by using τ = τ + p m , one writes z = (z 0 + p m z 1 ) + z 1 τ , which gives that (z + 1 2m ) -→ i∞, it follows that (4.11)

A n = ≥0 e( 1 2 n 2 τ + (nu 1 + n + v 1 )τ + nu 0 + v 0 )

for n > -v 1 , and (4.12)

A n = - ≥1 e( 1 2 n 2 τ + (nu 1 -n -v 1 )τ + nu 0 -v 0 )
for n < -v 1 . Thus, when v 1 / ∈ Z, by letting I = I + ∪ I -with

I + = ∪ ≥0 1 2 n 2 + nu 1 + (n + v 1 ) : n > -v 1 ,
and

I -= ∪ ≥1 1 2 n 2 + nu 1 -(n + v 1 ) : n < -v 1 ,
one finds that I ∩ (-∞, N ] is finite for any given N ∈ Z ≥0 . This implies that R 1 (u, v | τ ) ∈ T 0 . When v 1 ∈ Z but v 0 / ∈ Z, one adds A -v1 to the above exponential expansions of A n 's and this completes the proof. for n ≤ 0. As u 1 ∈ (-1 2 , 3 2 ), it follows that A n+1 = A n ∅ and A -n = A -n+1 ∅ for all n ≥ 1. Thus, one reduces that (4.17 t 0 (f )(q) = e(z 0 -w 0 ) e(w 0 -z 0 ) -1 .

(1c) If z 1 > w 1 , then u 1 ∈ (- By observing that u 1 ∈ (0, 1 2 ), from (4.22) one deduces that (4.27) t 0 (f )(q) = e(τ ) . t 0 (f )(q) = e(z) .

(2b) If z 1 = w 1 but z 0 = w 0 , then:

(4.30) t 0 (f )(q) = e(w) e(z 0 -w 0 ) -1 .

(2c) If z 1 < w 1 , then: 

e( 1 2 2

 12 (n + 1) 2 kτ + nkz -1 2 kτ ) 1 -e((n + 1)τ + w) = e(-k(z + τ 2 )) R k (z, w | τ ) ; (0.3)and on the other hand,R k (z, w | τ ) -e(w) R k (z + τ k , w | τ ) = kτ + nkz) = ϑ 3 (kz | kτ ) , (0.4) where ϑ 3 (z | τ ) denotes one of four classic theta-functions of Jacobi [20, p. 166, (76.1)]. Putting k = 1 into the relation in (0.4) yields that R 1 (z, w | τ ) -e(w) R 1 (z + τ, w | τ ) = ϑ 3 (z | τ ) . (0.5)

) implies the following Corollary 1 . 2 .

 12 If z = z 0 + z 1 τ with (z 0 , z 1 ) ∈ R 2 , then the Jacobi's theta-functions ϑ 1 , ϑ 2 , ϑ 3 and ϑ 4 are theta-type in the sense of Definition 1.2.Proof. It suffices to combine Theorem 1.1 with the fact that e(aτ + b) ∈ T for any given (a, b) ∈ R 2 ; see Propositions 1.5 and 1.1[START_REF] Andrews | Mordell integrals and Ramanujan's "lost" notebook[END_REF].

  and only if, L(z, w | τ ) ∈ Tζ . Proof. Assume that n ∈ Z >0 , and consider L(z±nτ, w | τ ) instead of L(z+nτ, w | τ ). By (1.35) and (1.38), both P ± (z | τ ) are analytic for τ ∈ C, so they belong to G ζ . Moreover, by Proposition 1.5, one knows that (-1) n e ±n(z

  1 and Theorem 2.3 in §2.3. This last theorem together with the modular-like relation (2.4) and its equivalent form (2.30) give the asymptotic behavior of G(z | τ ) for τ a.v.

Figure 1 .

 1 Figure 1. The horizontal line (-∞ + ic, ∞ + ic) can be replaced by an oblique line L, which is not vertical !

Figure 2 .

 2 Figure 2. The segment [0, +∞) is deformed with a half-circle when arg(ϕ(0)) = π and ϕ(0) = -1 !

2. 2 .

 2 Analytical obstruction and half-periods. The following theorem states for what functions ϕ the corresponding composite function ϕ( ) defined by (2.6) represents an analytic function in a neighborhood of in C.

Definition 2 . 1 .

 21 If z = z 0 + z 1 τ , with (z 0 , z 1 ) ∈ C 2 and τ ∈ H or, more generally, τ ∈ H, we define (2.19) G(z | τ ) = G(e(z); e(τ )), ω(z | τ ) = ω(e(z); e(τ )).

h(x 1 ;

 1 ζ 1 ) , where ζ 1 = e( m p ) and x 1 = -ζ 1 e( mz p ). The goal of this section is to express the value of G(z | r) in terms of h(z | r).

Lemma 2 . 1 .

 21 Let r = p m and d(z | r) as in the above. For any given z ∈ C, (2.42)

  Putting τ = r into the functional equation in (2.26) yields that

Theorem 3 . 1 .

 31 ( [38, Theorem 1.2]) Let C * be the Riemann surface of logarithm, and let π : C * → C * be the associated natural map. The following relation holds for all u ∈ C * \ q Z and x ∈ C * with π(x) ∈ C * \ (uq Z ): (3.2)

( 3 .Theorem 3 . 6 .

 336 40) L(z, w | τ ) = g(z | τ, r) + ϑ(z, w | τ, r) . Given (z, w) ∈ Ω 2, * 1⊕τ and r ∈ Q ∩ (0, 1), one has g(z | τ, r) ∈ G ζ , ϑ(z, w | τ,r) ∈ T ζ and L(z, w | τ ) ∈ Tζ for ζ = e(r).

3

 3 , from (3.19) one deduces the expression of C(z | τ, r) in (3.41). (2) When z = 0, it follows from Lemma 3.3 (1) that ẑk = 0 for k till ν + 1. Putting ẑk = 0 and n = ν in (3.35) yields that C(z | τ, r) = (-1) ν+1 i ν+1 τ 0 τ 1 ...τ ν -τ k+1 + m k ) = τ -τ ν+1 + ν k=0 m k ; see (3.14) and (3.16) for the integers m k . Finally, setting (

  and show that g(z | τ, r) ∈ G ζ and ϑ(z, w | τ, r) ∈ T ζ . By letting n = ν into (3.32), it follows that (3.47)

  3 (1), G(ẑ ν | τ ν ) has a Gevrey asymptotic expansion for τ ν a.v. -→ 0 or, equivalently, for τ a.v. -→ 0. As τ → τ ν = αν τ +βν γν τ +ςν is a Möbius transformation, this asymptotic expansion can be expressed in terms of the variable τ near 0, thus G(ẑ ν | τ ν ) ∈ G ζ . By considering Proposition A.2, one finds that g(z | τ, r) ∈ G ζ . On the other hand, by writing τ ν+1 as in (3.44), one deduces from Proposition 3.1 that L(ẑ ν+1 , ŵν+1 | τ ν+1 ) ∈ T ζ . Therefore, by combining Proposition 1.1 (1) with Proposition 3.3, letting ς = 0 in (3.39) implies that ϑ(z, w | τ, r) ∈ T ζ .

3 ( 2 ) 6 . 3 . 7 .

 32637 implies that g(z ν,1 | τ ν ) ∈ G ζ . In this way, one can see that g(z | τ, r) ∈ G ζ . Moreover, by Remark 3.1, L(ẑ ν+1 , ŵν+1 | τ ν+1 ) + 1 ∈ T ζ , this implies that ϑ(z, w | τ, r) ∈ T ζ in(3.39). Thus, one obtains Theorem 3.Remark Let r = p m , ζ = e(r), τ = τ -r, q 1 = e(-1 τ ), and let f

  Thus, putting together (3.59) and (3.61) yields (3.58). Proposition 3.5. Let z = z 0 + z 1 τ ∈ Ω τ . One supposes that #E(z) = ∞ and one assumes that m → +∞ in E(z).

(i) ζ = e( 1 m

 1 ) with m ∈ Z ≥2 . (ii) ζ = e( p m ) with m = kp -1, (k, p) ∈ Z ≥2 . Notice that the behavior of γ(z, r) in the first case (i) has been mentioned by Theorem 3.7. Before giving the proof of Theorem 3.10, we discuss the second case (ii) to get a statement similar to Theorem 3.7.Givenz = z 0 + z 1 τ ∈ Ω τ \ ∆ τ , choose k ∈ Z ≥2 such that kz 0 + z 1 = 1 2 mod Z, and consider r = p m with m = kp -1, p ∈ Z ≥2 .Similarly to the notation E(z) and N(z) introduced in (3.55) and (3.56), we define:(3.70) E (z) = E (z | τ, k) = {p ∈ Z ≥2 : (kp -1)z 0 + pz 1 N (z) = N (z | τ, k) = Z ≥2 \ E (z | τ, k) .

( 1 ) 1 +( 2 ) 2 + 3 )

 11223 If p ∈ N (z), then there exist U 1 and U 2 ∈ C such that |U 1 | = |U 2 | = 1 and(3.72) γ(z, r) = G(z 0 + z 1 r | r)e(mz 0 + pz 1 ). If p ∈ E (z), then there exist U 1 andU 2 ∈ C such that |U 1 | = |U 2 | = 1 and (3.73) γ(z, r) = G(z 0 + z 1 r | r) -1 + U 1 √ r G(z 1,0 -z 0 p | 1 p ) -1 + z 1,0 U 2 √ m . Write J * = {k ∈ J : γ(k) = 0},and set I N = J * ∩ (-∞, N ] for all non-negative integer N . Thus, letting I = I N , γ = γ I and υ = λ = 0 gives the relation in (1.6) for f = θ(z + 1 2 | τ ), and this implies that f ∈ T 0 . Let [z 1 ] and {z 1 } be respectively the integral part and fractional part of z 1 ; see (3.13). Putting n = -[z 1 ] into the functional relation θ(z + 1 nτ | τ ) = e -n(z In the above, z = z 0 + {z 1 }τ and (4.4) k(z 1 ) = -1 2 [z 1 ] z 1 -1 + {z 1 } .

4. 2 . 1 (

 21 Proof of Theorem 1.1. Let f (q) = θ(z + 1 2 | τ ). Thanks to Lemma 1.1, it suffices to prove that f ∈ T ζ for all ζ = e(r), where r ∈ Q ∩ [0, 1). Without loss of generality, one can suppose that r = p m , with p ∈ Z, m ∈ Z >0 and p ∧ m = 1. Consider (1.20), set f and write f = f 1 f 2 . As τ a.v.

4. 4 .

 4 Proof of Lemma 3.1. Consider the expression of R 1 (z, w | τ ) obtained by letting k = 1 in (0.1), replace z with u = u 0 + u 1 τ and w with v = v 0 + v 1 τ , and define (4.10)A n = e( 1 2 n 2 τ + nu) 1 -e(nτ + v) = e( 1 2 n 2 τ + nu 1 τ + nu 0 ) 1 -e(nτ + v 1 τ + v 0 )for n ∈ Z. As τ a.v.

4. 5 . 2 + u 1 ( 1 )u 1

 52111 Proof of Proposition 3.2. Let A n be as in(4.10). Since e(ατ ) = ∅ for α > 0, from (4.11) and (4.12) one gets that (4.13)n + v 1 > 0 ⇒ A n = e n( n )τ + nu 0 (1 + ∅) and (4.14) n + v 1 < 0 ⇒ A n = -e ( n(n -2) 2 + nu 1 -v 1 )τ + nu 0 -v 0 (1 + ∅) . Assume that v 1 ∈ (-1, 0).The relation in (4.13) implies that for n ≥ 1, (4.15) A n+1 A n = e (n -1)τ + ( 3 2 + u 1 )τ + u 0 (1 + ∅) . )τ -u 0 (1 + ∅)

= e τ 2 + u 1 +

 21 ) f (q) = A 0 1 + ∅ + A 1 1 + ∅ .By letting n = 1 and n = 0 in (4.13) and (4.14) respectively, one gets that (4.18)A 1 ∅ , A 0 = -e -v 1 + ∅ .By hypothesis, u+v = -τ 2 mod Z, this implies e τ 2 +u -e -v = 0. Moreover, letting ρ = min(-v 1 , u 1 + 1 2 ), one finds that e τ 2 + u -e -v = c e(ρτ ) (1 + ∅) .

( 1a )

 1a If z 1 < w 1 , then u 1 ∈ (1 2 , 1) and combing (4.21) together with (4.22) and (4.23) yields thatt 0 (f )(q) = 1 . (4.24) (1b) If z 1 = w 1 but z 0 = w 0 , then u 1 = 12 and, by the same manner, one deduces that(4.25) 

( 4 .

 4 [START_REF] Ramis | Local analytic classification of q-difference equations[END_REF] t 0 (f )(q) = -e(z -w), -1 + e(2w 0 -z 0 ) e(z -w), -e(w + τ )when z 1 < 2w 1 + 1, z 1 = 2w 1 + 1 or z 1 > 2w 1 + 1, respectively. If z = 2w + τ + 1 2 = 1 2 mod Z, then z 1 = 2w 1 + 1. Since 2w 1 > -1, Proposition 3.2 (2) implies that e(z) R 1 (u + 1 2 , w | τ ) = -e(z -2w) (1 + ∅) = e(τ ) (1 + ∅) .

If z = 2w + τ + 1 2 = 1 2

 1 mod Z, one finds that f (z, w | τ ) = 0. Case of w 1 = 0. It follows that w 0 / ∈ Z and u 1 = -z 1 + 1 2 ∈ [0, 1]. Applying Proposition 3.2 (3) and relation (4.22) yields that

  0 ) 1 -e(w 0 ) 1 -e(-z 0 + w 0 )z 1 = 0 -e(w 0 ) 1 -e(w 0 ) z 1 ∈ [-1 2 , 0) . Case of w 1 ∈ (0, 1 2 ). By (4.20), it follows that t 0 (f ) = e(z) t 0 (f -). Replacing (z, w) with (-z, -w) in (4.24) (4.25) and(4.26) gives the following results.(2a) If z 1 > w 1 , then:

(4. 31 )

 31 t 0 (f )(q) = -e(w), -1 + e(z 0 -2w 0 ) e(w), -e(z -w + τ )when z 1 > 2w 1 -1, z 1 = 2w 1 -1 or z 1 < 2w 1 -1, respectively.Finally, one gets the statement of Theorem 3.4 by putting together (4.26), (4.27), (4.28), (4.29), (4.30) and (4.31).

  1 2m + m in (2.43) gives immediately (2.45). Remark 2.3. The identity in (2.44) is the so-called reciprocity theorem for generalized Gauss sums; see [9, p. 13, Theorem 1.2.2]. 2.7. Values of Mordell integral at real half-periods. In order to simplify, we

	will write
	(2.47)

  and in(3.16), respectively. Let z and w be given in Ω τ , consider the sequence (ẑ n ) of (3.23), and define ( ŵn ) in the same fashion as what was done for (ẑ n ). By Lemma 3.3 (1), one can easily see that w ∈ {0, z} if, and only if, ŵn / ∈ {0, ẑn }, where n = 1, ..., ν + 1.

	This gives that
	(3.29)	(z, w) ∈ Ω 2, * 1⊕τ

  Proof. (1) By Lemma 3.3[START_REF] Andrews | Mordell integrals and Ramanujan's "lost" notebook[END_REF], none of ẑn is null, so one can make use of the second expression of C(z | τ ) in(3.6). Thus, by considering the definition of τ k in (3.16) and the first relation in (3.24), (3.34) with n = ν becomes:

	r	e	1 8	(τ -τ ν+1 ) .

  each of both cases (i) and (ii) in the above. Using (3.50) gives t 0 (f 1 ), which together with the relation t ζ (f ) = t ζ (f 1 ) t ζ (f 2 ) yield the expression stated in (3.51).

	Let r = p m , m ∈ Z >0 and p ∧ m = 1. By Theorem 2.3 and Remark 3.6, it follows
	from (3.47) and (3.48) that either
	(3.53)	γ(z,	p

2 3.6. One necessary and sufficient condition for the boundedness of limits. By Theorem 3.6, one knows that g(z | τ, r) ∈ G ζ , where ζ = e(r). So, for all z ∈ Ω τ and r ∈ Q ∩ (0, 1), we define (3.52) γ(z, r) = lim τ a.v.

-→r g(z | τ, r) .

  by(2.26). At the same time, it follows from (1.41) and (2.26) that

	L

  1 2 ) 2 . This implies Lemma 1.1, with (1.22) and (1.21).

Theorem 3.8. Let w, w ∈ C \ Z ⊕ τ Z. Then the following identity holds for all z ∈ C such that neither z -w nor z -w belong to Z ⊕ τ Z:

In the right-hand side of (3.65), the factor (τ | τ ) ∞ is defined as follows: for x = e(z) and z ∈ C,

By putting together this last theorem with Remark 3.10, one arrives at the following Theorem 3.9. The following assertions hold.

(1) If w ∈ C \ ( 1 2 Z) ⊕ τ Z, then:

.

(

.

Proof. This follows from Theorem 3.8 combined with Remark 3.10, by letting respectively (z, w ) = ( 1 2 , -τ 2 ), (-τ 2 , 1 2 ) and ( 1 2 -τ 2 , 1 2 ) in (3.65).

The triple product identity [START_REF] Andrews | Special functions, Encyclopedia of Mathematics and its Applications[END_REF]p. 497,Theorem 10.4.1] says that

Replacing (z, τ ) with (τ, 3τ ) in this formula yields that

Thus, applying both Theorem 1. Proof. This can be proved by using the same method as for Propositions 3.4 and 3.5. Indeed, by Remark 3.5, one sees that ν = 2 in both (3.53) and (3.54). Thus, one obtains finally both (3.72) and (3.73) by using the definition of g 1 in (3.32) and the module of C 1 stated in (3.33).

Theorem 3.11. For any M ⊂ Z ≥2 such that #M = ∞, one has

Proof. This follows from Proposition 3.7. Indeed, when p → ∞, r

where U 1 = U 1 e(kz 0 + z 1 ). A similar formula can be found by using (3.73). By hypothesis, z / ∈ ∆ τ , this implies that if p ∈ E (z), then z 1,0 = 0. So, one gets

Proof of Theorem 3.10. For any a ∈ R, we will denote by (a) the number in (-

and

.

One finds that #M -= ∞ except when w 0 = 0 and (w 1 ) ∈ [0, 1 2 ] or when w 0 = 1 2 and w 1 ∈ {-1 2 , 0}. For this last case with w 0 = 1 2 , one sees that #M + = ∞, due to fact that z = -1 2 τ . It follows that #M = ∞ except when the following conditions hold:

Furthermore, Proposition 3.6 and Remark 3.4 imply that lim q a.r.

-→e

for all m ∈ M. Thus, Theorem 3.7 gives (3.68) for U = {e( 1 m ) : m ∈ M} except when (3.75) is satisfied.

Assume then (z, w) ∈ Ω 2, * 1⊕τ be such as in (3.75). Since z / ∈ ∆ τ and w = 0, it follows that z 1 = -1 2 and w 1 = 0. Let k ∈ Z ≥2 , and define M = M -∪ M + with

Applying Proposition 3.6 and Remark 3.5 yields that, letting m = kp -1, lim q a.r.

-→e( p m ) g(q) = γ(z, p m ) for all p ∈ M . One observes that #M -= ∞ except when w 1 = - 

2 ), and let f (q) = L(z | τ ) be given by (1.45). Firstly, by (1.44), one finds that, for all u ∈ C:

By taking the logarithmic derivative with respect to z both sides of the Jacobi's triple product (3.67), one gets that, for u = 1 2 mod Z ⊕ τ Z:

Therefore, it follows that

Beside, one knows from Lemma 1.1 that θ(-z + 1 2 | τ ) ∈ T 0 , Thus, by considering Proposition 1.1 (2), the expression of f (q) in (1.49) together with (3.78) imply that f ∈ T 0 .

Secondly, one notices that the modular-like relation in (3.3) is reduced into the following form:

where G(z | τ ) and C(z | τ ) are the same as in Theorem 3.2. Indeed, if one writes

Thus, taking the limit w → 0 in this last relation yields immediately (3.79). Moreover, by using both (3.79) and Theorem 2.3, one finds that f ∈ T1 . Thirdly, given r ∈ (0, 1) ∩ Q, one makes use of the sequence (r j , τ j , ẑj ) 0≤j≤ν+1 defined in §3.3, where r 0 = r, r ν = 0 and r ν+1 = ∞. In addition to the functions C(z | τ, r) and g(z | τ, r) introduced in (3.37) and (3.38), one sets

where ς takes either 0 or 1 in the same manner as in (3.39). Therefore, iterating several times the above relation in (3.79) yields the following identity, which is similar to (3.40):

By the same manner as what done for the proof of Theorem 3.6, this last relation in (3.81) shows that f ∈ Tζ , where ζ = e(r). (3.64). By using both Theorems 3.7 and 3.10, one finds that if f ∈ M, then z / ∈ ∆ τ . Finally, it remains only to consider the value of L(z | τ ) when z belongs to the set ∆ τ . Since

.

By letting w → 0 in this last equality, one obtains that

It is easy to see that L(z 

Complementary proofs

In this section, we will consider the statements mentioned in the previous sections for which we have not made the proof. One common point for these statements is that they are somewhat easy to be understood but their proof may be technically hard and/or long. Especially, this is the case for Proposition 3.2 in §4.5 and Theorem 3.4 in §4.6.

4.1.

Proof of Lemma 1.1. One assumes that q a.r.

-→ 0, so τ a.v.

-→ i∞. By the second item of the notational convention stated after Definition 1.1, τ = τ and q = q 1 . Let (4.1)

for all n ∈ Z, and let J = ρ(Z). Define the C-valued map γ on J as follows:

In this way, one gets that (4.7)

By applying Lemma 1.1 to this theta-factor f 2 relative to τ in (4.7), one obtains this is theta-type as τ a.r.

-→ i∞, so

In order to get t ζ (f ), we let q = e(τ ). From the relation in (1.19), one deduces that q = m 2 √ q 1 e( α m ). Since αp + 1 = βm, it follows that z 0 = αz 0 + βz 1 in (4.7). Replacing then (τ, q, z) with (τ , q , z ) in Lemma 1.1 gives t ζ (f 2 ) in terms of z = z 0 + z 1 τ . Furthermore, comparing the expression of k given in (4.5) with that of z 1 in (4.7), one finds that k = 1 m 2 (z 1 -1 2 ) 2 , which gives the relations in (1.24) and (1.23). This completes the proof. 4.3. Proof of Proposition 2.1. We shall consider only the equivalent form (2.30) of (2.4). By (2.22), one can write (3.5) into the following form:

where (4.9)

Replacing (z, w, τ ) with ( z+1 τ , w τ , -1 τ ) in (4.8) yields that the function L * of (4.9) becomes:

Here, in view of (4.9), (1.41) and (2.26), one can express L * * as follows:

By observing that

This is to say:

By (2.26), one knows that 1 -G(z | τ ) = e(z) G(z -τ | τ ). Thus, one finds the expected relation in (2.30) by using the following identity:

In the above, c = 1 or e(u 0 ) -e(-v 0 ) or -1 when u 1 + 1 2 + v 1 < 0 or = 0 or > 0, respectively. In this way, using both relations in (4.17) and (4.18) yields the wanted asymptotic relation in (3.10) for f (q).

(2) When v 1 ∈ (-1, 0) and 

and A 1 = e(-v)

1-e(τ +v) , and observe that

provided that 2v = -τ mod Z. The first relation in (3.11) is thus reduced from (4.19), for min(1, -2v 1 ) < c. If 2v = -τ mod Z, a direct computation shows that A n+1 + A -n = 0 for all n ∈ Z ≥0 , what gives f (q) = 0.

(3) When v 1 = 0, one obtains that A n = ∅ excepted n = 0. This completes the proof of Proposition 3.2. 4.6. Proof of Theorem 3.4. By using the functional equation in (2.26), the relation in (1.41) can be written into the following form:

or, equivalently: 

This gives the following expression of f (q):

.

In view of (4.3) and Lemma 1.1, one can notice that

2 ), respectively. Case of w 1 ∈ (-1 2 , 0). This gives that z 1 -w 1 ∈ (-1 2 , 1) and u 1 ∈ (-1 2 , 1). Apply Proposition 3.2 (1) to R 1 (u + 1 2 , w | τ ), and remind that u

23)

Appendix A. Gevrey asymptotic expansion and q-analogs of Borel-Laplace summation

To help with reading the Gevrey and q-Gevrey analysis part of this paper, we will recall, in §A.1, the definition of a Gevrey type asymptotic expansion and some results in relation with Laplace transform and exponential decay. This is very closed to the classic Borel-Laplace summation. So, in §A.2, we will discuss two q-analogs of this summation, which are used in §2 and §3 of this paper.

A.1. Some elements of Gevrey asymptotic analysis. Let

and let C * x0 be the universal covering of the punctuated plane C \ {x 0 }. One denotes by V (x 0 ; I, R) the open sector of vertex x 0 given by (A.1)

and let ã = arg(-a), with 0 = 0. It follows that, for any a ∈ ∂D * and α ∈ ∂H:

In what follows, Gevrey asymptotic expansion should be read as Gevrey asymptotic expansion of the first order in [25, p. 57, Definition 1.2].

Definition A.1. Let V = V (x 0 ; I, R). A given analytic function f in V is said to have a Gevrey asymptotic expansion as x → x 0 in V and will be denoted by f ∈ G(V ), if there exists a complex coefficients power series n≥0 a n (x -x 0 ) n with the following property: for any J I and ρ ∈ (0, R), one can find C > 0 and A > 0 such that

] be the space of power series of variable (x -x 0 ) and let T denote the C-linear map that associates to every f ∈ G(V ) its asymptotic expansion in C[[x -x 0 ]]. By [25, p. 60, Proposition 1.2], it follows that ker T = E 0 (V ), where E 0 (V ) denotes the space of exponentially small functions in V . This implies that, if T (f 1 ) = T (f 2 ), then f 1 is exponentially close to f 2 as x → x 0 in V . Then f defines an analytic function in V such that x υ f (x) admits the power series n≥0 α n Γ(n + 1 -υ) x n+1 as Gevrey asymptotic expansion for x → 0 in V , where

Proof. This follows from a direct computation using Γ(a + 1) = ∞ 0 e -t t a dt, where (a) > 0. See [START_REF] Ramis | Gevrey Asymptotics and Applications to Holomorphic Ordinary Differential Equations[END_REF]Proposition 1.5] for a similar statement.

Given (x 0 , d) ∈ C × R, let G x0,d denote the sheaf of functions having a Gevrey asymptotic expansion as x → x 0 in some sector of vertex x 0 containing the segment (x 0 , x 0 + Re id ) for enough small R > 0, i.e.

G V (x 0 ; I, R) .

Proposition A.2. Every G x0,d constitutes a sheaf of rings containing as sub-ring the space of germs of analytic functions at x = x 0 in C.

Proof. By [25, p. 58, Proposition 1.1 (ii)], each G(V ) is, in fact, an algebra containing all functions analytic at x = x 0 .

Remark A.2. The sheaves G r a and G v α considered in the beginning of §1.1 can be expressed as follows:

, where ã is the same as the one in Remark A.1. 2

A.2. q-Borel-Laplace summation methods. The Borel-Laplace summation matches each suitable power series with its Borel-sum. This process consists of two consecutive transforms: the Borel transform, applied to the given power series, and the Laplace transform, that gives the Borel-sum by means of an integral like as in (A.2). For example, one sees that the power series Ê(x) = n≥0 (-1) n n! x n+1 , known as Euler series, is divergent for all x = 0. By definition, its Borel-sum is obtained as follows:

In (A.4) in the above, the last integral is the Borel-sum of Ê(x), and it admits this series as the asymptotic expansion for x → 0. Moreover, one can find that both Ê(x) and its Borel-sum satisfy the differential equation x 2 y + y = x. In this way, the Borel-Laplace summation, when it may be applied, gives an analytic solution in some sector whose asymptotic expansion is the given power series.

The usual q-analog n! q of n! is defined by the relation n! q = (q;q)n (1-q) n . While replacing q with q -1 , one obtains the following q-analog of n! : n! q q -n(n-1)/2 . This gives the divergent series n≥0 (-1) n q -n(n-1)/2 n! q x n+1 , which satisfies the following q-difference equation:

The point x = 0 is a non-Fuchsian singular point for (A.5). From the analytic classification viewpoint of q-difference equations (see [START_REF] Ramis | Local analytic classification of q-difference equations[END_REF]), this equation plays the same role as (2.2). It can be easily seen that the q-Euler series Ê(x; q) given in (0.6) is a formal solution of (2.2). In this way, the summation process in (A.4) is replaced with the following q-analog:

(A.6) n≥0 (-1) n q -n(n-1)/2 x n ⇒ n≥0 (-1)

where L q denotes a q-Laplace transform such that (A.7) L q (ξ n )(x) = q -n(n-1)/2 x n .

The condition in (A.7) can be really interpreted as the solution to the moment problem associated with the sequence (q -n(n-1)/2 ) n . This problem being undetermined, one can have several q-analogs in (A.6). In [START_REF] Zhang | Développements asymptotiques q-Gevrey et séries Gq-sommables[END_REF] and [START_REF] Zhang | Une sommation discrète pour des équations aux q-différences linéaires et à coefficients analytiques: théorie générale et exemples[END_REF], two q-Laplace transforms have been considered as follows.

First, assume q ∈ (0, 1), let (A.8) ω(t; q) = 1 2π ln(1/q) e log 2 (t/ √ q) 2 ln q (t ∈ C * ) , and define (A.9)

L q (ϕ)(x) = ∞ 0 ϕ(ξ) ω( ξ x ; q) dξ ξ .

Secondly, for q ∈ C with 0 < |q| < 1, let θ(t; q) = n∈Z q n(n-1)/2 x n and define (A.10) L q (ϕ)(x) = ξ∈uq Z ϕ(ξ) θ( ξ x ; q)

, where u denotes a non-zero complex number which indicated the discrete integrationpath.

Each of both q-summations constructed in the above, when it may be applied to a given power series, gives rise to a q-Borel sum for this series.

Proposition A.3. Every q-Borel sum of a power series satisfying a linear qdifference equation is an analytic solution of the same functional equation in some suitable domain. Moreover, this sum-function admits the power series as asymptotic expansion as x → 0.

Proof. See [START_REF] Zhang | Développements asymptotiques q-Gevrey et séries Gq-sommables[END_REF] and [START_REF] Zhang | Une sommation discrète pour des équations aux q-différences linéaires et à coefficients analytiques: théorie générale et exemples[END_REF].