
HAL Id: hal-01230033
https://hal.science/hal-01230033

Submitted on 14 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and Analysing Mixed Reality Applications
Johan Arcile, Tadeusz Czachórski, Raymond Devillers, Jean-Yves Didier,

Hanna Klaudel, Artur Rataj

To cite this version:
Johan Arcile, Tadeusz Czachórski, Raymond Devillers, Jean-Yves Didier, Hanna Klaudel, et al.. Mod-
elling and Analysing Mixed Reality Applications. 4th International Conference on Man–Machine In-
teractions (ICMMI 2015), Oct 2015, Kocierz Pass, Poland. pp.3–17, �10.1007/978-3-319-23437-3_1�.
�hal-01230033�

https://hal.science/hal-01230033
https://hal.archives-ouvertes.fr


Modelling and Analysing Mixed Reality Applications

Johan Arcile1, Tadeusz Czachórski3, Raymond Devillers2,
Jean-Yves Didier1, Hanna Klaudel1, Artur Rataj3

1 Laboratoire IBISC, Université d’Evry-Val d’Essonne, France
johan.arcile@ens.univ-evry.fr,

{jean-yves.didier,hanna.klaudel}@ibisc.fr
2 Département d’Informatique, Université Libre de Bruxelles, Belgium

rdevil@ulb.ac.be
3 Institute of Theoretical and Applied Computer Science, Gliwice, Poland

tadek@iitis.pl, arturrataj@gmail.com

Abstract. Mixed reality systems overlay real data with virtual information in or-
der to assist users in their current task. They generally combine several hardware
components operating at different time scales, and software that has to cope with
these timing constraints. MIRELA, for MIxed REality LAnguage, is a frame-
work aimed at modelling, analysing and implementing systems composed of sen-
sors, processing units, shared memories and rendering loops, communicating in
a well-defined manner and submitted to timing constraints.
The framework is composed of (i) a language allowing a high level, and partially
abstract, specification of a concurrent real–time system, (ii) the corresponding
semantics, which defines the translation of the system to concrete networks of
timed automata, (iii) a methodology for analysing various real-time properties,
and (iv) an implementation strategy.
We present here a summary of several of our papers about this framework, as well
as some recent extensions concerning probability and non–deterministic choices.
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1 Introduction

The primary goal of a mixed reality (MR) system is to produce an environment where
virtual and digital objects coexist and interact in real time. In order to get the global
environment and its virtual or physical objects we need specific data, for which we
shall use sensors (like cameras, microphones, haptic arms. . . ). But gathering data is not
sufficient as we want to see the result in our mixed environment; we then implement a
rendering loop that will read the data and express the result in some way that a human
can interpret (using senses like sight, hearing, touch). To communicate between those
two types of components (sensors and renderers), shared memory units store the data,
and processing units process the data received from sensors or processing units, and
write them into shared memories or other processing units.

Since a few years, the MIRELA framework [8,7,14,9] (for MIxed REality LAn-
guage) is developed aiming at supporting the development process of applications made



of components which have to react within a fixed delay when some events occur inside
or outside the considered area. This is the case in mixed reality applications which are
evolving in an environment full of devices that compute and communicate with their
surrounding context [6]. In such a context, it is difficult to keep control of the end-to-
end latency and to minimise it. Classically, mixed reality software frameworks do not
rely on formal methods in order to validate the behaviour of the developed applications.
Some of them emphasise the use of formal descriptions of components inside applica-
tions in order to enforce a modular decomposition, possibly with tool chains to produce
the final application [17,13], and ease future extensions [15] or substitutions of one
module by another, like InTML [11,10]. Such frameworks do not deal with software
failure issues related to time. On the contrary, this is the main focus of the MIRELA
framework which proposes to use formal methods and automatic tools to analyse and
understand potential issues, especially related to time, performance, and various kinds
of bad behaviours such as deadlocks, starvations or unbounded waitings.

A typical modelling using MIRELA consists of the following stages. In the first
phase, a formal specification of the system is given, in the form of a network of au-
tomata, defined using a high level description [8,9]. Then, depending on the applied
approximation of the modelled system, and also on the properties we want to check, we
decide how to transform the components. This may include theoretical issues, like the
generation of bounding variant systems [7], which contain under– and over–approxi-
mating timed automata [1], and practical issues, like which model checker to target,
depending on its capabilities. Finally, an implementation skeleton can be produced,
e.g. in the form of a looping controller, which has a simple physical realisation, while
certain properties of the original network are still met, which may be checked on to the
chosen bounding variant systems.

2 MIRELA framework

Originally, the semantics of a MIRELA specification has been defined and imple-
mented in UPPAAL [18] as a set of timed automata [1,2,3,19]. More precisely, we
used a subclass called Timed Automata with Synchronised Tasks (TASTs) in or-
der to cope with implementability issues (see [7] for details). TASTs are networks
of timed automata, which communicate via urgent communication channels in the
producer–consumer manner, and optionally contain wait locations, where the wait time
t ∈ [min,max] is non-deterministic. The communication dependencies between the au-
tomata form a directed and connected graph. There are also some additional constraints,
so that the resulting automaton is non–Zeno, i.e. infinite histories taking no time or a
finite time are excluded. For a complete description of TASTs see [9].

If the urgent channels are not available, like in the case of PRISM timed automata,
a corresponding transformation is possible, which emulates the urgent channels [5].

Due to the verbosity of TASTs, MIRELA has its own, terse syntax, which can be
automatically compiled into TASTs, but then also to representations adequate for other
model checking tools than UPPAAL. The current MIRELA specification is presented
in detail in [9]. Here we will give a summary.



Ex1:
S1 = Periodic(50, 75)[75, 100];
S2 = Periodic(200, 300)[350, 400]→(F2, F1);
S3 = Periodic(200, 300)[350, 400]→(F2, B);
F1 = First(S1, S2[50, 75]);
F2 = First(S2, S3[25, 50]);
B = Both(S3, F2)[25, 50];
M = Memory(F1[25, 50], B[25, 50]);
R = Rendering(50, 75)(M [25, 50]).

sensors

processing units

shared memories

rendering loops

S1 S2 S3

F1 F2

B

M

R

Fig. 1. Specification and information flow representation for our running example.

A network of components is defined as a list of declarations of the form:

SpecName: id = Comp→TList ; . . . ; id = Comp→TList .

Each declaration Comp→TList defines a component Comp and its target list of com-
ponents TList , which is an optional (comma separated) list of identifiers indicating to
which (target) components information is sent, and in which order. Each component
also indicates from which (source) components data are expected. A target t of a com-
ponent c must have c as a source, but it is not required that a source s of a component c
has c as an explicit target: missing targets will be implicitly added at the end of the tar-
get list, Any of the components, after an optional initialisation, loops infinitely. Delays
within the components use clocks, and clocks are never shared between components.

Here is a list of some of the standard components:

– two kinds of sensors that acquire data from outside and send it to processing units
or memories:
• Periodic(min_start ,max_start)[min,max ] starts with a one–off delay
〈min_start,max_start〉, then loops infinitely, each cycle lasting within
〈min,max 〉;

• Aperiodic(min_event) ascertains that the loop has a minimal delay of
min_event, but no maximal delay is specified;

– three kinds of processing units that process data coming from possibly several dif-
ferent inputs (they can be combined in an acyclic hierarchy or form loops):
• First(i1[min,max ], i2[min,max ], . . .) which may have one or more inputs
i1, i2, . . . and starts processing when data are received from one of them; the
order is irrelevant; the loop delay depends on the input, as seen in the declara-
tion, but a same interval may be distributed on many inputs;

• Both(i1, i2)[min,max ] which has exactly two inputs i1, i2 and starts process-
ing when both input data are present; the loop delay is 〈min,max〉;

• Priority(im[min,max ], is[min,max ]), which has two inputs, master im and
slave is, and starts processing when the master input is ready, possibly using
the slave input if it is available before the master one; the delay specified at im
is realised if the slave was not available; otherwise the delay at is is used.



– a shared memory Memory(i1[min,max ], i2[min,max ], . . .), with reads and writes
locked by a common mutex, the write time depends on the input, as seen in the
declaration;

– a rendering component Rendering(min_rg ,max_rg)(im[min,max ]) is a loop,
which consists in reading a memory within a delay specified at im, then processes
the read data within

This is illustrated with a running example, presented in Fig. 1 along with the cor-
responding flow of information. The corresponding TAST representation is depicted in
Fig. 2.
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Fig. 2. TAST representation for our running example.

3 Analysis

We will discuss examples of proving various properties using Mirela, in particular re-
lated to bad behaviours, like various kinds of deadlocks and deadlock-like behaviours,
which can be distinguished for timed automata.

A complete blocking occurs if a state is reached where nothing may happen: no
location change is allowed (because no arc with a true guard is available, or the only
ones available lead to locations with a non-valid invariant) and the time is blocked
(because the invariant of the present location is made false by time passing). A (global)



deadlock occurs when only time passing is ever allowed: no location change is nor will
be available. A strong Zeno situation occurs when infinitely many location changes may
be done without time passing. A weak Zeno situation occurs if infinitely many location
changes may occur in a finite time delay. A weaker but potentially unpleasant situation
occurs when a location change is available after some time, but this waiting time is
unbounded. Those situations are usually considered highly harmful since an actually
implemented system cannot meet these theoretical requirements.

For a network of timed automata (hence for TAST systems), a local deadlock occurs
if, from some point, no location change is available for some component(s) while other
components may evolve normally. A local unbounded waiting occurs if it is certain that
a component will evolve, but the time before the component leaves its present state is
unbounded. A starvation occurs if a component may be indefinitely blocked in some
state (while not being deadlocked); this is different from the previous case, since here
the time during which the component is blocked in the present state may really be
infinite, and not simply unbounded. Notice however that starvations are not always to
be avoided, for instance if the component corresponds to a failure handling.

3.1 Deadlock detection and graph analysis

While MIRELA has translation mechanisms allowing to use model checking tools,
we may also take advantage of the specific features of the MIRELA systems, and in
particular of the graph structure of the systems (see for example Fig. 1 – right).

First, one may observe that no (strong or weak) Zeno behaviour may happen since
each loop in a component either contains a reset on some clock x and an arc with a
guard x ≥ e (with e > 0), so that it is impossible to follow it in a null time, and it may
be followed only a finite number of times in a finite delay, or contains arcs with input
communications (in a memory cell for instance) and it may only progress indefinitely
while communicating with a loop of the previous kind.

Moreover, if the system is well-formed, i.e., for each location with an invariant
x < e′ each input arc resets x and each output arc has a guard x ≥ e with e < e′ (which
is the case for MIRELA systems), it may not block the time.

A global deadlock (hence a complete blocking) may not occur in a complete system,
i.e., having at least one memory unit and an associated rendering loop, since the render-
ing may indefinitely progress while accessing the memory (but starvation may occur if
the memory is continually used by other units, and no fairness strategy is applied).

On the contrary local deadlocks may occur. They are intimately connected to the
fact that processing units alternate two very distinct phases: first, some signals are re-
ceived (reception phase), then some signals are emitted (emission phase) in a row (to-
gether with some synchronisations with memory units), and then the reception phase
is resumed. Typically, in case of a cycle of processing units, it may happen that a pro-
cessing unit in reception phase waits for a signal, which depends (directly or not) on its
own emission, or symmetrically. There are also deadlocks of a mixed nature, combin-
ing components in emission and reception phases, that do not need involving any cycle
of communicating units, contrary to what happened in the emission or reception cases.
This is due to the fact that, when a component is blocked in its reception phase, the wait-
ing condition corresponds to one or two arcs going in the reverse direction with respect



to the flow of information. Hence, a cycle of control may correspond (when there are
both emitting and receiving blocked components) to a non cyclic flow of information.

In order to propose guidelines for the detection of local deadlocks, we may observe
that a component may only deadlock in a wait location, but never when it waits for a
lock!, unlock! or unlock?. It also means that rendering loops never deadlock, and that
memory units may not be the source of a deadlock: a memory unit may only deadlock
if it has no rendering loop and all its users are deadlocked while trying to communicate
with a non-memory unit.

Definition 1. Let MS be a MIRELA system. An extended system MS is a temporal
widening of MS if it has the same structure but each (or some) time interval I is re-
placed by another one I, where I ⊆ I. Symmetrically, an extended system MS is a
strengthening of MS if it has the same structure but each (or some) interval I is re-
placed by another one I, where I ⊆ I. 1

Note that, in particular, MS is a temporal widening and a strengthening of itself.

Proposition 1. Let MS be a MIRELA system and MS be any of its temporal widen-
ings. If a component does not deadlock at some location w in MS , the same is true in
MS . On the contrary, if MS is any strengthening of MS and a component deadlocks at
some location w in MS , the same is true in MS . �

This result may be precious because the model checking complexity of timed sys-
tems depends of course on the complexity of the system, and on the formulas to be
verified, but also on the gcd of the various constants occurring in the timing constraints,
and on the various scales of the time intervals. Now, enlarging or restricting those con-
straints may considerably increase this gcd, or uniformise the various time intervals.
Note that, among the special enlargements that may be considered, some or all the up-
per bounds of time intervals may be replaced by∞, and some or all the lower bounds
of time intervals may be replaced by 1. In fact, it may be observed that lower bounds
may even be replaced by 0: this may introduce Zeno behaviours, but does not kill ex-
isting deadlocks. Finally, one may observe that going from a constraint x < e to x ≤ e
is a form of a temporal widening, and going from x < e to x ≤ e − 1 is a form of
strengthening.

Modifying the time intervals may be used to check the presence or absence of bad
behaviours, but it may also be used to get a modified system, easier to model check,
while maintaining its realistic aspect and its implementability.

Proposition 2. Let MS be a MIRELA system. If a component deadlocks in MS , then
so do all its input components, all its output Both, all its master output Priority, and all
its output First units having a unique input. A memory component is never the source of
a deadlock, but it may incur a deadlock propagation, if all its user components deadlock
(which may not occur if there is a corresponding rendering loop). �

Note that if a component deadlocks while it is a source of a slave input to a Priority,
the latter does not necessarily deadlocks; a similar situation may occur if a First com-
ponent has many inputs and one (or more, but not all) of them deadlocks, since it may



still manage inputs from non-deadlocking units. In both cases, the deadlock does not
necessarily extend.

While temporal widening and strengthening do not modify the structure of a system,
it is also possible to build modified (in general structurally simplified) systems. For
instance, since rendering loops never deadlock, one may drop them. We may even also
drop the memory units, since they are never the source of a deadlock.

Definition 2. Let MS be a MIRELA system and C be one of its sensors or processing
units. We shall denote by

– M̂S the system obtained from MS by replacing all the time intervals by [0,∞), i.e.,
a form of untimed version of MS ;

– M̃S the system obtained from M̂S by dropping all its rendering loops;
– C(M̃S ) the part of M̃S (i.e., the set of components) which, in the abstract scheme, is

connected to C without needing to traverse a memory unit; notice that it comprises
the memory units.

– C(
˜̃
MS ) the system C(M̃S ) without its memory units. 2

Proposition 3. Let MS be a MIRELA system and C a sensor or processing unit in it.

Let MS ′ = C(M̃S ) and MS ′′ = C(
˜̃
MS ). Then C deadlocks in M̂S iff it deadlocks in

MS ′ iff it deadlocks in MS ′′. �

Combining Propositions 1 and 3 allows in some circumstances to detect the absence
of local deadlocks while reducing the systems to be considered, both in terms of struc-
ture and temporal constraints. And if we add Proposition 2, this may even reduce the
problem of detecting the absence of a local deadlock to the detection of the absence
of global deadlocks in simplified systems, when the deadlock propagation ensures that
a local deadlock extends to a global one. This may be useful since there are efficient
algorithms to detect (the absence of) global deadlocks, and special commands to check
it (in UPPAAL for instance).

Finally, we may observe that a local deadlock, in the original or temporally widened
or strengthened model, may be handled by a model checker with query ψw = EF AG w,
which checks if there is a situation (EF) where the considered component reaches w
while there is no way (AG w) to get out of it: this thus corresponds to a local deadlock.
Note that this formula pertains to CTL but uses a nesting of path formulas, so that it
is not handled by UPPAAL and its optimised implementation. On the contrary, it is
accepted by another model checker, PRISM, for which an automatic translation from
MIRELA has also been developed (see Section 5). It is also possible to detect which
components, at which locations, may be blocked simultaneously (recall that local dead-
locks are due to many components blocking each others): if w1 is a wait location in
some component C1, w2 is in C2, . . . , one may use the same formula ψw, but where
w = w1 ∧ w2 ∧ . . . ∧ wk, to check if C1, C2, . . . , Ck may be blocked simultaneously,
in locations w1, w2, . . . , wk, respectively.

In summary, to detect the presence or absence of deadlocks, we may use a pro-
cedure, which first tries to get some information from simplified versions of the given
system, using Propositions 3 and 2, and next uses Proposition 1 to try to get information
on the remaining undecided wait locations.



3.2 Indefinite waiting detection

Even if there is no deadlock, it may happen that a component gets stuck in some loca-
tion. In our case, there are essentially two sources of such an indefinite waiting.

For instance, this may occur with an aperiodic sensor, since no upper bound is spec-
ified for the time separating two successive data acquisitions. If we do not want that
this propagates to other components, we should in particular avoid to use them in a
Both unit, as a master to a Priority, or in a First when there is no other kinds of input.
This may be qualified as an unbounded waiting, since the assumption is that the time
between data acquisitions is finite, but unbounded.

Another kind of situation occurs if many components compete to communicate and,
due to the non-deterministic way choices are performed, some of them never succeed.
This then corresponds to a potentially infinite waiting, also termed starvation.

In a MIRELA system, this may for instance occur when performing a lock on a
Memory unit (note that unlocks may only be performed by the components having suc-
ceeded in the lock): it may happen that a component (Rendering loop, Sensor or Pro-
cessing unit) tries to access a Memory, fails because, when the memory is unlocked, the
latter is attributed to another requesting component, and due to an unfortunate choice
of the timing constraint (intervals), whenever the memory is unlocked, there are (re-
maining or new) requesting components and the considered one is never chosen, unfor-
tunately, again and again. This also shows that, if we are concerned by starvations, in
general it is not a good idea to consider systems simplified by removing Memory and
Rendering units, since these can be essential ingredients for inducing infinite waitings.

This may be avoided by an adequate choice of the timing constraints, or by suit-
able fairness assumptions (and implementations) but in the latter case, ensuring that the
waiting time will be finite does not necessarily imply that this time is (upper) bounded.

Proposition 4. Let MS be a MIRELA system, a component may only incur an indefi-
nite waiting in the initial activity location of an aperiodic sensor, or in a wait location,
but never while waiting for an unlock. �

Proposition 5. Let MS be a deadlock-free MIRELA system, a component incurs an
indefinite waiting at a location w iff the CTL formula φw = EF EG w is true. �

If w is the activity location of an aperiodic sensor, we know that there is an un-
bounded waiting, and it is not necessary to perform the model checking for that. The
other interesting cases correspond to wait locations, from which communications k! or
k? only are offered (with k 6= unlock).

Since φw is a nesting of two path formulas, like ψw it may not be checked with UP-
PAAL. However, if we already know that w is reachable, instead of using this nested
query, it is possible to use equivalently (up to contraposition) a leads to property, for
which UPPAAL has an efficient algorithm: φ̃w = w−−>¬w means that, if true, after
w we shall eventually leave it, i.e., we shall have no deadlock and no indefinite wait-
ing in w. Again, instead of working directly on the original system, one may consider
temporally widened and/or strengthened versions of it.



Proposition 6. Let MS be a MIRELA system, MS be one of its temporal widenings
(while avoiding to start an interval from 0), and MS be one of its strengthenings. If a
component incurs an indefinite waiting at some location w in MS , the same is true in
MS , and if a component incurs an indefinite waiting at some location w in MS , the
same is true in MS . �

Note that, here, we may not drop memory units and/or rendering loops, since the
latter may be needed ingredients to cause an indefinite waiting. A procedure to detect an
indefinite waiting of a componentC at locationw may thus be proposed. If an indefinite
waiting is found for a temporally widened system, nothing may be inferred in general
on the original system; however, it may happen that in some circumstances a closer
(manual) analysis of the found indefinite wait reveals that the same situation occurs in
the original system: then the procedure may be stopped with a positive answer.

If the system presents deadlock situations (checkable with ψ), we could wonder if
it also presents indefinite waitings. If ψw is false while φw is true, clearly we have an
indefinite waiting at location w. But if ψw is true, it could still happen that the system
also presents an indefinite waiting at the same location, but for a different environment
than the deadlock. This may be checked by a slightly more elaborate CTL formula:
ρw = EF EG (w ∧ (EF ¬w)).

Proposition 7. Let MS be a MIRELA system. It presents an indefinite waiting at some
location w iff ρw is true. �

3.3 Starvation viz. unbounded waiting detection

If a system has no aperiodic sensor, it is sure that there is no unbounded waiting and
that any found indefinite waiting (hence formula ρw) corresponds to a starvation phe-
nomenon. The same is true if there are aperiodic sensors, but it is sure their unbounded
delays do not propagate. But otherwise we could want to know if there are pure star-
vations and/or pure unbounded waitings, even for a same location (but for different
environments).

Let us assume the considered specification MS presents n aperiodic sensors and let
us denote by a1, a2, . . . , an their respective initial locations (in the TAST translation),
and that there is a possible propagation of unbounded waitings.

To check a starvation in a wait location w, we may use the following property for-
mula: σw = EF EG (w∧(EF ¬w)∧(F ¬a1)∧· · ·∧(F ¬an)) which means it is possible
to stay indefinitely in w, but also to escape from it, without needing that an aperiodic
sensor (or many of them) indefinitely stays in its activity location. Hence, if true, this
means there is a pure starvation in w.

To check an unbounded waiting in the same location (or another one), one may use
the formula: ζw = EF ((EG w)∧A((G w)⇒ (FG a1)∨ · · · ∨ (FG an))) which means
it is is possible to stay indefinitely in w, but not without being stuck in some ai at some
point. If this is true, this thus means we have an unbounded waiting in w.

Unfortunately, those last two formulas belong to CTL* and, while it is known that
CTL* is decidable, the corresponding decidability algorithm is extremely intricate, and
we do not know any implementation of it.



4 Temporal properties

Another kind of question that may be asked on such systems concerns the minimal
and/or maximal durations taken by components to perform their operations. We may be
interested in exact values, or in bounds such as: “is this time greater than n units” or “is
it between n and m”. For instance, one may ask how much time a component may wait
in some location until a rendez-vous is performed, one may wonder how much time
a component takes to perform its (main) loop, or to go from one location to another
one. We may need for that to add a new clock y that is reset when we enter the starting
location, and then we check the greatest and smallest values of that clock when reaching
the goal location s. Since the greatest value is calculated when we leave s, if we want
to know that value when we enter it, a general trick to do it in UPPAAL is to add an
urgent location su before s, i.e., a location where time may not progress (an urgent
location is time-freezing), while redirecting the input arcs of s to su. The same trick
will avoid to consider for the minimal value the initial value 0 when the goal location
is the initial one. A typical query to do that with UPPAAL is sup{C.su}:y (resp.
inf{C.su}:y) which determines the supremum (resp. infimum) of y when entering
location s in component C.

However, in some complex cases such a method reveals inefficient due to the large
number of states of the system, and an abstraction method like the following may be
useful. The general idea is to consider iteratively some simplified, temporally widened
systems, on which the duration bounds estimation is feasible, and to use the obtained
bounds to get better temporal widenings, hence to progressively improve the bounds
until either no improvement is possible or the obtained bounds are considered satisfac-
tory. To get such simplified systems, the idea is to cut the original system into parts, with
some components in the common boundaries, and no communication between compo-
nents in the interior of different parts (the communications with the exterior must go
through the boundaries). Then, one considers iteratively each part (let us call it P) and
we isolate it by replacing each connection between P and the other parts by an activity
location associated with an interval encompassing (hence the temporal widening) the
interval in which the actual connection takes place. By analysing the durations in the
simplified system for P , we shall get intervals encompassing the durations of the inter-
actions between the other parts and P . When we shall consider another part P ′, these
intervals will be used for abstracting the interactions between P ′ and P .

5 Support for PRISM

Besides the translation of MIRELA specifications into TASTs, in a form adequate to
use the UPPAAL model checker, another translation mechanism has been devised to
the input format of PRISM[12], another model checking framework, able to analyse
probabilistic systems but also non-deterministic ones. In particular, the digital clocks
engine of PRISM accepts CTL requests that UPPAAL doesn’t. However, the transla-
tion is less easy than to TAST, due to various characteristics of the models:

– Discrete clocks: the digital clocks engine uses discrete clocks only (and conse-
quently excludes strict inequalities in the logical formulas). This modifies the se-
mantics of the systems, but it may be considered that continuous time, as used by



UPPAAL, is a mathematical artefact and that the true evolutions of digital systems
are governed by discrete time devices;

– Communication semantics: in UPPAAL, communications are performed through
binary (input/output) synchronisations on some channel k. A synchronisation tran-
sition triggers simultaneously exactly one pair of edges k? and k!, that are available
at the same time in two different components. PRISM implements n-ary synchro-
nisations, where an edge labelled [k] may only occur in simultaneity with edges
labelled [k] in all components where they are present. Implementing binary com-
munications in PRISM is easy by demultiplying and renaming channels in such
a way that a different synchronous channel [k] is attributed to each pair k? and k!
of communication labels. In MIRELA specifications, the only labels we have to
worry about are the lock? and unlock? labels in each Memory M and the lock!
and unlock! labels in the components that communicate with M ;

– Urgent channels: UPPAAL offers a modelling facility by allowing to declare some
channels as urgent. Delays must not occur if a synchronisation transition on an
urgent channel is enabled. PRISM does not have such a facility and thus it should
be "emulated" using a specific construct compliant with PRISM syntax. This was
done by duplicating some locations and by introducing adequate guards [5].

This was realised by adding a dedicated plugin to the translator J2TADD [16] aim-
ing at producing specifications for the PRISM probabilistic model checker.

This may also be a gateway to add probabilities to the framework, hence to turn
non-deterministic MIRELA models into stochastic ones. This may be done at two dif-
ferent levels. First, one may replace the time intervals min−max by (continuous or
discrete) probability distributions. Next, when many synchronisations are offered to a
component at some point (which may happen with a non-null probability when dis-
crete distributions are used), a random drawing mechanism must be defined to perform
the choice. It is also possible to mix probabilistic and nondeterministic features, and to
allow for alternative paths.

Let us discuss a possible example of such an extension, by modifying two compo-
nents in Ex1, as illustrated in Fig.3(a). We would thus have a sensor S2 which skips
data transmission at a given ratio. Let r be the skipping probability: this could be spec-
ified by an optional modifier drop=r after the list of output components of the sensor.
We also have a processing unit F2, which undergoes, in an unspecified manner, occa-
sional time–consuming clean–up computations. This could be specified by a + operator
between the various execution possibilities.

In effect, in the resulting system Ex1 ′, whose specification is shown in Fig. 3(b),
the sensor S2 now skips every 100th data transmission on average, and the process-
ing unit F2 occasionally, in an unspecified manner, undergoes an additional clean–up
computations, which last from 100 to 150 ms.

An example of a probabilistic property, against which we could check Ex1 ′, using
Prism’s parametric model checking, and replacing the constant drop=0.01 with and
undefined value drop=R, might be "how the value of R affects the maximum prob-
ability that a deadlock will occur in the first 10 time units". If the result would be a
function with R absent or reducible, it would mean that the drop does not affect the
probability of the deadlock.
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Ex1′:
S1 = Periodic(50, 75)[75, 100];
S2 = Periodic(200, 300)[350, 400]→(F2, F1) drop = 0.01;
S3 = Periodic(200, 300)[350, 400]→(F2, B);
F1 = First(S1, S2[50, 75]);
F2 = First(S2, S3[25, 50] + [125, 200]);
B = Both(S3, F2)[25, 50];
M = Memory(F1[25, 50], B[25, 50]);
R = Rendering(50, 75)(M [25, 50]).

(b)

Fig. 3. An example of Mirela components, which would replace the respective automata
in Fig. 2, and the corresponding specification of the modified example.

6 Implementation strategy

Given a verified MIRELA specification MS , which satisfies some properties consid-
ered important, the idea is to use this specification for producing an implementation
aiming at preserving those properties. The approach from [7] considers implementa-
tion prototypes, which take the form of a looping controller CMS ,∆, obtained from the
TAST representation of MS and parameterised with a well-chosen sampling period ∆.
Such a controller may execute zero or several actions in the same period ∆. Obviously,
there are semantic differences between the implementation and the specification, com-
ing mostly from the interpretation of the continuous clock values in the sampled world
of the implementation and the immediate reaction of the system when a synchronisa-
tion becomes possible. For example, one may easily observe that even if the original
specification MS does not reach some error state, the controller CMS ,∆ may reach it
because the sampling allows to evaluate transition conditions potentially larger than it
was the case in MS . The approach then proposes an over-approximating model of the
implementation in order to check if the essential properties of the original specifica-
tion are still satisfied by the implementation. The new model “covers” the evolutions
of the controller CMS ,∆, hence “sandwiching” the implementation between the original



specification and this auxiliary model. This model, MS , is very similar to MS , but with
relaxed timing constraints, and essentially allows to check if the safety properties of the
specification are preserved by the implementation.

7 Conclusion and future work

The analysis techniques described above have been checked on various realistic exam-
ples, with satisfactory results [5,4]. For instance, when analysing our running example,
the evaluation of φ̃w with UPPAAL takes a few seconds for the various interesting lo-
cations w, while the evaluation of ψw and ρw with PRISM takes a hundred of seconds.
Similarly, obtaining bounds for the looping time of each component took a few seconds,
with UPPAAL and the abstraction technique.

In the future, we plan to extend the MIRELA specification by approximate proba-
bilistic distributions, and also by explicit state variables.
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