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Using the fact that the maximal ideals in the polydisk algebra are given by the kernels of point evaluations, we derive a simple formula that gives a solution to the Bézout equation in the space of all entire functions of several complex variables. Thus a short and easy analytic proof of Cartan's Nullstellensatz is obtained.

Introduction

The aim of this note is to give a short and easy proof of Cartan's Nullstellensatz:

Theorem 1.1. Let H(C n ) be the space of functions holomorphic in C n . Given f j ∈ H(C n ), the Bézout equation N j=1 g j f j = 1 admits a solution (g 1 , . . . , g N ) ∈ H(C n ) N if and only if the functions f j have no common zero in C n .

The usual proofs use a lot of machinery from sheaf theory, cohomology, (see for example [2]), or are based on the Hörmander-Wolff method by solving higher order ∂-equations using the Koszul complex, a tool from homological algebra (see [6, p. 128-131]). The one-dimensional case, first done by Wedderburn, is very easy (see for example [4, p. 118-120] for the classical approach or [1, p. 130] for the ∂-approach). For our proof to work, we shall only use a standard fact from an introductory course to functional analysis, namely Gelfand's main theorem: the maximal ideals in a commutative unital complex Banach algebra coincide with the kernels of the multiplicative linear functionals (see for instance [5]). The idea is to apply this result to the polydisk algebras on an increasing sequence of polydisks D k and to glue together the solutions to the Bézout equations N j=1 g j f j = 1 on D k by using a Mittag-Leffler type trick. The major hurdle to overcome was of course to find suitable summands that guarantee at the end the holomorphy.

The general solution to the Bézout equation

Let D be the unit disk and let A(D n ) be the polydisk algebra; that is the algebra of those continuous functions on the closed polydisk

D n = {(z 1 , . . . , z n ) ∈ C n : |z j | ≤ 1}
which are holomorphic in D n . Endowed with the supremum norm, A(D n ) becomes a uniform algebra and coincides with the closure on D n of the polynomials in C[z 1 , . . . , z n ]. We actually only need that A(D n ) is the uniform algebra generated by the coordinate functions Z j , j = 1, . . . , n on D n . It is now straightforward to show that an ideal

I in A(D n ) is maximal if and only if it coincides with M (a 0 ) = {f ∈ A(D n ) : f (a 0 ) = 0} for some a 0 ∈ D n (just take a character m on A(D n ) and put a 0 = (m(Z 1 ), . . . , m(Z n ))). Hence the Bézout equation N j=1 x j f j in A(D n ) has a solution if and only if N j=1 Z D n (f j ) = ∅, where Z D n (f )
is the zero set of f on D n . We will use the following well-known elementary result. For the reader's convenience we reproduce the proof here (see [3]), because its understanding is fundamental for our construction.

Lemma 2.1. Let R be a commutative unital ring. Suppose that a = (a 1 , . . . , a N ) is an invertible N -tuple in R N and let x = (x 1 , . . . , x N ) satisfy N j=1 x j a j = 1; that is x a t = 1. Then every other representation 1 = N j=1 y j a j of 1 can be deduced from the former by letting y = x + aH, where H is an antisymmetric (N × N )-matrix over R; that is H = -H t , where H t is the transpose of H.

Proof. Suppose that 1 = xa t and 1 = ya t . For k = 1, . . . , N , multiply the first equation by y k and the second by x k . Then

x k -y k = j =k a j (y j x k -y k x j ).
Thus y = x + aH for some antisymmetric matrix H.

To prove the converse, let 1 = xa t . Since H is antisymmetric we have (due to the transitivity of matrix multiplication and

xy t = yx t ) (aH)a t = a(Ha t ) = a(aH t ) t = a(-aH) t = (-aH)a t .
Thus (aH)a t = 0. Hence

ya t = (x + aH)a t = xa t + (aH)a t = 1 + 0 = 1. 3. Proof of Theorem 1.1 Proof. Let f j ∈ H(C n ) and put f = (f 1 , . . . , f N ). Suppose that N j=1 Z(f j ) = ∅. For k ∈ N * , let D k = (k D) n be the closed polydisk D k = {(z 1 , . . . , z n ) ∈ C n : |z j | ≤ k}. Note that D k ⊆ D • k+1 . Let a k ∈ A(D k+1
) N be a solution to the Bézout equation a k • f t = 1 on D k+1 . Using Tietze's extension theorem 1 , we may assume that the tuples a k have been continuously extended to C n 2 . By Lemma 2.1, there is an antisymmetric matrix H k over A(D k+1 ) such that

a k+1 = a k + f • H k .
Put a 0 = 0 and H 0 = O. For k = 0, 1, . . . , let P k be an antisymmetric

N × N -matrix of polynomials in C[z 1 , . . . , z n ] such that max D k+1 ||f • H k -f • P k || N < 2 -k .
We claim that the N -tuple

g := ∞ k=0 a k+1 -a k -f • P k belongs to H(C n ) N and is a solution to the Bézout equation g • f t = 1 in H(C n ). In fact, let D m be fixed. Then the series defining g is uniformly convergent on D m since g = m k=0 a k+1 -a k -f • P k + ∞ k=m+1 a k+1 -a k -f • P k = a m+1 -f • m k=0 P k + ∞ k=m+1 a k+1 -a k -f • P k and the tail can be majorated on D m by ∞ k=m+1 f • H k -f • P k || N < 2 -m .
Moreover, on D m , a m+1 and all the summands in the series ∞ k=m+1 are holomorphic. Since m was arbitrarily chosen, we conclude that g ∈ H(C n ) N . Moving again to D m we see that, due to the antisymmetry of the matrices H k and P k ,

g • f t = a m+1 • f t -f • m k=0 P k • f t + ∞ k=m+1 f • (H k -P k ) • f t = 1 -0 + 0 = 1.
1 Since we will consider a telescoping series Tj, where the domains of definition of the summands Tj are strictly increasing, even an application of Tietze's theorem is not necessary.

2 Of course, outside D k the Bézout equation is not necessarily satisfied.
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