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Abstract. Hierarchical image segmentation provides a set of image seg-
mentations at different detail levels in which coarser details levels can be
produced by simple merges of regions from segmentations at finer detail
levels. However, many image segmentation algorithms relying on similar-
ity measures lead to no hierarchy. One of interesting similarity measures
is a likelihood ratio, in which each region is modelled by a Gaussian dis-
tribution to approximate the cue distributions. In this work, we propose
a hierarchical graph-based image segmentation inspired by this likelihood
ratio test. Furthermore, we study how the inclusion of hierarchical prop-
erty have influenced the computation of quality measures in the original
method. Quantitative and qualitative assessments of the method on three
well known image databases show efficiency.

Keywords: Hierarchical image segmentation; Graph-based method; Sta-
tistical properties.

1 Introduction

Image segmentation is the process of grouping perceptually similar pixels into
regions. A hierarchical image segmentation is a set of image segmentations at
different detail levels in which the segmentations at coarser detail levels can
be produced from simple merges of regions from segmentations at finer detail
levels. Therefore, the segmentations at finer levels are nested with respect to
those at coarser levels. Hierarchical methods have the interesting property of
preserving spatial and neighboring information among segmented regions. Here,
we propose a hierarchical image segmentation in the framework of vertex-edge-
weighted graphs, where the image is equipped with an adjacency graph, the cost
of an edge is given by a dissimilarity between two points of the image and the
cost of a vertex is the color information of the associated point. Therefore, the
adjacency graph is represented by data structures in order to efficiently compute
this hierarchy.
? The authors are grateful to PUC Minas, CNPQ, CAPES and FAPEMIG for the
partial financial support of this work.
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The first appearance of minimum spanning tree in pattern recognition for
representing a hierarchy dates back to the seminal work of Zahn [19]. Lately,
its use for image segmentation was introduced by Morris et al. [14] in 1986 and
popularized in 2004 by Felzenszwalb and Huttenlocher [9], Noch and Nielsen
[16] proposed a statistical method in which the merging order is similar to the
creation of a MST. However the region-merging method [9, 16] does not provide
a hierarchy. Some optimality properties of hierarchical segmentations have been
studied in [15, 6]. New characterizations between MST and saliency maps based
on quasi-flat zones have been studied in [8]. Considering that, for a given im-
age, one can tune the parameters of the well-known method [9] for obtaining
a reasonable segmentation of this image. A seminal framework to transform a
non-hierarchical method to a hierarchical one has been proposed in [11] . Follow-
ing a similar idea, we proposed in [12] a method for hierarchizing the approach
proposed in [16] in which the image segmentation is formulated as an inference
problem. In [17, 5] were proposed methods, that can also be formulated as in-
ference problems, relying on likelihood ratio test. In both cases, the regions are
iteratively merged until a termination criterion is fulfilled. Unlike the method
proposed in [5], a one proposed in [17] does not directly use the likelihood ratio
test as similarity measure taking it as an enhancement for the merging evidence.
Thus, the proposed predicate can be interpreted as a combination of consis-
tency and similarity measures since these ones are computed from pixel values
randomly sub-sampled in each pair of tested regions. The existent consistency
tells whether the tested data belong to the same group, and it is measured by
two hypotheses according to the sequential probability ratio test. Moreover, a
Gaussian distribution model to approximate the cue distributions has been used
in [17] instead of Kullback-Leibler divergence, which is used in [5]. Furthermore,
the method proposed in [17] holds certain global properties, i.e., by using the
merging predicate the results are neither overmerged nor undermerged, which
preserves the perceptual cues.

Even if the results presented in [17, 5] are interesting since they have im-
portant statistical properties, the merging order is adaptive since, after each
merging step, the similarity measure between all adjacent regions must be up-
dated in order to identify the two new adjacent regions of maximum similarity
value. Thus, in this work, instead of considering an adaptive merging order, we
propose a hierarchical method in which the merging order (or order for evalu-
ating the regions) is defined, a priori, by the weights of MST computed from
the image. Unfortunately, the causality and the location properties are missing
in [17] whether their two parameters (λ1 and λ2) are considered as scales, as
can seen in Fig. 1. According to [17], the number of regions decreases when λ1
increases, and the number of regions increases when λ2 decreases, however these
statements are not completely true as showed in Fig. 1. According to [10], a
“scale” is considered as a true scale-parameter, when it satisfies both the causal-
ity principle and the location principle, which leads to work with a hierarchy of
segmentations. In this sense, the method proposed in [17], so-called SPRT, does
not produce a hierarchy of partitions.
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(a) Original

(b) λ1 = 1.98 (21) (c) λ1 = 3.06 (23) (d) λ1 = 3.09 (2)

(e) λ2 = 0.009 (7) (f) λ2 = 0.025 (2) (g) λ2 = 0.055 (8)

Fig. 1. A real example illustrating the violation of the causality and location principles
by [17] in which the number of regions (in parentheses) is not monotonic, when the
so-called “segmentation scale” increases. Moreover, the location of the contours are not
stable in different segmentations. In first row, the parameter λ2 is equal to 1 and in
the second row, the parameter λ1 is equal to 1.

The main contribution of this paper is the proposal of a similarity measure
based on likelihood ratio test computed from a Gaussian model distribution in
the context of graph-based hierarchical segmentation. Moreover, unlikely [17, 5],
instead of iteratively deciding whether two adjacent regions might be merged, we
compute the scales for which the regions must be merged. Differently of [17], our
method can be directly applied to the original image instead of computing on an
over-segmentation. Although, our method provides all statistical scales is more
efficient than SPRT and according to our experiments the proposed method is
statistically better, in terms of paired t-test analysis, than SPRT.

Furthermore, since our algorithm is a hierarchical approach, its result satisfies
both the locality principle and the causality principle. Namely, the number of
regions decreases when the scale parameter increases, and the contours do not
move from one scale to another, as can be seen in Fig. 2.

This work is organized as follows. In Section 2, we present our hierarchical
method for color image segmentation. Some experimental results performed on
three well known image databases are given in Section 3. Finally, in Section 4,
some conclusions are drawn and further works are discussed.

(a) Original (b) 2 regions (c) 3 regions (d) 4 regions

Fig. 2. A real example illustrating the hierarchical segmentation obtained by our pro-
posed method inspired by similarity measure proposed in [17] showing the number of
regions. Moreover, the location of the contours are stable in different segmentations.
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2 A method inspired by likelyhood ratio test

In this section we present the (dis)similarity measure which is used to verify
if two regions must be merged. We also propose a method that computes the
low scale in which two regions must be merged without violating the likelyhood
test between these two regions. Moreover, we compute a hierarchy of partitions
providing all scales instead of only one segmentation.

2.1 Likelihood ratio test

The likehihood ratio test computed from two regions in which the Gaussian dis-
tribution model is used to approximate the cue distributions x has been proposed
in [17], as follows

P0(x|θ0) = λ1 exp(−(IY − IX∪Y )TS−1I (IY − IX∪Y )) (1)

P1(x|θ1) = 1− λ2 exp((IY − IX)
T
S−1I (IY − IX))

in which IX and IY are the average color of the samples in regions X and Y ,
respectively, and IX∪Y is the average value of the samples’ union. θ is called
hypothesis in which θ0 is related to consistent regions and θ1 is related to incon-
sistent regions. SI is the covariance matrix of the regions, λ1 and λ2 are scalar
parameters which could be considered as “scales” in the segmentation process.
If each test is independent, the composition of the likelihood ratio δ is the sum
of the individual δi = log P0(xi|θ0)

P1(xi|θ1) for N iterations, in which N is the first inte-
ger for which δ ≥ A (consistent regions) or δ ≤ B (inconsistent regions). It is
possible to see that the solution to the hypothesis is decided by the relationship
between δ and a pair of upper and lower limits denoted by A and B, respectively.
If δ goes out of one of these limits, the hypothesis is made, and thus, the test
stops. Otherwise, the test is carried on with a new random sampling. Due to
space limitations, more explanations are omitted here (see [17] for more details).

2.2 Similarity measure

Before discussing about the similarity measure, lets remember some definitions.
Let A = log 1−β

α be one value computed from two constants α and β, which
are probabilities of the decision error and are set to 0.05 [17]. Let X and
Y be two neighboring regions. Let P0(x|θ0) and P1(x|θ1) be two conditional
probabilities for representing the Gaussian distribution model to approximate
the cue distributions x. From Eq. 1, P0(x|θ0) = λ1 exp(−DX∪Y

Y ) in which
DX∪Y
Y = (IY − IX∪Y )TS−1I (IY − IX∪Y ) could be computed by the difference

between color averages of the regions Y and X ∪ Y , and it represents the consis-
tency of region X with respect to Y . Analogously, P1(x|θ1) = 1− λ2 exp(−DX

Y )

in which DX
Y = (IY − IX)

T
S−1I (IY − IX). Considering that the parameters λ1

and λ2 control the coarseness (or “scale”) of a segmentation, it is important
to understand the influence of these parameters in the process. Moreover, we
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consider that the number of iterations, N , is equal to 1. Thus, without loss of
generality, we fix λ2, and the distribution of visual cues for producing consistent
regions (δ ≥ A) could explicitly define the parameter λ1, as follows:

δ ≥ A (2)
λ1 exp(−DX∪Y

Y )

1− λ2 exp(−DX
Y )
≥ 1− β

α
(3)

λ1 ≥
1− β
α
× 1− λ2 exp(−DX

Y )

exp(−DX∪Y
Y )

(4)

Fig. 1 illustrates the missing of the location and the causality principles, for
variation of both λ1 and λ2, which controls the so-called segmentation scale, and
this shows the absence of hierarchical properties of the method SPRT. In fact,
this work will look for a procedure to adapt the values of λ1 according to the
analyzed regions in order to guarantee that two regions are correctly merged.
Then, the scale QY (X) of X relative to Y , which represents λ1 when λ2 is equal
to 1, is defined as:

QY (X) =
1− β
α
× 1− exp(−DX

Y )

exp(−DX∪Y
Y )

(5)

Thus, the scale Q(X,Y ) for merging two regions X and Y could be written
by

Q(X,Y ) = max(QY (X), QX(Y )) (6)

2.3 The proposed method

In this section we describe our method, so-called hPRT, to compute a hierarchy
of partitions based on scales, so-called here probability ratio scale, as defined by
Eq. 6. The main difference between this method and our previous work [12] is
the application of a new measure based on likelihood probability ratio test. Let
us first recall some important notions for handling hierarchies [14, 4, 15, 6, 7].

According to [8], for any tree T spanning the set V of the image pixels, to
any map w : E → N that relates a weight to each edge of T , one may associate
the partition Pwλ of V for a given threshold λ ∈ N, induced by the connected
components of the graph made from V and edges whose weights are below λ.
It is well known [14, 6] that for any two values λ1 and λ2 such that λ1 ≥ λ2,
the partitions Pwλ1

and Pwλ2
are nested and Pwλ1

is coarser than Pwλ2
. Hence, the

set Hw = {Pwλ | λ ∈ N} is a hierarchy of partitions induced by the weight map
w. Each element of a partition is called a region, and the index of a region A
is the largest weight of the edges of the subtree induced by A from T . We also
denote by RHw(x, λ) the set of all regions of Hw which contains x and whose
index is less than λ. Our algorithm does not explicitly produce a hierarchy of
partitions, instead it produces a new weight map L (scales of probability ratio
values) from which the desired hierarchy HL can be infered. It starts from a
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minimum spanning tree T of the gradient edge-weighted graph built from the
image. In order to compute the scale L(e) associated with each edge of T , after
an initialization step, our method iteratively considers the edges of T in a non-
decreasing order of their original weights w. For every edge e, the new weight
L(e) of e is initialized to ∞; then, for each edge e linking two vertices x and y
the following steps are proceeded:

1. Compute the probability ratio scale s of e with respect to the current values
of L:

s = min{λ | C(x, y, λ, L) is true} (7)

where C(x, y, λ, L) is true if

∀X ∈ RHL(x, λ),∀Y ∈ RHL(y, λ), Q(X,Y ) ≤ λ.

2. Update the weight of e for L with the value s obtained at step 1:

L(e) = s.

Intuitively, the probability ratio scale at edge e corresponds to the lowest
scale value λ such that we cannot find two regions in the current hierarchy (the
one associate to L at the current iteration) which are linked by e and whose
similarity is greater than λ (according to the similarity measure Q). Hence, the
hierarchical probability ratio scale L(e) is computed based on a minimization
procedure related to the similarity measure Q on the set of all the possible pairs
of regions linked by the edge e.

3 Experimental analysis

In this section, we have done assessments in terms of F-measure and precision-
recall curves by using six segmentation methods applied to three different image
databases.

3.1 Compared methods and their underlying graphs

As mentioned before, we will compare our method hPRT that provides a hier-
archical graph-based segmentation result with the original method SPRT [17]
that provides a non-hierarchical graph-based segmentation result, even if in the
original paper the method is presented as hierarchical, we have show that two
features of hierarchical methods are missing, the location and the causality prin-
ciples (see Fig. 1). We also compare the proposed method to GB [9], hGB [11],
SRG [17] and hSRG [12]. The parameters of each non-hierarchical method are
given below:

GB This method depends on three parameters: (i) k; (ii) σ; and (iii) τ . The
parameter k, which control the the so-called “scale” varies in [100, 10000].
Gaussian smoothing pre-processing with parameter σ, whose values are set
to 0 (no smoothing). The area parameter τ , which is detailed ahead, is used
to merge adjacent regions.
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(a) GB (b) SRG (c) SPRT (d) hGB (e) hSRG (f) hPRT

Fig. 3. Some results by using the compared segmentation methods (GB, hGB, SRG,
hSRG, SPRTand hPRT). In order to compute these results, we consider the param-
eters that obtain the best F-measures for each method. Moreover, we illustrate the
segmentations containing either 7 regions (easy for hierarchical methods) or as close as
possible to 7 regions.

SRG This method depends basically on the parameter q, whose values vary in
[2, 256].

SPRT This method depends on two parameters, λ1 and λ2. In order to study
the behaviour of these parameters, we tested two different configurations.
In the first one, we fixed the parameter λ1 = 1 and λ2 varies in [0.001, 5].
In the second one, we fixed the parameter λ2 = 1 and λ1 varies in [0.1, 10].
However, to apply this method, a pre-processing is needed for produce a
over-segmented image, in order to do that, we apply GB in which k = 100
and σ vary in [0.1, 1].

For the hierarchical methods, we consider the most simple configuration by
ignoring, for example, the smoothing pre-processing. In all cases, an area-filtering
post-processing step with parameter τ , which is the ratio of the component size
to the image size, is applied. The values of τ are set to 0.01%, 0.05% or 0.1% of
image size. This post-processing is an important step since the order to analyse
the edges is pre-defined and depends on the gradient values, thus small regions
which contain elements with high gradient values could have high values of scales.

Before applying those methods, it is necessary to transform a given image
into an edge-weighted graph for hGB and GB or into a vertex-edge-weight
graph for SRG and hSRG. In this paper, we consider the following underlying
graph. The graph is induced by the 8-adjacent pixel relationship, where each
vertex corresponds to a pixel and each edge corresponds to a pair of adjacent
pixels. Each edge is weighted by a simple color gradient: the Euclidean distance
in the RGB space between the colors of the two adjacent pixels.

In order to illustrate some segmentations, Fig. 3 shows some results obtained
by the compared methods. Due to the features of those methods, it was not
possible to obtain exactly 7 regions, thus we present segmentations containing as
close as possible the number of required regions. Fig. 4 illustrates some results
using only the hierarchical methods. As can be seen, the two yellow flowers
(center and right of the image) are better identified when hPRT is used since it
is necessary only 4 segments (including the background) against 6 and 9 segments
for hSRG and hGB, respectively. In other words, for this example, the proposed
method is more robust than the others to obtain the single objects.
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(a) Original (b) hSRG (c) hGB (d) hPRT

Fig. 4. Some results by using the hierarchical compared segmentation methods (hGB,
hSRG and hPRT). In order to compute these results, we consider the parameters that
makes possible to obtain the yellow flowers (center and right of the original image).

3.2 Databases

In order to provide a comparative analysis between several methods, we used
three different databases: (i) the Berkeley Segmentation Dataset [13], called
BSDS500; (ii) the database proposed in [18], called GRABCUT; and (iii)
the database proposed in [1, 2] which is divided into two groups – single and two
objects – called WI1OBJ and WI2OBJ, respectively.

3.3 Quantitative analysis

In this section, we assess the proposed method hPRT when compared to some
other methods by using Ground-truth Covering (GT Covering) as showed in
Table 1. According to [3], the GT Covering of a segmentation S by a family of
ground-truth segmentations {Gi} is defined by first covering S separately with
each human segmentation Gi, and then averaging over the different humans
(see [3] for more details). Furthermore, we present the best method choice with
confidence interval for each pairwise comparison. By using the F-measure, which
is the harmonic mean of precision and recall, the compared methods are quite
similar to the proposed one (as can be observed in Table 1(a)), however according
to the pairwise comparison, the proposed method hPRT is always better than
SPRT, and similar to other methods for all databases, except for BSDS500
(as can be observed in Table 1(b)) . Usually, the F-measure can be seen as a
summary statistic of each method.

When the comparison is made by using the precision-recall curves for object
and parts (Fig. 5), the method hPRT is better than or equivalent to SPRT.
For other methods, test results are inconclusive for all databases.

In order to illustrate an example of computation time, we implemented our
algorithm in C++ on a standard single CPU computer under OS X, we run
it in a Intel Core i5, 4GB. For the image shown in 1 (a) (with size 321x481),
the hierarchy is computed in 5 seconds, without any pre-processing. Considering
that the method proposed in [17] is highly dependent on the number of regions
in the over-segmented image, we present three different measurements: (i) for
722 regions the time is 3 seconds; (ii) for 1204 regions the time is 7 seconds; and
(iii) for 2765 regions the time is 24 seconds.
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Table 1. Performances of our method hPRT and the compared methods (GB, hGB,
SRG, hSRG and SPRT) using Ground-truth Covering (GT Covering). The presented
scores in (a) are optimal considering a constant scale parameter for the whole dataset
(ODS) and a scale parameter varying for each image (OIS). In (b), the best method
choice is presented with confidence interval for each pairwise comparison. See [3] for
more details on the evaluation method.

(a)

Database Method GT Covering F-Measure
ODS OIS Best

BSDS500

GB 0.42 0.54 0.68 0.59

SRG 0.51 0.57 0.68 0.63

SPRT 0.45 0.52 0.57 0.57

hGB 0.45 0.54 0.63 0.60

hSRG 0.45 0.53 0.61 0.59

hPRT 0.45 0.53 0.61 0.60

GRABCUT

GB 0.72 0.77 0.79 0.79

SRG 0.71 0.75 0.77 0.74

SPRT 0.72 0.76 0.78 0.77

hGB 0.71 0.77 0.81 0.79

hSRG 0.71 0.74 0.77 0.75

hPRT 0.73 0.78 0.80 0.80

WI1OBJ

GB 0.67 0.75 0.78 0.75

SRG 0.68 0.73 0.75 0.73

SPRT 0.63 0.68 0.72 0.70

hGB 0.64 0.72 0.76 0.74

hSRG 0.64 0.70 0.73 0.71

hPRT 0.65 0.71 0.74 0.73

WI2OBJ

GB 0.74 0.85 0.88 0.85

SRG 0.78 0.84 0.86 0.84

SPRT 0.73 0.82 0.84 0.82

hGB 0.74 0.86 0.88 0.86

hSRG 0.77 0.83 0.86 0.84

hPRT 0.76 0.85 0.87 0.86

(b)
F-measure for regions

Database Methods Confidence interval (5%) The best method

BSDS500

GB x hPRT [-0.0213, 0.00519] equivalent
SRG x hPRT [0.0249, 0.0486] SRG
SPRT x hPRT [-0.0397, -0.0163] hPRT
hGB x hPRT [0.000872, 0.0171] hGB
hSRG x hPRT [-0.0169, 0.000151] equivalent

GRABCUT

GB x hPRT [-0.0307, 0.019] equivalent
SRG x hPRT [-0.115, -0.0145] hPRT
SPRT x hPRT [-0.0582, 0.00445] equivalent
hGB x hPRT [-0.0231, 0.0165] equivalent
hSRG x hPRT [-0.078, -0.0147] hPRT

WI1OBJ

GB x hPRT [-0.0187, 0.0483] equivalent
SRG x hPRT [-0.0286, 0.0237] equivalent
SPRT x hPRT [-0.0534, -0.0112] hPRT
hGB x hPRT [-0.0122, 0.0192] equivalent
hSRG x hPRT [-0.035, -0.00269] hPRT

WI2OBJ

GB x hPRT [-0.0283, 0.0194] equivalent
SRG x hPRT [-0.0396, 0.00904] equivalent
SPRT x hPRT [-0.0517, -0.0149] hPRT
hGB x hPRT [-0.015, 0.0219] equivalent
hSRG x hPRT [-0.0407, 0.00103] equivalent

4 Conclusions and further works

In this work, we propose a method for transforming a non-hierarchical method
into a hierarchical one preserving the merging criterium, i.e., all regions are
merged according to the same probability ratio criterium. Differently of the
method that iteratively computes the hierarchies and following our previous
works, our method produces a weight map L (scales of probability ratio values)
from which the desired hierarchy can be easily infered.

According to our results, the inclusion of the hierarchical property on this
region merging approach solves the causality and the location problems which
are missing in SPRT method, without prejudicing the quality of results, in fact,
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Fig. 5. Precision-Recall curves for objects and parts computed on three databases.
The curves represent the 5 (five) segmentation methods (GB, hGB, SRG, hSRG
and SPRT) and the proposed method (hPRT). The marker on each curve is placed
on the Optimal Dataset Scale (ODS). Moreover, the F-measures of the marked points
on each curve is presented in brackets.

our method hPRT is statistically better than SPRT when F-measure is used
for comparison, and equivalent for other compared methods in three databases
and worst than SRG and hGB for BSDS500. Moreover, unlikely the original
method, our hierarchical one is not dependent on the over-segmented image to
produce the segmentation.

In all the tests performed in this paper, we filter out small regions at all levels
of the hierarchies. This filtering step has a strong impact on the quality of the
results, that deserves an in-depth study by itself: it is actually a transformation
of the hierarchy, and as an operator acting on hierarchies, it has clearly some
theoretical and practical properties. In future work, we endeavor doing such a
study. Other items that sould be the topic of further studies are the robustness
to noise, as well as the choice of a good hierarchical scale.
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