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Oscillation regimes produced by an alto saxophone : influence of
the control parameters and the bore inharmonicity.

J.-B. Doc1 and C. Vergez1

1 LMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, F-13402 Marseille Cedex 20, France

The aim of this work is to highlight experimentally how inharmonicity of the bore resonance frequencies
of an alto saxophone influence the nature of the oscillation regimes. A variable volume branching from
the neck of an alto sax at an appropriate position allows to change the frequency of the first resonance
independently from the second. A blowing machine with artificial lips is used to make the saxophone
play while controlling independently the control parameters : the blowing pressure and an embouchure
parameter. Values of these parameters are estimated experimentally through the measurement of the
nonlinear characteristics linking the mean air flow blown into the instrument to the static pressure
difference across the reed. Experiments with different values of the control parameters as well as of the
inharmonicity produce different kinds of oscillation regimes. These regimes are categorized through the
analysis of the pressure signal inside the mouthpiece. The resulting maps demonstrate that the emergence
of quasi-periodic regimes, and their extent, depend on the level of inharmonicity, but also on the values of
the control parameters. Periodic regimes playable by choosing appropriate values of the control parameters
also differ according to the level of inharmonicity, a higher inharmonicity facilitating the emergence of the
third register.

I. Introduction

The construction of musical wind instruments
requires, for example, drilling side holes and adding a
mouthpiece and bell. This may alter the harmonicity
of the instrument, which means that the different
resonance frequencies deviate from a perfect harmonic
series. Inharmonicity of resonance frequencies has a
direct influence on the intonation of a musical wind
instruments1, as well as on the timbre of the sounds
produced. Moreover, the inharmonicity of a wind
instrument may trigger the production of multipho-
nics2, which correspond to a quasi-periodic oscillating
regime3. Therefore, inharmonicity appears as a key fac-
tor to consider when designing musical wind instruments.

Multiphonics can be easily obtained on wind instru-
ments played unconventionally, for instance using fork
fingerings or a modified embouchure. These multiphonics
are perceived as chords or rolling or beating sounds4

and are commonly used in Jazz or contemporary music.
However, even when the instrument is played in a conven-
tional way, undesirable quasi-periodic regimes may be
produced. In that case, craftsmen obviously try to avoid
this type of behavior which affects the playability of the
instrument.

Quasi-periodic regimes have already been studied
for organ pipes and flutes5;6;7 or reed instruments8;9.
However the emergence of quasi-periodic regimes
in musical instruments is still a poorly understood
phenomenon. For reed instruments, the paper by
Dalmont et al.10 presents the first experimental evidence
that the harmonicity of the resonances may influence
the production of quasi-periodic regimes by an alto
saxophone. This pioneering work has recently been
revisited in a study11 based on the use of a numerical
model of the sound production. This study shows
that control parameters set by the player have also a
significant influence on the production of quasi-periodic
regimes.

The goal of this paper is to highlight experimentally
the influence of the harmonicity of the resonances on the
sound production by an alto saxophone. The analysis
focuses on regimes produced, and questions relative to
timbre are ignored. The experiment from Dalmont et
al.10 is carried out again : a piston is added perpendi-
cularly to the neck of the saxophone (see fig. 2(b)) at a
location which allows to alter the resonance frequency
of the lowest mode without affecting the resonance fre-
quency of the second mode. The inharmonicity of the
lowest modes of the instrument can consequently be
controlled by the experimenter.

An artificial mouth is used in order to make the
saxophone play with two control parameters : the embou-
chure settings and the blowing pressure (considered inde-
pendent for this study). These parameters are estimated
experimentally according to a model of the acoustical
exciter. Sound is recorded for sets of control parame-
ter values, and the nature of the regime is identified
through analysis of the signal. These can be represented
graphically in maps that allow an easier reading of the
experimental data.

Section introduces the experimental device as
well as methods used to characterize it. In section ,
signal processing methods are then presented. Finally,
in section , experimental results are presented.

II. Characterization of the experimental device

A. Experimental device

The saxophone used for the experiment is a student
model (Yamaha YAS-280), played with a Plasticover
reed (force 3) placed on a standard mouthpiece (Yamaha
4C). In order to perform different fingerings, cork pieces
are inserted below the corresponding key mechanisms so
that the desired keys are maintained closed. Tensioners
are also used to keep certain keys closed.

A photo of the experimental device is shown in
Figure 1, where the saxophone is laid horizontally in
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Fig. 1 – Experimental device (top view).

order to be connected to the artificial mouth. The lat-
ter is based on a plexiglass box, the inner volume of
which is 15cm3. The control of air pressure inside the
box is carried out through a closed-loop. A real-time
dSpace controller drives a servo-valve (placed upstream
an air tank) according to the static pressure measured
in the box. Specific developments have been necessary
to achieve a precise control through time of the pressure
in the artificial mouth (technical details are available
in13). Pressure ramps can therefore be generated in the
artificial mouth.

Figure 2(a) displays a sketch of the artificial mouth.
The mouthpiece of the instrument is connected to the
artificial mouth through a rubber seal which ensures air
tightness. An artificial lip is pressed against the reed
and brings the required damping to avoid squeaks when
the instrument is playing. The artificial lip is made with
latex tube filled with water through a syringe. Rising the
pressure of water increases the bearing force of the lip on
the reed, which results in a decreased reed channel ope-
ning. The artificial lip is placed around 1cm downstream
the tip of the reed (see Figure 2(a)).

The static pressure inside the artificial mouth as
well as the pressure inside the mouthpiece are measured
with Endevco pressure sensors (8507C-5 model). A
Burkert flowmeter (model 8701) is used to measure
the air volume entering the instrument. A National
Instrument acquisition module (NI9215 model) digitizes
the experimental signals with a sampling frequency of
44kHz, further recorded on a computer.

B. Characterization of the exciter

The mouthpiece and the reed together can be seen
as an exciter. According to classical textbooks14, this
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Fig. 2 – (a) Sketch of the artificial mouth and (b)
schematic of the modified saxophone neck. A piston is
plugged at 165 mm from the input of the neck. The

inner diameter of the piston is 12 mm.

system can be characterized through the estimation of
two physical quantities : the airflow U through the reed
channel and the difference ∆P between the mouth pres-
sure Pm and the mouthpiece pressure P . The airflow
produced by the reed displacement is ignored in this
description. The so-called nonlinear characteristics of the
exciter15 (noted NLC hereafter), connecting these two
quantities can be written :

U =
ζ

Zc
(PM −∆P )

√
|∆P |
PM

sgn (∆P )

if ∆P < PM ,

(1a)

U = 0 if ∆P > PM , (1b)

where PM is the beating reed pressure, i.e. the minimum
pressure difference across the reed to close the reed in the
static regime, and ζ the embouchure parameter defined
by :

ζ = ZcS

√
2

ρPM
, (2)

with Zc the characteristic impedance of plane waves
inside the resonator, S the cross-section of the instrument
input and ρ the density of air.

Parameters PM and ζ are estimated experimentally
by fitting Eq.(1) onto a measured NLC. Figure 3 displays
an example for a given setting of the artificial mouth.
Thanks to the measurement, the maximum airflow Umax

and the corresponding pressure difference Pmax can be es-
timated. Considering that PM = 3Pmax, the embouchure
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Fig. 3 – (Color online) Measurement of the nonlinear
characteristics (NLC) on an alto saxophone (G’

fingering) for a given setting of the artificial mouth
(ζ ' 0.45 and PM = 7350 Pa) and comparison with the

fitted model. (Eq. (1)).
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for two lengths Lp.

parameter ζ is then obtained through the relation15 :

ζ =

√
3

2

Umax

Pmax
Zc. (3)

The NLC modeled through equation (1) is then plotted
using the estimated values of PM and ζ. As shown in
Figure 3, the measured and the modeled NLC are nearly
identical. Moreover, knowing PM allows to evaluate
the dimensionless blowing pressure γ, defined as the
ratio between the mouth pressure and the reed beating
pressure : γ = Pm/PM .

For each experiment or for each change in the
setting of the experimental mouth, an estimation of
ζ and γ parameters is carried out. This allows us to
plot the analysis results of the mouthpiece pressure (the
different oscillation regimes as explained in section ) on
a map representing the control parameters ζ and γ.

C. Characterization of the resonator

The impedance of the alto saxophone is measured

with an impedance sensor16 for each fingerings used in
the experiment. A cylinder of the same volume as the
mouthpiece is placed upstream the instrument. For this
study the fingering corresponding to the G note (as read
on a score) of the first register (noted hereafter G’) is
used. A piston is soldered to the neck of the saxophone
without affecting the inner geometry of the instrument
(see Figure 2(b)). For the G’ fingering, this allows to
alter the first resonance frequency of the instrument
without affecting the other resonances10. Therefore, pu-
shing/pulling the piston allows to directly modify the
inharmonicity of the instrument. In the following, since
the amplitudes of the first two peaks are at least twice
as large as those of the upper peaks, we focus on the
inharmonicity of the two lowest resonance frequencies f1
and f2 defined by ∆f/f = (f2 − f1)/f1. This quantity
will be given as a percentage.

Figure 4 presents the dimensionless input im-
pedance of the alto saxophone for the two extreme
positions of the piston. When the piston is completely
pushed (Lp = 0), there is no modification of the
air column added and the resonance frequencies are
nearly harmonic ∆f/f = 103%. When the piston
is completely pulled (Lp = 7cm), the volume added
to the air column induces an inharmonicity so that
∆f/f = 110%. The input impedance has been measu-
red for different intermediate positions of the piston
in order to evaluate the inharmonicity as a function of Lp.

III. Data processing

Measurement and analysis of the acoustic pres-
sure inside the mouthpiece of the instrument allows
classifying the different oscillation regimes produced.
This classification relies on the identification of the
instantaneous frequencies and amplitudes in the recorded
signals, as explained above.

A. Instantaneous frequencies and amplitudes of
the mouthpiece pressure

A spectrogram is first calculated according to the
mouthpiece pressure signal. From this, the evolution of
instantaneous frequencies and amplitudes are estimated
depending on the experimental time-varying parameters
(γ, Lp or ζ). Practically, the Matlab function findpeaks is
used. An additional constraint is imposed on the ampli-
tude of peaks to identified. Thus, only one instantaneous
frequency by partial is detected.

Figure 5 displays an example. Dotted lines represent
the estimated instantaneous frequencies. The main
components of the signal are correctly localized on the
spectrogram.

B. Classification of the oscillation regimes

An algorithm has been developed to classify the
different oscillation regimes according to the instanta-
neous and amplitude frequencies on each frame of the
spectrogram. Three types of oscillation regimes are iden-
tified : first of all a static regime (no sound), then a
quasi-periodic regime (composed of two incommensurate
frequencies) and finally a periodic regime (obviously dif-
ferent playing frequencies are possible). In practice, the
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developed based on the instantaneous frequencies.

instrument does not produce the fourth register. That
is why the identification is limited in frequency up to
1000Hz (frequency lower to the one of the 4th harmonic).

The main steps of the algorithm are constructed
following this hierarchical order :

• If no instantaneous frequency is detected or if
no instantaneous amplitude crosses a user-defined
threshold : the regime is classified as static.

• If more than one instantaneous frequency is de-
tected, ratios between each pair of consecutive
frequencies are calculated. If at least one of these
ratios belongs to the interval [0.7, 1.3], the oscilla-
tion regime is classified as quasi-periodic. We can
note that the method is configured to calculate
a only one instantaneous frequency by harmonic
component.

• Otherwise the smallest instantaneous frequency is
compared to the frequencies of the expected notes
for the fingering considered (mostly the different
harmonics of low G). If there is match within 5%,
the oscillation regime is classified as periodic.

Figure 5 shows an example of this algorithm output.
In this example, a linear increasing ramp of the blowing
pressure is carried out, starting below the oscillation
threshold. Hence, a static regime is identified during
the first 15s of the signal. During the time interval t =
[20, 35](s), many non-harmonic frequency components
appear on the spectrogram, leading to a classification as
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Fig. 6 – (a) Periodic signal in the time domain and (b)
spectrum of the mouthpiece pressure (G’ fingering,

γ = 0.45, ζ = 0.55 and ∆f/f = 103%).

a quasi-periodic regime. The rest of the time, a periodic
regime is detected and identified as the second register
of the instrument (playing frequency ' 460 Hz), which
is correct since the lowest resonance frequency of the
saxophone is located around 230 Hz (see Figure 4).

However, due to the choice of time step in the
spectrogram, errors may occur during transitions
between regimes. Indeed, as seen in Figure 5 around
t = 35s, register 1 is detected on a few consecutive
frames. Inspection by eye of the spectrogram reveals
that this is a limitation of the algorithm. However this
does not hinder the global reading of the output of the
algorithm, i.e., the various regimes produced by the
instrument.

IV. Experimental results

A. Nature of the oscillating regimes

In order to illustrate the various types of oscillation
regimes studied below, two examples of periodic and
quasi-periodic signals recorded inside the mouthpiece of
the saxophone are presented here. Both of these signals
correspond to notes played by the artificial mouth with
a constant blowing pressure.

Figure 6(a) displays a periodic pressure signal. Ins-
pecting the waveform reveals the classical Helmholtz
motion for saxophones18, while the spectrum confirms
the periodicity of the regime with a playing frequency
f1 = 231 Hz (see Figure 6(b)).

Figure 7(a) displays a quasi-periodic regime. The
time interval of the figure is large which highlights a
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Fig. 7 – (a) Quasi-periodic signal in the time domain
and (b) spectrum of the mouthpiece pressure (G’
fingering, γ = 0.41, ζ = 0.59 and ∆f/f = 110%).

low frequency modulation (around fM = 6.8 Hz) of
the signal. The corresponding spectrum is shown in
Figure 7(b). The envelope modulation in the time
domain corresponds to the many spectral components
whose frequencies are linear combinations of two
inharmonically related frequencies f1 and f2. Indeed the
frequency f of each peak in Figure 7(b) can be written
as f = nf1 + mf2, where m,n ∈ Z. Two consecutive
peaks are always separated by the same frequency
fM = 2f1 − f2. It is worth noting that f1 is close to the
lowest resonance frequency of the saxophone for the G’
fingering (see Figure 4). The second frequency f2 is not
directly linked to the second resonance frequency of the
saxophone, and is such that the ratio f2/f1 is not an
integer.

B. Maps of the oscillation regimes in the control
parameters space

In this section, maps of oscillating regimes (in
the control parameter plane (ζ, γ)) are obtained for
different inharmonicity values of the instrument. As it
has been previously shown12, setting up maps according
to various control parameters has the advantage of
easing the reading of experimental data. In this study,
the measurement of the nonlinear characteristics
allows to estimate dimensionless control parameters.
This facilitates a better understanding of the range of
the control parameters imposed during experimentations.

With the available experimental device, both ζ and
Lp have to be varied manually (see section ). On the other

γ

Quasi-périodic

Register 1

Register 2

0.50.450.40.350.30.25

Static regime Upward pressure ramp
Downward pressure ramp

Fig. 8 – (Color online) Example of identification of the
oscillating regimes for a given setting of the

experimental device (G’ fingering, ∆f/f = 110%,
ζ = 0.31). Linearly increasing (continuous line) and

decreasing (dashed line) blowing pressure.

hand, the blowing pressure and its variation through time
are precisely controlled through a PID loop13. Therefore,
to save time and keep a reasonable number of recordings,
experiments are carried out with linearly varying blowing
pressure : increasing and decreasing ramps, 60s each.
These ramps always begin below the oscillation threshold
(γ ' 0.25) and last until the oscillation regime is not
willing to change again (γ ' 0.5). Each time the setting
of the artificial mouth is modified, parameters ζ and PM

are estimated through the measurement of the NLC (see
section ).

Since measurements are carried out with pressure
ramps, thresholds at which the various regimes emerge
are different when the ramp is increasing or decreasing.
This hysteresis is clearly visible in Figure 8 where an
example is displayed, for a given setting of the artificial
mouth (∆f/f = 110% and ζ = 0.31). However, since the
speed of variation of the blowing pressure is low enough
(±25Pa/s), the same evolution of oscillation regimes is
produced. Since the precise estimation of the bifurcation
thresholds is not of interest in this study and for sake of
readability, only the analysis corresponding to increasing
ramps will be shown below.

Figure 9 displays different maps in the (ζ, γ) space
obtained for various inharmonicities. A periodic regime
based on the nth register of the instrument is noted Rn,
while QP stands for a quasi-periodic regime. Each oscilla-
tion regime is tagged with its own color. Each horizontal
line corresponds to the output of the identification algo-
rithm (see Part. ). The static (non-oscillating) regime is
not plotted for readability. It is worth noting that results
lie on a restricted area of the map, since outside this
area, no regime change has been observed.

These maps highlight the influence of inharmonicity
with respect to the control parameters (ζ and γ). Recall
that, the blowing parameter γ is directly linked with the
breath pressure. The embouchure parameter ζ is related
to the maximum flow through the reed channel. It mainly
depends on the geometry of the mouthpiece, the reed
mechanical properties, as well as the player’s lip force
and position on the reed that control the opening. A
“tight embouchure” can be viewed as a low value of ζ and
a “relaxed embouchure” can be viewed as a high value
of ζ.
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The main conclusions of the analysis of these pic-
tures are gathered below :

• By adjusting the control parameters, periodic os-
cillation regimes corresponding to the three lowest
registers of the instrument are playable, except for
an inharmonicity of 105% for which only R1 and
R2 are played ;

• Inharmonicity appears to be a key parameter for
the production of quasi-periodic regimes. Indeed,
above a threshold of inharmonicity (estimated
around ∆f/f = 106%), playing quasi-periodic
regimes becomes possible ;

• The larger the inharmonicity, the wider the area
of quasi-periodicity in the (ζ, γ) plane ;

• In the control parameters space, quasi-periodic re-
gimes occur at the boundary between the different
periodic registers ;

• The emergence of R3 or QP when inharmonicity
increases comes at the expense of the playability of
R1. Indeed, playability of R2 is nearly not altered
by the increase of inharmonicity. This is not sur-
prising since pushing/pulling the piston has only
an influence on the first resonance frequency ;

• From a quasi-periodic regime, it is possible to get
the third (periodic) register by simply modifying
the blowing pressure ;

• A jump from the first register to the second re-
quires a greater lip pressure, which corresponds to
measurement on real players17.

C. Other ways of triggering quasi-periodicity

Maps presented so far demonstrate that the emer-
gence of quasi-periodic regimes depends on the level of
inharmonicity, but also on the values of the control pa-
rameters (ζ, γ). It is then interesting to investigate how
quasi-periodicity emerges, for instance in the (γ,∆f/f)
plane, for a given value of ζ. This is done in Figure 10
with ζ = 0.37. This map can be seen as an horizontal
slice (at height ζ = 0.37) of a continuum of maps similar
to those of Figure 9. The only parameter varying through
time is still the blowing pressure γ. It is worth noting
that for this experiment, quasi-periodicity occurs for an
inharmonicity above ∆f/f = 106% (see Figure 10), as
expected when considering Figure 9. Again, when playing
crescendo through an increase of the blowing pressure,
crossing through a quasi-periodic regime is required to
play the third periodic register.

It is also interesting to investigate how quasi-
periodicity is triggered when inharmonicity is being
varied along time. The experimental device does
not allow a computer control of inharmonicicy (see
Section ). Thus, the piston is pushed/pulled by hand,
and this is done as gently and regularly as possible.
Figure 11 displays the spectrogram of the pressure
signal when the variation of inharmonicity triggers
the bifurcation of the periodic regime towards a
quasi-periodic regime (γ = 0.35 and ζ = 0.33 in that
experiment). The quasi-periodicity threshold (i.e., the
bifurcation) is estimated at ∆f/f = 107%. Before
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the bifurcation, the inharmonicity increase (through
the decrease of the lowest resonance frequency, see
Figure 4) causes a decrease in the playing frequency
of the first periodic regime R1. This corresponds
to mode locking with the first mode19. Beyond the
bifurcation, the inharmonicity increase causes a rise of
the modulation frequency fM , which can be seen in
the frequency domain as the increase of the gap bet-
ween the spectral components of frequencies ±nf1±mf2.

In a similar way, quasi-periodicity can also be trig-
gered when the embouchure parameter ζ varies. For this
purpose, the water-filled syringe which allows to modify
this parameter is pushed/pulled as gently and regularly
as possible. Two measurements of the NLC are carried
out, at the beginning and at the end of the variation of
the syringe position. This allows defining the range of ζ
to be explored.

As shown in Figure 12, decreasing ζ allows to
undergo a first bifurcation from the first periodic
register R1 to a quasi-periodic regime QP, and then a
second bifurcation from the quasi-periodic regime to
the second periodic register R2. The inverse sequence
of bifurcations is observed when ζ decreases. It is also
obvious from Figure 12 that the modification of the
embouchure parameter ζ allows increasing or decreasing
the modulation frequency fM .

D. Practical musical illustrations

The previous results have been obtained for the
G’ fingering, which is imposed by the additional piston
(the position of which on the neck of the saxophone
is calculated according to the input impedance of
this fingering). However, in order to enlarge the scope
of the study, other fingerings are considered in this
section. The piston is not used anymore and the
inharmonicity is fixed by the instrument and estima-
ted according to the measurement of its input impedance.

A first example is based on the low C fingering
(noted C), where nearly all lateral holes are closed. In
this case, the inharmonicity of the instrument is ∆f/f =
103% (deduced from the input impedance measurement,
the modulus of which is displayed in Figure 13).

For this fingering, Figure 14 displays three pres-
sure signals measured inside the mouthpiece for different
values of the embouchure parameter ζ (the blowing pres-
sure is fixed). Figures 14(a) and 14(b) show periodic
signals corresponding to the first and second register
of the instrument respectively. Figure 14(c) displays a
quasi-periodic signal obtained for another value of the
embouchure parameter (ζ = 0.76).

These measurements highlight the influence of the
peaks amplitude on the oscillation regimes selection.
The second register is obtained for all ζ < 0.74 rather
than ζ < 0.33 for the G’ fingering (when inharmonicity
is at the lowest : see Fig. 9(a), and where the amplitude
of the second peak is lower than the amplitude of the
first : see Fig. 4). Also, quasi-periodic regimes can be
produced even for low inharmonicity (∆f/f = 103%).
Compared to the quasi-periodicity threshold for the G’
fingering (∆f/f = 106%), the amplitude rise of the
second resonance mode (see Fig. 13) appears to favor
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Fig. 13 – Modulus of the dimensionless input impedance
of an alto saxophone (low C fingering, ∆f/f = 103%).
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Fig. 14 – Mouthpiece pressure signals for different
values of the embouchure parameter ζ (low C fingering,

γ = 0.42).

8



the emergence of quasi-periodicity.

A second example is based on the use of a fork fin-
gering. This consists in playing a low C with one key hole
open (right hand forefinger). This particular fingering is
often used to play multiphonics. Figure 15 displays the
corresponding modulus of the input impedance. It ap-
pears that an intermediate, low-amplitude peak, emerges
between the main two lowest peaks. This is commonly
observed for fork fingerings19. Inharmonicity is estima-
ted according to the frequency of the two main peaks
and reaches ∆f/f = 115%.

The map of the oscillation regimes with respect to
the control parameters (ζ, γ) is presented in Figure 16.
It is worth noting that the range of the parameter ζ is as
wide as possible experimentally. This map highlights that
playing quasi-periodic sounds is possible on a wide range
of the ζ parameter. For this fingering, the inharmonicity
is high enough to ease the emergence of quasi-periodic
regimes. However the location of these regimes regarding
the blowing pressure γ varies significantly with the value
of ζ.

On the one hand, for ζ > 0.7, the map shows that
quasi-periodic oscillations are often produced between
periodic registers 1 and 2 when blowing harder. This is
similar to what has been seen above. On the other hand,
for ζ < 0.7, describing the map is more complicated.
This shows that the fork fingering makes it very difficult
to produce oscillation regimes stable on a wide range of
control parameters. This is all the more obvious when
compared to a regular fingering, as seen in Figure 9(a).

This is likely why beginners experience difficulties
in selecting a particular regime when playing unconven-
tional fingerings.

V. Discussion and conclusion

Results presented above confirm the observation of
the article10 : inharmonicity is a necessary condition in
the production of quasi-periodic regimes with saxophones.
However it is not a sufficient condition since the two
control parameters which were tested, proved to have a
significant influence on the triggering of quasi-periodicity.
Complementing what has been stated in article10, the
control parameters also influence the beating frequency
of quasi-periodic oscillations. Indeed, as shown in the
figures 11 and 12, the change of control parameters can
strongly modify the modulation frequency fM (even if
the inharmonicity is constant).

The trends highlighted experimentally in this article
are in agreement with the numerical results obtained in
a previous work11. This numerical study was based on
the use of a minimal model of wind instruments, so it is
possible to deduce that features neglected in this model
are not determining in the production of quasi-periodic
regimes (inertia and damping of the reed, resonance
modes higher than the third one).

Compared to articles10;11, experiments presented
in this article highlight other trends in the oscillation
regimes production. When inharmonicity is high enough,
the production of higher register (unplayable otherwise)
is favoured. Also by testing several fingerings, the am-
plitude of resonance modes appears to be a determining
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Fig. 15 – Modulus of the dimensionless input impedance
of an alto saxophone (fork fingering, ∆f/f = 115%).
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Fig. 16 – (Color online) Map of oscillating regimes in
the (γ, ζ) plane for a fork fingering. A periodic regime
based on the nth register of the instrument is noted Rn,

while QP stands for a quasi-periodic regime.

factor in playability of registers.
All trends presented in this article are qualitative.

This was intended to globally describe how the instru-
ment can produce different oscillation regimes. Many
experimental parameters can alter the bifurcation thre-
sholds of the various registers (speed variation of the
supply pressure, reed force, composition of artificial reeds,
use of vocal-tract support, etc.). Therefore, an interesting
work would consist in extending this experimental study
in order to obtain more quantitative results. This would
allow to study the influence of the control parameters
on the bifurcation thresholds of reed instruments.
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