
HAL Id: hal-01229790
https://hal.science/hal-01229790

Submitted on 24 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust constrained shortest path problems under
budgeted uncertainty

Artur Alves Pessoa, Luigi Di Puglia Pugliese, Francesca Guerriero, Michael
Poss

To cite this version:
Artur Alves Pessoa, Luigi Di Puglia Pugliese, Francesca Guerriero, Michael Poss. Robust con-
strained shortest path problems under budgeted uncertainty. Networks, 2015, 66 (2), pp.98-111.
�10.1002/net.21615�. �hal-01229790�

https://hal.science/hal-01229790
https://hal.archives-ouvertes.fr

Robust constrained shortest path problems under budgeted

uncertainty

Artur Alves Pessoa∗1, Luigi Di Puglia Pugliese†2, Francesca Guerriero‡2 and Michael
Poss§3

1Production Engineering Department, Fluminense Federal University, Rua Passo da
Pátria 156, 24210-240 Niteróı, RJ, Brazil

2Department of Mechanical, Energy and Management Engineering, University of
Calabria, Rende, Italy

3UMR CNRS 7253 Heudiasyc, Université de Technologie de Compiègne, Centre de
Recherches de Royallieu, 60200 Compiègne, France

Abstract

We study the robust constrained shortest path problem under resource uncertainty. After
proving that the problem is NP-hard in the strong sense for arbitrary uncertainty sets, we focus
on budgeted uncertainty sets introduced by Bertsimas and Sim (2003) and their extension to
variable uncertainty by Poss (2013). We apply classical techniques to show that the problem
with capacity constraint can be solved in pseudo-polynomial time. However, we prove that the
problem with time windows is NP-hard in the strong sense when Γ is not fixed, using a reduction
from the independent set problem. We introduce then new robust labels that yield dynamic
programming algorithms for the problems with time windows and capacity constraints. The
running times of these algorithms are pseudo-polynomial when Γ is fixed, exponential otherwise.
We present numerical results for the problem with time windows which show the effectiveness of
the label-setting algorithm based on the new robust labels. Our numerical results also highlight
the reduction in price of robustness obtained when using variable budgeted uncertainty instead
of classical budgeted uncertainty.
Keywords: Constrained shortest path, Robust optimization, Budgeted uncertainty, Dynamic
programming, NP-hard.

1 Introduction

Let G = (N,A) be a directed graph with two special nodes o and d, κ : A→ R+ be a cost function
and r : A → Z+ be a weight function that represents the resource consumption along each arc of
G. The resource constrained shortest path problem looks for the shortest path (according to cost κ)
from o to d that satisfies the resource constraint(s), which can be, for instance, capacity constraints
or time windows. Namely, a capacity constraint considers an upper bound W ∈ Z+ on the resource
available on a path, and imposes that any feasible path p satisfies

w(p) ≤W, (1)

where w(p) =
∑
a∈p ra. The shortest path problem with capacity constraint is denoted by CSP .

Differently from the capacity constraint, time windows must be satisfied at each node pertaining to

∗artur@producao.uff.br
†luigi.dipugliapugliese@unical.it
‡francesca.guerriero@unical.it
§michael.poss@hds.utc.fr, Corresponding author

1

feasible paths and they are defined by two vectors b and b in Z|N |+ such that bi ≤ bi for each i ∈ N .
Consider a path p = (i0, i1, . . . , il) containing l = |p| arcs. For each j ∈ {1, . . . , l}, we define the
arrival time at node ij as tj(p) = max(bij , tj−1(p) + rij−1ij), and the time window constraints are
written as

tj(p) ≤ bij , j = 1, . . . , l. (2)

The shortest path problem with time windows is denoted by TWSP . One can define similarly prob-
lems with multiple capacity constraints and/or time window constraints. To keep simple notations,
we disregard these generalizations in the following and consider a unique resource constraint. One
can readily extend the algorithms presented in this paper to problems that contain multiple resource
constraints. The literature on constrained shortest path problems is very broad. Providing an ex-
haustive account of the papers published on the topic would be beyond the scope of this work, and
we rather redirect the interested reader to the surveys [17, 11] and the references therein.

Constrained shortest paths problem are NP-hard [14], however, in the weak sense since pseudo-
polynomial algorithms exist. Indeed, early papers propose dynamic programming algorithms for
these problems (e.g. [19]), based on states defined by the current node, the resource consumption, and
the cost consumption. An important dynamic programming algorithm that is often regarded as one of
the most efficient (e.g. [18]) is the label-setting algorithm from [10]. Denoting B = maxi∈N (bi−bi+1)
and using appropriate data structure, [10] show that the worst-case running time of the label-setting
algorithm for solving TWSP is O(|A|B). Similarly, the worst-case running time of the algorithm
applied to CSP is O(|A|W). When costs and/or resource consumptions are allowed to take negative
values, the optimal solutions may contain cycles. Forbidding such cycles leads to the problem called
Elementary Resource Constrained Shortest Path Problem (ERCSP), NP-hard in the strong sense
[12]. In this work, we focus on problems with positive costs and resource consumptions and avoid
the burden of forbidding cycles. Nevertheless, the algorithms proposes herein could be adapted to
solve the robust versions of the ERCSP .

In this paper, we consider uncertain versions of the above problems and consider that r is not
known with precision. Instead, we suppose that the weights are uncertain parameters that can take

any value in a given uncertainty set U ⊂ Z|A|+ , which we assume to be finite. Given a fixed r ∈ U , we
redefine the values of w(p) and tj(p) as w(p, r) and tj(p, r), respectively, to mark the dependency on
uncertain parameter r. In the uncertain context, we impose that constraints (1) and (2) be satisfied
for all r ∈ U , that is

w(p, r) ≤W, r ∈ U , (3)

and
tj(p, r) ≤ bij , j = 1, . . . , l, r ∈ U . (4)

We denote the associated optimization problems by U-CSP and U-TWSP , respectively.

Remark 1. The recent literature on robust optimization [5] very often considers convex uncertainty
sets, such as polytopes, which may seem different from our assumption that U is finite. Nevertheless,
one readily sees that, because w(p, r) and t(p, r) are convex functions of r, it is equivalent to consider
U or its convex hull conv(U). Namely, constraints (3) and (4) are satisfied for all r ∈ U if and only
if they are satisfied for all r ∈ conv(U).

By enforcing resource constraints for all r ∈ U , our approach falls into the framework of robust
optimization, a celebrated approach to handle optimization problems in the presence of uncertainty
[5, 20]. In [6, 7], Bertsimas and Sim study budgeted uncertainty sets, denoted by UΓ herein, that
control with positive number Γ the number of uncertain parameters that can deviate simultaneously
from their means to their peak values. The nice properties enjoyed by set UΓ have led to a very large
use of budgeted uncertainty for discrete optimization problems under uncertainty. Two important
such properties are related to the computational complexity and probabilistic guarantee offered by
the robust model.

Complexity The robust problems very often belong to the same complexity class as their determin-
istic counterpart. This is true, for instance, for robust combinatorial optimization problems

2

under cost uncertainty. In fact, prior to this paper, no one had came up with a robust combina-
torial optimization problem under budgeted uncertainty that does not belong to the complexity
class of its deterministic counterpart.

Probabilistic guarantee If the uncertain parameters of an optimization problem are random vari-
ables, the constraints of the problem become probabilistic constraints. Under some conditions,
any solution to the associated robust optimization problem under uncertainty set UΓ satisfies
the probabilistic constraints with a guarantee that depends on Γ (see also [7]).

Recent works have seek to improve these properties. For instance, [4] and [15] study how to gen-
eralize the complexity results of [6] to combinatorial optimization problems with uncertainty in the
constraints and integer variables, respectively, while [21, 22] discuss how the probabilistic guaran-
tee can be improved by allowing Γ to depend on the decision variables, yielding variable budgeted
uncertainty, denoted Uγ in what follows.

While the robust shortest path problem has been investigated in several works (see [3, 6, 9],
among others), we are not aware of previous works on robust approaches for the constrained shortest
path problem. The closely related vehicle routing problem under uncertainty has, on the contrary,
been the subject of several studies. The problem with a robust capacity constraint has been first
investigated by Sungur et al. in [23] who study conditions under which robust versions of the
capacitated vehicle routing problem (CVRP) can be solved through methods similar to the ones
used for the deterministic version of the CVRP. More recently, Gounaris et al. present in [16]
study more refined robust approaches for the CVRP, including the use of affine decision rules and
the extension of rounded capacity inequalities to the robust case. The interest in the robust VRP
with time windows is more recent. In [1], the authors present an extended formulation that can
be dualized using classical tools of robust optimization [7]. The authors pursue their work in [2]
where they present more subtle formulations, based on implicit formulations and adjustable robust
optimization, that are tackled through decomposition algorithms.

Contributions and structure of the paper To our knowledge, this paper is the first to study the
computational complexity for problems U-CSP and U-TWSP . In particular, the main contribution
of the paper is two-fold:

1. We prove that UΓ-TWSP is NP-hard in strong sense, contrasting with the pseudo-polynomial
algorithms that can be devised for UΓ-CSP .

2. We propose a label-setting algorithm for UΓ-TWSP that is exponential in Γ. Numerical results
show the effectiveness of the algorithm.

We show in Section 4 that the problems are NP-hard in the strong sense for uncertainty sets
of unbounded cardinalities. In view of this difficulty, we turn then to budgeted uncertainty sets,
known to enjoy easier robust counterparts than arbitrary uncertainty sets. We recall the definition
of budgeted uncertainty and its recent extension to variable uncertainty in Section 2.2, yielding
problems UΓ-CSP and UΓ-TWSP (budgeted uncertainty), and Uγ-CSP and Uγ-TWSP (variable
budgeted uncertainty).

Section 3 is devoted to UΓ-CSP and Uγ-CSP . In particular, we define an algorithm based on
the solution of |A| + 1 deterministic CSP by employing similar techniques to those developed in
[6, 22, 4, 15]. We show then in Section 4 that UΓ-TWSP is NP-hard in the strong sense even
when G is a directed and acyclic graph, the mean weight vector r = 0, and b = 0, which highlights a
fundamental difference between UΓ-CSP and UΓ-TWSP . Our proof is based on a reduction from the
independent set problem. This result exhibits for the first time a combinatorial optimization problem
that admits a pseudo-polynomial algorithm whose robust version (with budgeted uncertainty) isNP-
hard in the strong sense.

We present in Section 5 a label-setting algorithm based on that proposed in [10]. We pay a
particular attention to the generalization of dominance rules. On one hand, the resulting algorithm is
pseudo-polynomial when Γ is fixed. On the other hand, it has an exponential worst-case running-time
when Γ is part of the input data. The proposed label-setting algorithms are evaluated by considering

3

instances inspired by the scientific literature. We report in Section 6 a detailed accounting of the
numerical results. The goals of our numerical experiments for the UΓ-TWSP are two-fold. First,
they assess the effectiveness of the label-setting algorithm based on the defined robust labels for
UΓ-TWSP and Uγ-TWSP . Second, they show that a reduction in the price of robustness can be
obtained when using variable budgeted uncertainty instead of the classical budgeted uncertainty.
The paper ends with Section 7, where we give conclusions and final remarks.

2 Uncertainty set

2.1 NP-hardness for general uncertainty sets

When U is reduced to a singleton, U-CSP and U-TWSP reduce to the deterministic counterparts.
Otherwise, the problems can be seen as deterministic problems that contain multiples capacity or
time windows constraints, one for each value of r in U . When the cardinality of U is bounded by a
small constant, U-CSP and U-TWSP could therefore be solved in pseudo-polynomial time using,
for instance, the classical label-setting algorithm. However, the running-time of such algorithms is
exponential in the cardinality of U , making them impractical for solving problems with uncertainty
sets of large cardinalities. One can wonder whether different efficient approaches could exist to solve
these problems under arbitrary uncertainty sets. The next result answers by the negative, showing
that U-CSP and U-TWSP are NP-hard in the strong sense when the cardinality of U is unbounded.
The proof consists in reducing the robust knapsack problem (U-KP) to U-CSP . A similar proof can
be devised to reduce U-KP to U-TWSP .
ROBUST KNAPSACK PROBLEM (U-KP)

Input: Set {1, . . . ,m} of items, set V ⊂ Zm+ of weights w, profit vector c ∈ Rm+ , capacity D.

Task: Find a subset of items I ⊆ {1, . . . ,m} of maximum profit such that
∑
i∈I

wi ≤ D for all w ∈ V.

0 m1

(c∗, 0) (c∗, 0)

(c∗ − c1, w1) (c∗ − cm, wm)(c∗ − c2, w2)

(c∗, 0)

Figure 1: Reduction from the knapsack problem to U-CSP .

Theorem 1. U-CSP is NP-hard in the strong sense for an uncertainty set U of unbounded cardi-
nality.

Proof. Problem U-KP is NP-hard in the strong sense, see Theorem 4.5 from [24]. Given an in-
stance to U-KP , the corresponding instance of U-CSP is built as follows. First, we compute
c∗ = max1≤i≤m ci. Then, we consider the directed graph with m+ 1 nodes and 2m arcs described in

Figure 1. For each pair of nodes {i− 1, i}, let
−−−−−→
(i− 1, i) and (i− 1, i)

−−−−−→
denote the top and bottom arc,

respectively. The instance of the U-CSP looks for a path from 0 to m in the graph from Figure 1
with W = D, κ−−→

i−1i
= c∗ and r−−→

i−1i
= 0 for each i ∈ {1, . . . ,m}, κi−1i

−−→
= c∗ − ci and ri−1i

−−→
= wi for

each i ∈ {1, . . . ,m}. Accordingly, supposing that bottom arcs have smaller indexes than top arcs,
U = V × (0, . . . , 0). Then, for any positive integer K, we see that the optimal solution cost to U-KP
is equal to K if and only if the optimal solution cost to U-CSP is equal to mc∗ −K.

The above result suggests that problems U-CSP and U-TWSP can be quite hard to solve exactly
for arbitrary uncertainty sets. This is not very surprising as it is well known that many robust

4

versions of combinatorial optimization problems become NP-hard in the presence of uncertainty
[20]. In the following, we thus focus on special uncertainty sets, UΓ and Uγ , known to often lead to
robust optimization problems with computational complexities similar to the complexities of their
deterministic counterparts. These sets are defined formally in the next subsection.

2.2 Budgeted uncertainty and probabilistic guarantee

To avoid the difficulty often present in robust combinatorial optimization (such as Theorem 1),
Bertsimas and Sim introduced in [6] a particular type of uncertainty sets, called budgeted uncertainty,
whose conservatism can be adjusted through a budget parameter Γ ∈ R+.

Budgeted uncertainty set UΓ considers nominal value ra and peak value ra + r̂a for each a ∈ A.
Whenever Γ is integer, each vector r ∈ UΓ has up to Γ of its components equal to their peak values
while the other components are equal to their nominal values. If Γ is fractional, a vector in UΓ is
formed of up to bΓc peak values plus a component a′ equal to ra′ + (Γ − bΓc)r̂a′ , the rest of the
components being at their nominal values. The set is defined formally as follows: UΓ ≡r ∈ R|A|

∣∣∣∣∃S, Ŝ ⊆ A, a′ ∈ A\(S ∪ Ŝ), |Ŝ| ≤ Γ,
S ∩ Ŝ = ∅,
S ∪ Ŝ ∪ {a′} = A

: ra =

 ra a ∈ S

ra + r̂a a ∈ Ŝ
ra + (Γ− bΓc)r̂a a = a′

 .

(5)

Notice that although we define UΓ as a finite set, it is often described as a polytope in the literature
(see Remark 1). In what follows, we study the complexity of U-CSP and U-TWSP under budgeted
uncertainty, yielding problems UΓ-CSP and UΓ-TWSP . We include in our study the consideration
of variable budgeted uncertainty that improves over the probabilistic guarantee offered by UΓ.

Let r̃a = ra + ηar̂a be the random variable associated with parameter ra and suppose that
ηa, a ∈ A, are arbitrary random variables independently and symmetrically distributed in [−1, 1].
Bertsimas and Sim [7] construct different functions δ : R2 → R such that any vector x that satisfies
the robust constraint

∑
a∈A raxa ≤ h, for all r ∈ UΓ, also satisfies

P

(∑
a∈A

r̃axa > h

)
≤ δ(Γ, |A|). (6)

Hence, given a probability level ε ∈ (0, 1), choosing Γ such that δ(Γ, |A|) ≤ ε ensures that probabilistic
constraint P

(∑
a∈A raxa > h

)
≤ ε be satisfied. This is a very strong result since robust constraints

are significantly easier to handle than individual probabilistic constraints. We refer to Appendix A
for an example of function δ.

Remark 2. Bound (6) is not directly applicable to time windows inequalities (2) because the latter
are non-linear. Nevertheless, we can linearize these inequalities by replacing each occurrence of
max(X,Y) hidden in notation tj(p) by one inequality with X and one inequality with Y . Doing
so recursively yields a set of linear inequalities equivalent to non-linear inequalities (2). The same
transformation can be applied to the probabilistic constraints that involve random vector r̃, which
yields a set of linear probabilistic constraints, each of which approximated by a robust constraint
through bound (6).

Recently, [21] has noticed that the bound provided by (6) can be improved when x is binary by
considering a more general model of uncertainty. We sketch below how this can be done and redirect
the interested reader to [21] for details. The author of [21] shows that (6) can be changed to

P

(∑
a∈A

r̃axa > h

)
≤ δ(Γ, |x|), (7)

where |x| =
∑
a∈A xa is the cardinality of x. Inequality (7) tells us that the value of Γ can be changed

according to the cardinality of x while ensuring the same level of probability protection. This obser-
vation led [21] to introduce a new model of uncertainty, called variable budgeted uncertainty, where
the fixed value of Γ is replaced by the non-decreasing function γ : {0, 1, . . . , |A|} → R+. Coming

5

back to our shortest path problem, variable budgeted uncertainty adjusts the level of conservatism
according to the cardinality of the path considered. For a path p ⊆ A from o to d, the point-to-set
mapping Uγ : Z ⇒ R|A| is defined as Uγ(|p|) ≡r ∈ R|A|

∣∣∣∣∃S, Ŝ ⊆ A, a′ ∈ A\(S ∪ Ŝ), |Ŝ| ≤ γ(|p|), S ∩ Ŝ = ∅,
S ∪ Ŝ ∪ {a′} = A

: ra =

 ra a ∈ S
ra + r̂a a ∈ Ŝ
ra + (γ(|p|)− bγ(|p|)c)r̂a a = a′

 .

(8)

When γ(k) = Γ for each k ∈ {0, 1, . . . , |A|}, Uγ(x) reduces to UΓ. However, it has been shown in
[21, 22] that Uγ is in general less conservative than UΓ. A measure of conservatism of a robust
model is its price of robustness, that is, the increase in solution cost when imposing a probabilistic
protection with a specified guarantee ε > 0. The reduction in the price of robustness offered by model
Uγ is particularly significant when the cardinality of the optimal solution is small in comparison to
the total number of variables of the problem. This is the case for the shortest path problem since
an optimal solution typically contains O(N) variables while the number of arcs can be as large as
O(N2).

Remark 3. In view of the above discussion, one way to choose Γ is to follow probabilistic bound
δ(Γ, |A|) used in constraint (6). Unfortunately, this is likely to yield values of Γ that are greater
than the cardinality of the optimal solution. We have argued that function γ avoids this problem.
However, the resulting optimization problem may be more complex than the one using a constant Γ.
An alternative is to refine the choice of Γ by computing an upper bound UB on the cardinality of the
longest path from o to d that satisfies the resource constraint. Then, Γ would be defined in accordance
with δ(Γ, UB). Notice that computing an exact upper bound may be as difficult as solving the robust
constrained shortest path, so that we should restrict ourselves to bounds UB on the longest path that
can be computed easily.

3 Complexity of UΓ-CSP and Uγ-CSP
We consider in this section Uγ-CSP and show how it can be solved in pseudo-polynomial time. The
results presented in what follows are obtained by applying tools similar to those described in [22,
Section 3]. However, their importance should not be undervalued since they show that Uγ-CSP is
pseudo-polynomial, and therefore, belongs to the same complexity class as its deterministic counter-
part. In contrast, we show in the next section that UΓ-TWSP is NP-hard in the strong sense.

One of the major result of [6] shows that combinatorial optimization problems with cost uncer-
tainty and uncertainty polytope UΓ can be addressed by solving n+1 deterministic problems (where
n is the number of binary variables). The authors of [4, 15] have recently shown how the aforemen-
tioned result can be extended to a robust constraint under uncertainty polytope UΓ. Combining ideas
from [22] and [4, 15], we see easily that combinatorial problems with one robust constraint under
uncertainty point-to-set mapping Uγ (assuming γ affine) can be solved by solving n+1 deterministic
problems.

Theorem 2. Let Y ⊆ {0, 1}|I| be the feasibility set of a combinatorial optimization problem and
γ be the affine function defined by reals γ0 and γ1 through γ(y) = γ0 + γ1

∑
i∈I yi. Moreover, let

κ ∈ R|I| be a cost vector, b ∈ R, and r be an uncertain vector taking values in Uγ(y). Without loss of
generality, suppose that indices are ordered such that r̂1 ≥ r̂2 ≥ . . . ≥ r̂|I| and let r̂|I|+1 be 0. Then,
the optimal solution to {

min
∑
i∈I

κiyi :
∑
i∈I

riyi ≤ b ∀r ∈ Uγ(y), y ∈ Y

}

is equal to the optimal solution of minl∈{1,...,|I|+1} Z
l where

Zl =

min
∑
i∈I

κiyi :
∑
i∈I

(ri + γ1r̂l)yi +

l∑
j=1

(r̂j − r̂l)yj+ ≤ b− γ0r̂l, y ∈ Y

 ,

for l = 1, . . . , |I|+ 1.

6

Proof. The proof follows closely the line of the proof of [4, Lemma 2], replacing Γ by γ(y).

There are two differences between Theorem 2 and [4, Lemma 2]. First, and most importantly,
the fact that γ is an affine function rather than a constant leads the presence of terms γ1r̂lyi in the
constraints of Zl. Second, we cannot reduce the number of problems to be solved as done in [4],
because γ is in general not integer-valued.

We formulate next Uγ-CSP as an integer linear program with one linear robust constraint. Let
x ∈ {0, 1}|A| be a vector of optimization variables stating which arcs belong to the solution, and
let X ⊂ {0, 1}|A| contain all vectors x that correspond to paths from o to d. With these variables,
Uγ-CSP can be cast as

min
∑
a∈A

κaxa

s.t.
∑
a∈A

raxa ≤W, r ∈ Uγ(x) (9)

x ∈ X .

Applying Theorem 2 to problem (9) yields the results below.

Corollary 1. If γ is affine, Uγ-CSP can be handled by solving |A|+ 1 problems CSP with modified
weights.

The above result implies that Uγ-CSP can be solved in pseudo-polynomial time. It is interesting
to notice that Corollary 1 can be applied both to UΓ-CSP and Uγ-CSP and that the resulting
computational complexity is the same. This is a surprisingly positive result given that model Uγ
relies upon more complex mathematical tools and often leads to difficulties absent with the use of
UΓ (see [21] for details). When the appropriated data structures are used, CSP can be solved by the
label-setting algorithm in O(|A|W) if there are no zero weights [10], yielding the following corollary.

Corollary 2. If γ is affine, Uγ-CSP can be solved in O(|A|2W).

Notice that whenever γ is not affine, we can still solve Uγ-CSP in pseudo-polynomial time,
albeit at a higher computational cost. Let CSP≤k and UΓ-CSP≤k be defined as CSP and UΓ-CSP ,
respectively, with the additional restriction that feasible paths cannot contain more than k arcs,
for 0 ≤ k ≤ |N |, and Γ = γ(k). Clearly, the label-setting algorithm applied to CSP≤k with the
appropriate data structure has a running-time of O(|A|W |N |). Moreover, Theorem 2 can be applied

to UΓ-CSP≤k so that the problem can be solved in O(|A|2W |N |).

Theorem 3. Uγ-CSP can be solved in O(|A|2W |N |2) for any non-decreasing function γ.

Proof. Let opt(P) be the optimal solution cost of optimization problem P . The proof results from
equality

opt(Uγ-CSP) = min
k=1,...,|N |

opt(UΓ-CSP≤k), (10)

which has been proved in [22, (19)] for combinatorial optimization problems under cost uncertainty.

Unfortunately, the approach used in this section cannot be used to provide pseudo-polynomial
algorithms for Uγ-TWSP . The reason is that time windows restrictions are expressed through |N |
non-linear constraints, instead of a single linear constraint as it is the case for Uγ-CSP . The issue
has been discussed in [1] where the authors propose an extended linear programming formulation for
UΓ-TWSP using additional binary variables and a number of robust constraints that is quadratic in
|N |. Since the formulation from [1] contains many robust constraints, applying Theorem 2 to that

formulation would enable us to solve UΓ-TWSP by solving more than O
(
|A||N |2

)
problems TWSP ,

instead of the O(|A|) involved in Corollary 1. This approach would hardly be of any practical use.

7

4 Complexity of UΓ-TWSP and Uγ-TWSP

We show in this section that the decision version of a simplification of UΓ-TWSP is NP-complete
in the strong sense. Namely, we consider the robust path with deadlines, obtained from the decision
version of UΓ-TWSP by looking for a path with zero nominal travel time that satisfies the upper
time windows (hence we suppose r = 0 and b = 0); we also suppose that the graph is acyclic.

ROBUST PATH WITH DEADLINES (UΓ-PD)

Input: A directed and acyclic graph D = (N,A) with corresponding r̂a for each a ∈ A and bi for
each i ∈ N , and a positive integer Γ.

Question: There exists a path p = (i0, i1, . . . , il) in D starting at o ∈ N (i0 = o) and ending at
d ∈ N (il = d) such that

max

{∑
a∈S

r̂a

∣∣∣∣S ⊆ (i0, i1, . . . , ih), |S| ≤ Γ

}
≤ bih , for each h = 1, . . . , l?

Our proof is based on reducing the decision version of the independent set problem to UΓ-PD. It is
well-known that the former problem is NP-complete in the strong sense (e.g. [14]).

INDEPENDENT SET (IS)

Input: An undirected graph G = (V,E) and a positive integer K.

Question: There exists W ⊆ V such that |W | ≥ K and {i, j} *W for each {i, j} ∈ E ?

0 n

p1 p2n−1

p2 p2n

1 n+ 1 n+ 2 n+m

p2n+1 p2n+2 p2n+m

p3

p4

2

Figure 2: Reduction from the independent set problem to UΓ-PD.

Theorem 4. UΓ-PD is NP-complete in the strong sense.

Proof. First, we show that UΓ-PD belongs toNP. For that, the feasibility of a path p = (i0, i1, . . . , il)
must be checked in polynomial time. This is true because, for each h = 1, . . . , l, the time window
constraint on ih needs to be checked only for a single S containing min(h,Γ) arcs, with largest values
of r̂a. Next, we show that IS can be reduced to UΓ-PD.

Given an instance to IS with |V | = n nodes and |E| = m edges, we show next how to build an
instance for UΓ-PD. Graph D is described on Figure 2 where pi represents a directed path that
contains m+ 1 arcs for each i ∈ {1, . . . , 2n} and n arcs for each i ∈ {2n+ 1, . . . , 2n+m}. Moreover,
o = 0, d = n+m and Γ = n(m+ 1). In what follows we denote the k-th arc of pi by a(i, k) and the
elements of E by {e1, . . . , em}.

One sees immediately that any path p from o to d must contain all paths p2n+i for i ∈ {1, . . . ,m}.
Furthermore, for each i ∈ {1, . . . , n}, path p contains either p2i or p2i−1. Hence, there are 2n different
paths in D from o to d, which is as many as the number of different subsets of V . The correspondence
between subsets of V and paths in D works as follows. Let W ⊆ V be a subset of V and let pW

8

be the path in D associated to W . Then, for each i ∈ {1, . . . , n}, path pW contains p2i if i ∈ W
and path pW contains p2i−1 otherwise. We can describe concisely pW by introducing function W̃

defined as follows: W̃ (i) = 2i if i ∈ W and W̃ (i) = 2i− 1 otherwise, for each i ∈ {1, . . . , n}. Hence,
pW = p

W̃ (1)
∪ p

W̃ (2)
∪ . . . ∪ p

W̃ (n)
∪ p2n+1 ∪ . . . ∪ p2n+m.

We explain next how to choose parameters r̂ and b such that the deadline constraints imposed
to pW are equivalent to the constraints of IS imposed to W . Namely, we choose these parameters
such that constraint

max

{∑
a∈S

r̂a

∣∣∣∣S ⊆ pW̃ (1)
∪ p

W̃ (2)
∪ . . . ∪ p

W̃ (n)
, |S| = n(m+ 1)

}
≤ bn (11)

written for pW is equivalent to |W | ≥ K and constraints

max

{∑
a∈S

r̂a

∣∣∣∣S ⊆ pW̃ (1)
∪ . . . ∪ p

W̃ (n)
∪ p2n+1 ∪ . . . ∪ p2n+h, |S| = n(m+ 1)

}
≤ bn+h (12)

written for pW are equivalent to eh = {i, j} * W , for each h = 1, . . . ,m. Notice that in (11)
and (12), |S| = n(m + 1) has been used instead of |S| ≤ n(m + 1) because all components of r̂
are positive and the paths considered in (11) and (12) contain not less than n(m + 1) arcs. Our
construction below is made in two steps. First, we impose restrictions on r̂ and b which ensure that
the corresponding deadline constraints translate exactly into the constraints of IS. To this end we
introduce additional parameters µ, ν, and σh for each h ∈ {1, . . . ,m} to be specified later. Second,
we provide in Appendix B an example of vector (µ, ν, σ, r̂, b) that satisfies the restrictions and that
is composed of polynomial functions of n,m, and K.

Constraint (11) The number of arcs of subpath p
W̃ (1)

∪ p
W̃ (2)

∪ . . . ∪ p
W̃ (n)

is equal to n(m+ 1),

so that the unique choice of S in the maximization is the full subpath p
W̃ (1)

∪ p
W̃ (2)

∪ . . . ∪ p
W̃ (n)

.

Hence, (11) becomes
n∑
i=1

m+1∑
k=1

r̂
a(W̃ (i),k)

≤ bn. (13)

Let r̂ and bn be such that

m+1∑
k=1

r̂a(2i,k) = µ, i ∈ {1, . . . , n},

m+1∑
k=1

r̂a(2i−1,k) = µ+ 1, i ∈ {1, . . . , n},

bn = nµ+ n−K.

(14)

Plugging (14) into (13), we obtain that pW cannot contain more than n−K paths of the form p2i−1

for i ∈ {1, . . . , n}, which is equivalent to |V \W | ≤ n−K, or more simply, |W | ≥ K.

h-th constraint of (12) We propose next restrictions on r̂ and b such that the maximization in
the lhs of the h-th constraint in (12) becomes

n∑
i=1

m+1∑
k=h+1

r̂
a(W̃ (i),k)

+

2n+h∑
i=2n+1

n∑
k=1

r̂a(i,k). (15)

One readily checks that the following set of constraints yields the desired (15)

r̂a(i,k) < r̂a(j,k+1), i, j ∈ {1, . . . , 2n}, k ∈ {1, . . . ,m},
ν > r̂a(i,m), i ∈ {1, . . . , 2n},
ν = r̂a(i,k), i ∈ {2n+ 1, . . . , 2n+m}, k ∈ {1, . . . , n}.

(16)

9

Once the lhs of the h-th constraint of (12) has been turned to (15), we impose the following additional
restrictions to obtain the desired deadline constraint

m+1∑
k=h+1

r̂(2i,k) =

{
σh + 1, if eh is adjacent to vertex i,
σh, otherwise.

, i ∈ {1, . . . , n},

m+1∑
k=h+1

r̂(2i−1,k) = σh, i ∈ {1, . . . , n},

bn+k = 1 + nσh + hnν.

(17)

Plugging restrictions (16) and (17) into the h-th constraint of (12), we obtain that pW cannot contain
more than a single subpath p2i such that i is adjacent to edge eh. Hence, the number of vertices in
W adjacent to eh must not be greater than 1, which is equivalent to {i, j} *W for eh = {i, j}.

Since UΓ-PD is a special case of the decision problem associated to UΓ-TWSP , we obtain im-
mediately the following result, which contrasts with the pseudo-polynomial algorithms proposed for
UΓ-CSP in the previous section.

Corollary 3. UΓ-TWSP and Uγ-TWSP are NP-hard in the strong sense.

5 Label-setting algorithm

We show in this section how to extend the classical labels used in dynamic programming and label-
setting algorithms (e.g. [10]) to the case of uncertain weights. We focus on the definition of robust
labels and discuss dominance rules in case of budgeted uncertainty. Our description is presented for
time windows; one can readily modify the algorithms presented below to a capacity constraint instead
of time windows. Notice, however, that the computational complexity of the algorithm presented
below is exponential in Γ, which is in accordance with the NP-hardness of UΓ-TWSP .

In Section 5.1, we sketch the label-setting algorithm, recall how labels are defined in the deter-
ministic setting and how dominance applies. We refer the interested reader to [8], among others, for
a detailed description of the algorithm. In Section 5.2, we consider set UΓ and suppose that Γ is
integer. If it is not the case, we can always round up Γ to obtain a slightly more conservative model.
In the (unlikely) situation where the fractional part of Γ really matters, one can always extend the
algorithm described next in a way similar to the dynamic programming algorithms described in
[22]. In Section 5.3, we consider Uγ . In the following, we denote the cost of any path p shortly by
κ(p) =

∑
a∈p κa.

5.1 Deterministic labels

We outline next the basic principles of the label-setting algorithm for TWSP . For each path p
from node o to node i, the classical label-setting algorithm considers label (κ(p), t|p|(p)) that records
the cost of the path and its arrival time at node i. To avoid constructing all labels, the algorithm
selects and extends labels in a special order. Two sets of labels are considered: permanent labels
and non-permanent labels. At each iteration, the algorithm selects the smallest non-permanent label
according to the lexicographical order and mark the label as permanent. Then, for each direct
descendant of the node associated to the current label, we create a new non-permanent label and
check whether it satisfies the time-windows and is not dominated by a permanent label. If one of
the condition fails to hold, the label is immediately removed from the set of non-permanent labels.
The algorithm ends when the next selected label corresponds to d.

A crucial phase in the label-setting algorithm is the removal of dominated labels, which reduces
significantly the total number of labels searched in the course of the algorithm. Given two labels y
and y′ associated to paths p and p′ ending at the same node, we say that label y′ is dominated by
label y if the following condition holds: if path p′ belongs to an optimal solution of TWSP , then path
p belongs to an optimal solution of TWSP . Dominated labels can be discarded from the search that
occurs during the label-setting algorithm. The next result is well-known and is presented without
proof.

10

Lemma 1. Consider the TWSP and let y = (κ, t) and y′ = (κ′, t′) be two labels associated to paths
p and p′ ending at the same node. Assume the following conditions are verified:

1. κ ≤ κ′

2. t ≤ t′

3. and at least one inequality is strict.

Then, label y′ is dominated by label y.

5.2 Robust labels

Next, we consider robust time windows constraints (4) recalled below for uncertainty set UΓ

tj(p, r) ≤ bij , j = 1, . . . , l, r ∈ UΓ, (18)

where p = (i0, i1, . . . , il), and l = |p|. The naive approach to UΓ-TWSP would express the problem
as a shortest path problem with |UΓ| time-windows constraints, one for each r ∈ UΓ. Defining
s = |UΓ| and UΓ = {r1, . . . , rs}, the naive approach would associate to node i and each path p from
o to i a label with s resources, (

κ(p), t|p|(p, r
1), . . . , t|p|(p, r

s)
)
, (19)

and extend the label through arc (i, j) with the classical formula(
κ(p) + κij ,max(bi, t|p|(p, r

1) + r1
ij), . . . ,max(bi, t|p|(p, r

s) + rsij)
)
. (20)

Using labels (19) and appropriate data structures, one can solve UΓ-TWSP by the label-setting

algorithm in solution time O(s|A|Bs), where s =
∑Γ
k=1

(|A|
k

)
. We show below how to reduce the

solution time to O(Γ|A|BΓ+1) by using a more compact description of the labels. Notice that this is a
significant improvement since Γ is always much smaller than s. To be more precise, this improvement
leads to pseudo-polynomial algorithms when Γ is fixed, which happens in applications where we are
interested to be protected only against a small number of deviations, regardless to the size of the
instances. However, if we choose Γ according to probabilistic guarantees, then Γ ∈ O(|A|1/2) (see
[7, 21]). In the latter case, the resulting computing time of the label-setting algorithm would be

O(|A|3/2BO(|A|1/2)) which is not polynomial, although asymptotically smaller than O(s|A|Bs).

Remark 4. The author of [22] has shown how generic dynamic programming algorithms for com-
binatorial optimization problems can be extended to the robust versions of the problems when only
costs are uncertain and the uncertainty set is UΓ. His work shows that the number of states of the
robust dynamic programming algorithms needs only to be multiplied by Γ, and therefore, polynomial
algorithms stay polynomial in the robust case. This is in sharp contrast with the robust label-setting
algorithm presented herein, which multiplies the number of labels by BΓ+1. Unfortunately, the ap-
proach of [22] cannot be applied to the problems studied in this paper because herein the uncertainty
lies in the constraints while only costs are uncertain in [22].

Before explaining how the running-time can be decreased to O(Γ|A|BΓ+1), we present without
proof the well-known extension of Lemma 1 to multiple-resource label (19).

Lemma 2. Consider the UΓ-TWSP and let y = (κ, t1, . . . , ts) and y′ = (κ′, t′1, . . . , t′s) be two labels
associated to paths p and p′ ending at the same node. Assume the following conditions are verified:

1. κ ≤ κ′

2. tj ≤ t′j , for each j = 1, . . . , s

3. and at least one inequality is strict.

Then, label y′ is dominated by label y.

11

The key idea to reduce the running-time of the robust label-setting algorithm is based on rewriting
time windows (18) as

max
r∈UΓ

tj(p, r) ≤ bij , j = 1, . . . , l. (21)

Our objective is to define robust labels that contain only the necessary information to test whether the
current path is feasible when considering its maximum travel time over UΓ. Rather than considering
all possible travel times r ∈ UΓ that could be used along path p = (i0, . . . , il) from o = i0 to i = il,
we can define the label attached to node i and path p as(

κ(p), τ0
l (p), . . . , τΓ

l (p)
)
, (22)

where, for each j = 1, . . . , l, τgj (p) is defined as the maximum arrival at node ij when considering up
to g ∈ {0, . . . ,Γ} deviations when g ≤ |p| and is equal 0 otherwise, that is,

τgj (p) =

{
max
r∈Ug

tj(p, r), for each g ∈ {0, . . . ,min(|p|,Γ)},
0, for each g ∈ {|p|+ 1, . . . ,Γ}.

(23)

Then, we extend the label through arc (i, k), generating a new label for node k = il+1, with formula
κ = κ(p) + κij ,
τ0
l+1 = max

(
bj , τ

0
l (p) + rij),

τgl+1 = max
(
bj , τ

g−1
l (p) + rij + r̂ij , τ

g
l (p) + rij), for each g ∈ {1, . . . , ḡ},

τ ḡ+1
l+1 = max

(
bj , τ

ḡ−1
l (p) + rij + r̂ij),

(24)

where ḡ = min
(
|p|,Γ − 1) and the extended label is feasible if τ ḡ+1 is less than or equal to bj . It

is easy to see by induction that extending label (0, 0 . . . , 0), that corresponds to the empty path,
iteratively through formula (24) leads exactly to definition (23). One readily sees that the solution
time of the label-setting algorithm based on label (22) is reduced to O(Γ|A|BΓ+1) since these labels
contain Γ + 1 resources and their extension through new arcs can be done in O(Γ) with the help of
formula (24). Finally, the next result states the new robust dominance rule.

Lemma 3. Consider the UΓ-TWSP and let z = (κ, τ0, . . . , τΓ) and z′ = (κ′, τ ′0, . . . , τ ′Γ) be two
labels associated to paths p and p′ ending at the same node. Assume the following conditions are
verified:

1. κ ≤ κ′

2. τ j ≤ τ ′j , for each j = 0, . . . ,Γ

3. and at least one inequality is strict.

Then, label z′ is dominated by label z.

Proof. We prove the result by contradiction. Namely, suppose that p′ belongs to an optimal solution
to UΓ-TWSP , denoted p′′, while p does not belong to an optimal solution to UΓ-TWSP . Consider
then path p∗ = p ∪ (p′′\p′). One readily sees that path p∗ is optimal, yielding a contradiction.

5.3 Variable budgeted uncertainty

Let us now address the case of variable budgeted uncertainty Uγ-TWSP . Again, we suppose that γ
is an integer-valued function, and if this is not case, we consider instead the rounded function dγe.
Notice that while the rounded function dγe is non-decreasing (because γ is non-decreasing), dγe is
usually not affine. This is fortunately not a requirement for the algorithm described in this section.

The difference between UΓ-TWSP and Uγ-TWSP is that the budget of uncertainty against
which the solution must be protected depends on the cardinality of the solution. Hence, we define
variable robust labels as robust labels to which we append the cardinality of the current path k = |p|,
that is, (κ, τ0, . . . , τΓ, k), where τg is defined as before (Eq. (23)) for each g ∈ {0, . . . ,Γ}. Then, we
extend labels through arc (i, j) similarly to formula (24), and increasing k by one unit.

12

With variable budgeted uncertainty, smaller paths suffer less deviations than longer ones. Namely,
to check the feasibility of label (κ, τ0, . . . , τΓ, k), we only need to check that time windows are satisfied
by τg for g = dγ(k)e. In opposition, the check for robust labels must be done for g = Γ for classical
robust labels. This implies that smaller paths must be preferred over longer ones, as formalized in
the lemma below.

Lemma 4. Consider the Uγ-TWSP and let w = (κ, τ0, . . . , τΓ, k) and w′ = (κ′, τ ′0, . . . , τ ′Γ, k′) be
two labels associated to paths p and p′ ending at the same node. Assume the following conditions are
verified:

1. κ ≤ κ′

2. τ j ≤ τ ′j , for each j = 0, . . . ,Γ

3. k ≤ k′

4. and at least one inequality is strict.

Then, label w′ is dominated by label w.

Proof. The proof follows directly from the fact that γ is non-decreasing.

One readily sees that the classical label-setting algorithm can be applied to variable robust labels.
With appropriated data structures, the complexity of the resulting algorithm is O(Γ|A||N |Bγ(|N |)+1).

6 Computational experiments

We present next our numerical assessment of the algorithms discussed in the paper for problems
UΓ-TWSP and Uγ-TWSP . The proposed solution approaches have been coded in JAVA and our
numerical experiments have been carried out on an Intel(R) Core(TM) i7 CPU M 620, 2.67 GHz, 4
GB RAM machine, under microsoft operating system. The experimental results underline that the
robust version of the TWSP is not much harder to solve than its deterministic counterpart. Further-
more, the results show that, while the dynamic programming approach for Uγ-TWSP requires more
computational effort than for solving UΓ-TWSP , Uγ-TWSP provides cheaper optimal solution than
UΓ-TWSP . More details about the computational results are reported in what follows. First, we
describe the instances used to assess the behavior of the proposed dynamic programming approaches.
Then, we discuss the numerical results.

6.1 Test problems

test nodes arcs density
G1 625 2400 3.84
G2 2500 9800 3.92
G3 5625 22200 3.95
G4 15625 62000 3.97
G5 22500 89400 3.97
G6 30625 121800 3.98
G7 40000 159200 3.98

Table 1: Characteristics of the test problems proposed in [13].

Our experiments are based on the grid networks from Class 6 used in [13]. The characteristic
of these networks are reported in Table 1. For each network, we generate a set of different in-
stances by varying the values of Γ (or γ) and ρ = r̂a/ra as follows. Ratio ρ takes each value in
{0.5, 0.6, 0.7, 0.8, 0.9, 1}. For the value of Γ, we consider two sets of instances S1 and S2 defined
below.

13

Generating time windows We describe next how we generate b and b such that all instances
always have a feasible solution. We let T̂ and T̄ represent the shortest paths trees with respect to
r + r̂ and r, respectively. We let p̂ denote the path from node o to node d in T̂ and the width of
time windows is denoted by w (and set to value in {40, 100, 200}). The values of bi and bi are set
according to the following rule

bi = T̂i − w; bi = T̂i, for each i ∈ p̂,
bi = T̂i − w; bi = T̂i, for each i 6∈ p̂ and rand < 0.5,

bi = T̄i; bi = T̄i + w, for each i 6∈ p̂ and rand ≥ 0.5,

(25)

where T̂i and T̄i are the costs of the paths from o to i in T̂ and T̄ , respectively, and rand is chosen
randomly through the uniform distribution [0, 1].

Instances S1 The set contains instances with no connections to the probabilistic bounds discussed
in Section 2.2. To build these instances, we let Γ take each value in {3, 6, 12, 25, 50}. These values
are such that the cardinality of the optimal paths are less than Γ.

Instances S2 The set contains instances for which γ and Γ are generated according to the prob-
abilistic bounds. Namely, we compute function γ for each probability level ε in {0.01, 0.05, 0.1}
following the construction outlined in Appendix A. For Γ, we compute first an upper bound UB
on the longest feasible path for the problem and then set Γ = γ(UB), see Remark 3. Bound UB
is computed as follows: for each node in i ∈ V , we let ri be the value of the lowest resource arc
outgoing from i, ri = min(i,j)∈A rij , and we sort the nodes in V by non-decreasing values of r. Then,
UB is equal to

max
UB∈Z+

{
UB :

UB∑
i=1

ri ≤ bUB

}
.

Table 2 reports the values of UB and the time needed to compute the bounds for the TWSP . The
values of Γ are shown in the last three columns for different values of ε.

Price of robustness In our results, we report the optimal solution cost for the deterministic
problems, while the solution costs for robust problems are provided under the form of prices of
robustness. The latter can be computed as follows

PoR =
opt(P)− opt(TWSP)

opt(TWSP)
,

where opt(P) is the optimal solution cost of problem P ∈ {UΓ-TWSP,Uγ-TWSP}. PoR represents
the additional cost required to obtain solutions robust with a prescribed guarantee. Notice, how-
ever, that in real applications this cost is significantly smaller than the cost needed to repair the
deterministic solutions that become infeasible in the presence of uncertainty.

6.2 Numerical results

Our computational results are presented in Tables 3–5 where we provide the solution times in seconds,
numbers of generated labels, solution costs, and prices of robustness. Since for set S2 we have a
unique value of Γ, each row of Table 5 shows the average results over ρ only. Each row of Table 4
averages the results for the different values of ρ and Γ.

Instances in S1 The computational results for instances in S1 are presented in Tables 3 and 4.
Table 3 provides average results for TWSP and UΓ-TWSP taken over the different values of ρ
and Γ, while Table 4 shows the variations observed for the different values of Γ. We see that for
the instances tested, UΓ-TWSP does not seem much harder to solve that TWSP . This may be
surprising given the exponential (in Γ) worst-case running time of the robust label-setting algorithm.
However, the label-setting algorithm is well-known for generating only a subset of all possible labels.

14

dγ(UB)e
test problems r̂a/ra UB time 0.01 0.05 0.1

G1 0.5 143 8.00 29 21 16
0.6 148 5.00 29 21 17
0.7 154 3.00 30 22 17
0.8 160 3.00 30 22 17
0.9 165 3.00 31 22 18

1 173 3.00 32 23 18
G2 0.5 298 46.00 41 29 23

0.6 309 41.00 42 30 24
0.7 320 46.00 43 30 24
0.8 333 44.00 43 31 24
0.9 344 45.00 44 32 25

1 360 43.00 45 32 25
G3 0.5 450 217.00 50 36 28

0.6 466 208.00 51 37 29
0.7 484 215.00 52 37 29
0.8 502 206.00 53 38 30
0.9 518 227.00 54 38 30

1 544 208.00 55 39 31
G4 0.5 734 1623.00 64 46 36

0.6 761 1613.00 65 46 36
0.7 790 1568.00 66 47 37
0.8 819 1624.00 68 48 38
0.9 845 1613.00 69 49 38

1 887 1566.00 70 50 39
G5 0.5 887 3346.00 70 50 39

0.6 918 3140.00 71 51 40
0.7 954 3254.00 73 52 41
0.8 989 3341.00 74 53 41
0.9 1021 3251.00 75 54 42

1 1071 3112.00 77 55 43
G6 0.5 1028 6192.00 76 54 42

0.6 1064 6138.00 77 55 43
0.7 1106 6253.00 78 56 44
0.8 1146 6412.00 80 57 44
0.9 1183 6004.00 81 58 45

1 1243 6086.00 83 59 46
G7 0.5 1187 10339.00 81 58 45

0.6 1230 10225.00 83 59 46
0.7 1276 10787.00 84 60 47
0.8 1324 10484.00 86 61 48
0.9 1367 10307.00 87 62 48

1 1434 10390.00 89 63 50
AVG 741.31 3100.93 61.45 43.88 34.36

Table 2: Computation of UB and Γ for ε ∈ {0.01, 0.05, 0.1}.

15

Still, Table 4 confirms that increasing Γ tends to increase solution times, which is particularly visible
when Γ changes from 12 to 25 or 50. Another observation one can make is that widening time
windows increases the difficulty of solving all problems, and that the increase in solution times
is more marked for UΓ-TWSP than for TWSP . Indeed, comparing w = 40 with w = 100, the
average solution times for the TWSP are multiplied by 1.7 while they are multiplied by 2.9 for the
UΓ-TWSP . This, again, can easily be explained by the larger dimension of the labels in the robust
case, which makes more room for creating more labels when time windows are widened. Regarding
the optimal solution costs (and the related prices of robustness), the results show that, as expected,
increasing the value of Γ raises the price of robustness, while widening time windows reduces the
price of robustness.

Instances in S2 Table 5 shows that the robust TWSP with variable budgeted uncertainty is more
difficult to solve than UΓ-TWSP . Indeed, the computational cost of the label-setting algorithm for
solving the Uγ-TWSP is, on average, 1.52 times higher than the time required for solving the
UΓ-TWSP (see Table 3). This behavior is justified by the number of generated labels. Indeed, the
labels generated when solving Uγ-TWSP are 1.54 times higher than that processed by the label-
setting algorithm to solve UΓ-TWSP . The higher number of labels is due to the fact that the
feasibility check is done for a subset of the element of the labels. It follows, that unfeasible labels for
the UΓ-TWSP are feasible for the Uγ-TWSP . The table also shows that model Uγ-TWSP leads
to significant reduction in the price of robustness obtained by model UΓ-TWSP .

TWSP UΓ-TWSP
w test problems time #labels cost |p| time #labels PoR % |p|
40 G1 0.02 159.83 4427.00 48.00 0.02 130.17 5.64 48.00

G2 0.17 318.00 8707.00 98.33 0.18 360.11 8.79 98.00
G3 0.47 442.33 12663.67 148.00 0.77 746.92 3.38 148.00
G4 2.50 851.67 21675.33 246.00 4.11 1374.36 4.01 245.00
G5 3.95 912.83 15226.33 293.33 6.37 1458.81 3.39 293.00
G6 6.50 1086.00 24798.00 340.00 14.08 2284.78 4.06 339.00
G7 9.54 1213.83 22215.33 392.33 16.07 1929.17 3.77 392.00

AVG 3.31 712.07 15673.24 223.71 5.94 1183.47 4.72 223.29
100 G1 0.05 292.67 4423.67 49.00 0.03 201.00 5.43 48.28

G2 0.24 555.83 8198.00 98.67 0.40 824.61 5.46 98.00
G3 0.70 705.83 12569.33 149.33 1.65 1567.22 2.11 148.28
G4 3.66 1283.00 20689.67 248.00 13.60 3889.14 2.02 245.83
G5 6.70 1538.17 14812.00 294.33 25.59 4994.25 0.91 293.39
G6 11.01 1763.67 24557.67 342.00 32.43 5125.14 2.11 339.78
G7 15.81 1953.50 21485.67 395.33 46.05 5460.56 2.19 392.83

AVG 5.45 1156.10 15248.00 225.24 17.11 3151.70 2.89 223.77
200 G1 0.09 766.83 4142.00 48.00 0.06 530.47 12.54 48.06

G2 0.55 1321.83 8225.00 100.33 0.60 1385.25 4.72 98.44
G3 1.27 1410.00 12357.00 152.33 2.34 2451.89 2.50 148.44
G4 4.92 1867.00 21256.00 247.67 19.05 5424.03 0.37 246.83
G5 8.92 2335.50 13870.67 295.33 25.93 5618.75 0.69 295.11
G6 13.84 2577.67 24845.00 347.00 47.86 7254.61 2.15 342.33
G7 25.43 3463.83 21728.00 397.00 136.68 11863.39 0.62 396.17

AVG 7.86 1963.24 15203.38 226.81 33.22 4932.63 3.37 225.06

Table 3: Average computational results for the instances belonging to set S1.

16

40 100 200
Γ time #labels PoR % |p| time #labels PoR % |p| time #labels PoR % |p|

50 12.72 2470.57 8.09 223.29 50.50 9726.38 6.31 223.29 95.15 15407.14 4.03 223.67
25 7.47 1480.98 6.16 223.29 20.51 3817.83 3.46 223.29 32.44 5240.19 2.37 224.29
12 5.00 1014.05 4.52 223.29 10.19 1879.74 2.21 223.29 18.12 2336.24 1.94 224.95
6 3.91 798.95 3.48 223.29 7.68 1268.55 1.48 223.48 18.85 2425.29 0.89 225.29
3 3.44 691.52 2.36 223.29 6.79 1114.86 0.51 224.19 18.49 2187.29 0.52 225.76

AVG 6.51 1291.21 4.92 223.29 19.13 3561.47 2.79 223.50 36.61 5519.23 1.95 224.79

Table 4: Average computational results for each value of Γ when solving the instances belonging to
the set S1.

17

TWSP UΓ-TWSP Uγ-TWSP
ε test problems time #labels cost |p| time #labels PoR % |p| time #labels PoR % |p|

0.01 G1 0.02 159.83 4427.00 48.00 0.01 108.50 7.30 48.00 0.05 261.50 4.96 48.00
G2 0.17 318.00 8707.00 98.33 0.20 489.00 12.60 98.00 0.61 1323.33 10.69 98.00
G3 0.47 442.33 12663.67 148.00 1.22 1388.00 7.57 148.00 3.09 3108.17 5.35 148.00
G4 2.50 851.67 21675.33 246.00 7.78 3127.33 8.00 245.00 21.24 7358.00 5.59 245.00
G5 3.95 912.83 15226.33 293.33 14.64 4034.17 6.16 293.00 40.11 9551.67 5.30 293.00
G6 6.50 1086.00 24798.00 340.00 51.04 9271.33 10.03 339.00 124.94 20666.50 6.52 339.00
G7 9.54 1213.83 22215.33 392.33 39.25 4929.17 8.78 392.00 360.57 15381.50 6.42 392.00

AVG 3.31 712.07 15673.24 223.71 16.31 3335.36 8.63 223.29 78.66 8235.81 6.40 223.29
0.05 G1 0.02 159.83 4427.00 48.00 0.02 141.33 7.25 48.00 0.03 257.83 4.88 48.00

G2 0.17 318.00 8707.00 98.33 0.22 455.00 12.12 98.00 0.44 984.50 10.24 98.00
G3 0.47 442.33 12663.67 148.00 1.26 1218.83 6.29 148.00 1.95 2059.33 3.63 148.00
G4 2.50 851.67 21675.33 246.00 7.64 2750.83 7.42 245.00 14.33 5335.83 5.15 245.00
G5 3.95 912.83 15226.33 293.33 12.63 3092.50 5.92 293.00 23.81 5901.17 4.58 293.00
G6 6.50 1086.00 24798.00 340.00 37.52 6324.83 8.80 339.00 70.92 12058.33 6.06 339.00
G7 9.54 1213.83 22215.33 392.33 34.54 4316.00 7.75 392.00 80.05 10176.50 5.70 392.00

AVG 3.31 712.07 15673.24 223.71 13.41 2614.19 7.93 223.29 27.36 5253.36 5.75 223.29
0.1 G1 0.02 159.83 4427.00 48.00 0.02 144.83 6.22 48.00 0.03 226.17 4.88 48.00

G2 0.17 318.00 8707.00 98.33 0.21 441.00 11.57 98.00 0.41 899.50 9.72 98.00
G3 0.47 442.33 12663.67 148.00 1.04 1039.83 5.91 148.00 1.57 1661.00 2.56 148.00
G4 2.50 851.67 21675.33 246.00 6.57 2210.67 5.80 245.00 12.13 4039.00 4.46 245.00
G5 3.95 912.83 15226.33 293.33 10.58 2517.67 5.50 293.00 19.15 4417.33 4.36 293.00
G6 6.50 1086.00 24798.00 340.00 29.03 4934.33 8.14 339.00 46.49 8107.50 5.52 339.00
G7 9.54 1213.83 22215.33 392.33 28.48 3580.33 7.34 392.00 57.93 7778.50 5.15 392.00

AVG 3.31 712.07 15673.24 223.71 10.85 2124.10 7.21 223.29 19.67 3875.57 5.24 223.29

Table 5: Average computational results for the instances belonging to set S2.

18

7 Concluding remarks

In this paper, we have addressed a variant of the constrained shortest path problem. In particular,
we have assumed that the resource consumption is not known with precision, rather, it belongs to
an uncertainty set. We have proved that the problem is NP-hard in the strong sense for unbounded
uncertainty sets. To overcome this issue, we have considered the budgeted uncertainty set and the
variable budgeted uncertainty set. Indeed, the considered sets have been successfully applied to
combinatorial optimization problems, and in many cases, the complexity of the robust counterparts
are similar to the complexity of the deterministic problem.

We have analyzed two types of resource constraints, that is, time windows and capacity. We
have proved that the latter version of the problem can be solved in pseudo-polynomial time, thus,
the robust version maintains the complexity of the deterministic counterpart. Interestingly, the
complexity of the robust version of the time windows shortest path problem increases. Indeed, we
have proved it is NP-hard in the strong sense, using a reduction from the independent set problem.
This is the first example of a weakly NP-hard combinatorial optimization problem whose robust
version (under budgeted uncertainty) is NP-hard in the strong sense.

A dynamic programming-based solution approach has been devised in order to solve the prob-
lems at hand. Robust labels have been defined and the well-known dominance relations have been
extended to address the robustness. The developed label-setting algorithm has been tested by con-
sidering instances inspired from the scientific literature. Several scenarios have been considered in
order to assess the behavior of the proposed solution strategy. The computational results underline
the effectiveness of the algorithm in solving the robust version of the time windows shortest path
problem with budgeted uncertainty set. In addition, we have shown that using the variable budgeted
uncertainty set a reduction in the price of robustness is observed.

It is worth observing that the defined label-setting algorithm is able to solve the robust shortest
path problem with capacity constraint. However, speed up techniques have to be considered, that
is, use of lower and upper bounds on both the cost and the resource consumption and pre-processing
procedures in order to reduce the dimension of the networks by removing nodes and arcs. The exten-
sion of the proposed dynamic programming-based solution approach to the problem with capacity
constraint is an interesting subject of future investigation.

References

[1] A. Agra, M. Christiansen, R. Figueiredo, L. M. Hvattum, M. Poss, and C. Requejo. Layered
formulation for the robust vehicle routing problem with time windows. In ISCO, pages 249–260,
2012.

[2] A. Agra, M. Christiansen, R. Figueiredo, L. M. Hvattum, M. Poss, and C. Requejo. The robust
vehicle routing problem with time windows. Computers & Operations Research, 40(3):856 –
866, 2013.

[3] H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and min–max regret versions of combinato-
rial optimization problems: A survey. European journal of operational research, 197(2):427–438,
2009.

[4] E. Álvarez-Miranda, I. Ljubić, and P. Toth. A note on the bertsimas & sim algorithm for robust
combinatorial optimization problems. 4OR, 11(4):349–360, 2013.

[5] A. Ben-Tal, L. El Ghaoui, and A.S. Nemirovski. Robust optimization. Princeton University
Press, 2009.

[6] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming, 98:49–71, 2003.

[7] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52:35–53, 2004.

19

[8] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the ele-
mentary resource constrained shortest path problem. Operations Research Letters, 34(1):58 –
68, 2006.

[9] D. Catanzaro, M. Labbé, and M. Salazar-Neumann. Reduction approaches for robust shortest
path problems. Computers & OR, 38(11):1610–1619, 2011.

[10] M. Desrochers and F. Soumis. A generalized permanent labelling algorithm for the shortest
path problem with time windows. INFOR, 26:191–212, 1988.

[11] L. Di Puglia Pugliese and F. Guerriero. A survey of resource constrained shortest path problems:
Exact solution approaches. Networks, 62(3):183–200, 2013.

[12] M. Dror. Note on the complexity of the shortest path models for column generation in vrptw.
Operations Research, 42(5):977–978, 1994.

[13] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms for the
weight-constrained shortest path problem. Networks, 42:135 – 153, 2003.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[15] K.-S. Goetzmann, S. Stiller, and C. Telha. Optimization over integers with robustness in cost
and few constraints. In WAOA, pages 89–101, 2011.

[16] C. E. Gounaris, W. Wiesemann, and C. A. Floudas. The robust capacitated vehicle routing
problem under demand uncertainty. Operations Research, 61(3):677–693, 2013.

[17] S. Irnich and G. Desaulniers. Shortest Path Problems with Resource Constraints, chapter 2,
pages 33–65. GERAD 25th Anniversary Series. Springer, 2005.

[18] B. Jaumard, F. Semet, and T. Vovor. A two-phase resource constrained shortest path algorithm
for acyclic graphs. Cahiers du GERAD, 1996.

[19] H. C. Joksch. The shortest route problem with constraints. Journal of Mathematical Analysis
and Applications, 14(2):191 – 197, 1966.

[20] P. Kouvelis and G. Yu. Robust discrete optimization and its applications, volume 14. Springer,
1997.

[21] M. Poss. Robust combinatorial optimization with variable budgeted uncertainty. 4OR, 11(1):75–
92, 2013.

[22] M. Poss. Robust combinatorial optimization with variable cost uncertainty. European Journal
of Operational Research, 237(3):836 – 845, 2014.

[23] I. Sungur, F. Ordónez, and M. Dessouky. A robust optimization approach for the capacitated
vehicle routing. IIE Transactions, 40(5):509–523, 2008.

[24] F. Talla Nobibon and R. Leus. Complexity results and exact algorithms for robust knapsack
problems. Journal of Optimization Theory and Applications, 161(2):533–552, 2014.

A Probabilistic bounds

Bertismas and Sim [7] present various examples of bounds δ(Γ, |A|). In our computational results,
we use bound

δ(Γ, |A|) =
1

2|A|

(1− µ)

(
|A|
bνc

)
+

|A|∑
l=bνc+1

(
|A|
l

) (26)

20

where ν = (Γ + |A|)/2 and µ = ν − bνc. From (26), we see that the smallest value of Γ such that
the resource constraint are satisfied with probability 1 − ε is given by the solution of minimization
problem

min Γ s.t. δ(Γ, |A|) ≤ ε, (27)

which can be solved by a bisection method. We can then compute γ in two steps. First, we compute
function Γ̂ : {1, . . . , |A|} → Γ by solving (27) when |A| is replaced by k which takes any value in
{1, . . . , |A|}. Then, we compute an affine upper-bounding approximation of the resulting function.
The reader is redirected to [21] for more details on a similar construction.

B Existence of a solution (µ, ν, σ, r̂, b) to (14),(16), and (17)

Let r̂ be defined as follows. For each i ∈ {1, . . . , n} and k ∈ {2, . . . ,m}, we have

r̂a(2i,k) =

 4(k − 1) + 1, if ek−1 is adjacent to i and ek is not,
4(k − 1)− 1, if ek is adjacent to i and ek−1 is not,
4(k − 1), otherwise,

and for each i ∈ {1, . . . , n}, we have r̂a(2i−1,1) = 2, and

r̂a(2i,1) =

{
0, if e1 is adjacent to vertex i,
1, otherwise.

Moreover,

r̂a(2i,m+1) =

{
4m+ 1, if em is adjacent to i,
4m, otherwise,

and r̂a(2i−1,k) = 4(k − 1), for each k ∈ {2, . . . ,m+ 1} and i ∈ {1, . . . , n}.
Parameters µ and σ follow from these definitions. Namely,

σh = 2(m+ h)(m− h+ 1),

for each h ∈ {1, . . . ,m} and µ = σ1 +1. Then we must fix ν to any integer greater than 4(m−1)+1.
Finally, deadlines bn and bn+h for each h ∈ {1, . . . ,m} are chosen according to the equations in

(14) and (17), respectively, while other deadlines can be set, for instance, to n(µ+ 1).

21

