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UMR CNRS 5506 LIRMM, Université de Montpellier 2, 161 rue Ada, 34392 Montpellier Cedex 5, France,

michael.poss@lirmm.fr

The expansion of a telecommunications network faces two sources of uncertainty, which are the
demand for traffic that shall transit through the expanded network and the outsourcing cost that the
network operator will have to pay to handle the traffic that exceeds the capacity of its network. The
latter is determined by the future cost of telecommunications services, whose negative correlation
with the total demand is empirically measured in the literature through the price elasticity of
demand . Unlike previous robust optimization works on the subject, we consider in this paper
both sources of uncertainty and the correlation between them. The resulting mathematical model
is a linear program that exhibits a constraint with quadratic dependency on the uncertainties. To
solve the model, we propose a decomposition approach that avoids considering the constraint for
all scenarios. Instead, we use a cutting plane algorithm that generates required scenarios on the
fly by solving linear multiplicative programs. Computational experiments realized on the networks
from SNDlib show that our approach is orders of magnitude faster than the classical semidefinite
programming reformulation for such problems.

Key words: Robust optimization; Network design; Random recourse; Linear multiplicative programming;
Convex optimization

1. Introduction

Given a directed graph and a set of point-to-point commodities with known demand values, the classical

network design problem looks for the cheapest capacity installation able to route all demands simultaneously.

However, the hypothesis that all demand values are known at the time at which the network expansion is

planned is not realistic. In practice, future demands are estimated by using, for instance, traffic measurements

or population statistics. Using single forecasted values for the demands leads to overestimation of the traffic

and unnecessary installation costs. Rather, one should construct a large set of demand vector values that

contain most of plausible outcomes for these demands. The network design problem turns then to design a

network able to route non-simultaneously each demand vector in the above set.

Many research papers have been published on network design problems under demand uncertainty. Part

of these papers considers that demand vectors are described by precisely characterized random variables,

see for instance Andrade et al. (2006). However, many authors have pointed out that this assumption is

not realistic in the context of telecommunications network design because the historical data necessary to

compute the probabilities is not available. For this reason, most of the recent papers on the topic rather

1



consider the framework of robust optimization, where future demand vectors are only supposed to belong

to predetermined bounded and convex sets, often called uncertainty sets. Such uncertainty set is usually

assumed to be a polytope or the intersection of a box and an ellipsoid. We refer the interested reader to

Ben-Tal et al. (2009); Bertsimas et al. (2011) for detailed surveys of robust optimization.

The main novelty of this paper lies in the use of uncertain outsourcing cost for unmet demands. In

the literature, authors have commonly studied problems involving two conflicting objectives. The first

objective considers the cost of expanding the capacity of the existing network, which involves the price of the

equipment as well as the installation costs, such as digging conducts into the ground. The second objective

is related to the amount of unmet demands. These objectives are conflicting since a network expanded with

a large amount of capacity is likely to cope with a larger proportion of demands than a network expanded

with a small amount of capacity. Hence, the first network would have a higher capacity cost and a lower

demand outsourcing cost than the second network. Research papers on the topic diverge on how to model

the combination of the two objectives. We are aware of two approches to address this modeling issue.

In the first approach , the authors consider separately the two objectives, that is, one objective is turned

into a hard constraint by assuming that a fixed budget is available for expanding the network (Lemaréchal

et al., 2010) , or by limiting the amount of unmet demands (Ouorou, 2013) . In the second approach, the

authors rather consider one objective function made up by summing the two costs (Andrade et al., 2006;

Sen et al., 1994) . In any case, one needs to introduce an explicit outsourcing cost for unmet demands. The

model considered in this paper differs from the aforementioned models by a crucial detail: we suppose that

the outsourcing cost is not known with precision and can take any value in a predetermined uncertainty

set. This assumption complicates significantly the resulting optimization models, adding to the objective

function a term that is quadratic in the uncertain parameters. Nevertheless, modeling outsourcing costs as

uncertain is an important practical consideration because of the price elasticity of demand observed in the

telecommunications market (e.g. Agiakloglou and Yannelis (2006)). Namely, a decrease in prices tends to

lead to an increase in demand. Such a price decrease is often imposed by regulatory agencies to avoid the

use of market power by companies to the customer’s detriment (Garbacz and Thompson Jr (2007)). In this

case, it likely that both outsourcing and end-user costs are equally affected to avoid price distortions that

could favor some segments of the industry over others, as pointed out by Garbacz and Thompson Jr (2007).

More generally, for many optimization problems it is not realistic to model the cost of recourse variables

by known parameters. In fact, the consideration of uncertain penalty cost had been motivated a long time

ago in the context of stochastic programming in Garstka (1973):

Randomness in the second-stage (recourse) costs can arise quite naturally in two ways.
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Firstly, and most naturally, the decision maker may be unable to specify the recourse costs with

complete certainty. Secondly, and perhaps more interesting, random recourse costs may reflect

uncertainty in the length of the first stage. At any point in time, recourse costs may be able

to be specified with certainty. However, if these costs change with time, then knowing only

probabilistically when the first stage will end is equivalent to specifying it in a probabilistic

manner.

The revival of affine decision rules in multistage robust optimization by Ben-Tal et al. (2004) has led to

a considerable interest in these adjustable models, and many authors have seeked to extend them to more

complex decision rules and have applied them to practical decision problems. Robust network design models

in particular have witnessed a particularly high interest in affine decision rules, called affine routing in that

context, see Ouorou and Vial (2007); Poss and Raack (2013). Surprisingly enough, very little attention has

been devoted to the situation where recourse costs are uncertain.

It is well known that adjustable robust linear optimization problems are NP-hard in general (Ben-Tal

et al., 2004) and problems involving uncertain recourse costs are particularly difficult. When all coefficients

of the adjustable variables are fixed (fixed recourse), the classical approach relies on using affine decision

rules. Whenever the uncertainty set is defined by conic constraints, such as second-order cone inequalities or

linear inequalities, the resulting optimization problems can be reformulated as second-order cone programs

and linear programs, respectively, by using duality theory for convex optimization. The situation is more

complex when the fixed recourse assumption is not fulfilled because this leads to constraints with quadratic

dependency on the uncertainty. In particular, the above dualization techniques are no longer applicable. The

only known convex reformulation to such problems is due to Ben-Tal et al. (2002) and relies on the S-lemma

(Pólik and Terlaky, 2007) : the robust constraints with quadratic dependency on the uncertain vectors

are reformulated as linear matrix inequalities (LMI). The S-lemma approach suffers from the following two

drawbacks. First, it is an exact approach only when the uncertain set is an ellipsoid. To handle uncertainty

sets defined by intersections of ellipsoids, such as polytopes (when the ellipsoids are degenerated), the

procedure only provides an approximated solution, and its number of variables increases linearly with the

number of ellipsoids. Second, and more importantly, LMIs lead to semidefinite programming which cannot

easily handle large-scale optimization problems. This is particularly important in this paper since network

design problems involve large numbers of flow variables and flow conservation constraints.

In this paper, we introduce an alternative approach based on cutting plane algorithms. Instead of

considering all demand vectors simultaneously in the robust model, we decompose the latter into a master

problem that contains the cuts associated to some particular vectors in the uncertainty set, and a set of

separation problems that check if more cuts should be added to the master problem. Such decomposition
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procedures have been proposed in the recent years for robust optimization, see for instance Fischetti and

Monaci (2012); Monaci et al. (2013). The results in these papers show that, for some problems, decomposition

can outperform by far the classical dualization. The choice between dualization and decomposition has

also been studied from a machine learning perspective in the work of Bertsimas et al. (2014). Still, these

techniques have not yet been applied to robust optimization problems that involve constraints with quadratic

dependency on the uncertainties. As we show in this paper, the resulting separation problems become linear

multiplicative programs, which are non-convex optimization problems that need to be handled adequately.

We focus in this paper on problems with fractional capacities to be able to compare our approach to the

classical SDP reformulation. If the capacities or the flow needed to be modeled through integer variables,

our algorithms would involve mixed-integer linear programs (instead of a mixed-integer SDP). Hence, our

algorithms would be more likely to cope efficiently with integer variables than approaches based on non-linear

formulations. This is yet another advantage of our approach since branch-and-cut algorithms based on linear

formulations have more scientific maturity than the emergent branch-and-bound algorithms based on SDP

formulations.

We highlight the following main contributions of this paper:

• We introduce a new model for telecommunications network design under demand uncertainty where

the uncertainty of outsourcing cost is considered since these costs are not known with precision at the

time the planning decisions must be made.

• We propose cutting-plane algorithms to solve the resulting robust optimization problems. Our algo-

rithms are not restricted to ellipsoidal uncertainty and outperform the SDP reformulation by orders

of magnitude.

• We prove that our optimization problem, where the uncertain part of the outsourcing cost is the same

for each commodity, is polynomially solvable. However, the problem would become strongly coNP-

hard if the outsourcing cost of distinct commodities were allowed to depend on different uncertainties.

We outline next the structure of the paper. The next section presents the mathematical formulation of

the problem and situates the work within the robust network design literature. The following two sections

describe two different approaches for solving the problem. Section 3 applies the tools from the robust

optimization literature to provide conic reformulations for the robust constraints with linear dependency on

the uncertainties. Section 4 proposes decomposition algorithms to handle resource constraints with linear and

quadratic dependency on the uncertainties. The section concludes by proving that the problem can be solved

in polynomial time. In Section 5, we present a generalization of the problem where the uncertain part of the
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outsourcing costs can be different for each commodity and we prove that the resulting problem is strongly

coNP-hard. In Section 6, we present extensive numerical experiments that compare SDP reformulations

with decomposition algorithms for the problem on realistic networks. Finally, a small conclusion is provided

in Section 7.

2. Mathematical formulation

We provide in this section a mathematical programming formulation for the problem studied in the paper.

We denote the directed graph by G = (V,A) and a the set of point-to-point commodities by K. For each

node v ∈ V , let δ+(v) and δ−(v) denote the sets of outgoing arcs and incoming arcs at node v, respectively.

For each a ∈ A, let ca ∈ R+ denote the unitary capacity cost and ua ∈ R+ denote the initial capacity. For

each commodity k ∈ K, we denote its source and destination by s(k) ∈ V and t(k) ∈ V , respectively. Each

demand value dk varies between its nominal value d
k
> 0 and its peak value d

k
+ d̂k to which we subtract αξ0

where ξ0 is the (uncertain) normalized deviation of telecommunication services price and α > 0 represents

the price dependency of the demand. More precisely, we suppose for each k ∈ K that

dk(ξ) = d
k
(1− αξ0) + d̂kξk, (1)

where ξ can take any value in set Ξ, that is closed, convex and bounded. Such a set Ξ is called an uncertainty

set in the following.

The problem is modeled with the help of three types of optimization variables. For each a ∈ A, a

continuous capacity variable xa ≥ 0 represents the amount of capacity installed on a. For each a ∈ A and

k ∈ K, a continuous flow variable fka ≥ 0 represents the fraction of commodity k routed on arc a. Finally,

for each k ∈ K, outsourcing variable gk represents the fraction of commodity k that is not served by the

network. Rejection variables are redundant since they satisfy gk = 1−
∑
a∈δ−(t(k)) f

k
a +

∑
a∈δ+(t(k)) f

k
a ; we

use them to simplify the presentation of the model.

The main contribution of this work lies in the consideration of uncertain outsourcing cost r. We suppose

that each component rk(ξ) is defined by the affine function rk(1+βξ0), where ξ0 is the normalized deviation

of services price as before, β > 0 represents the relation between the outsourcing cost and the price, and

rk > 0 is a constant factor that depends on commodity k which can be defined, for instance, from the

distance between s(k) and t(k). Hence, the price elasticity of demand is equal to −α/β. The objective

function of our problem aims thus at minimizing the capacity installation cost plus the worst-case cost of

outsourcing the unmet demands:

min
x,f,g

∑
a∈A

caxa + max
ξ∈Ξ

∑
k∈K

rk(ξ)dk(ξ)gk. (2)
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Notice that for arbitrary uncertainty set Ξ, nothing prevents the second term from Eq. (2) to reach its

maximum at ξ∗ ∈ Ξ such that rk(ξ∗) < 0 and dk(ξ∗) < 0 for some k ∈ K, which would be unrealistic. To

make sure this unrealistic situation never happens, we assume in the following that Ξ is symmetric: ξ ∈ Ξ

implies that −ξ ∈ Ξ for any ξ ∈ RK . One readily sees that, under this assumption, the maximum is always

reached at ξ∗ ∈ Ξ such that rk(ξ∗) > 0 and dk(ξ∗) > 0 for each k ∈ K.

In the formulation below, we reformulate Eq. (2) through an epigraph reformulation by introducing an

auxiliary variable θ that represents the outsourcing cost.

min
∑
a∈A

caxa + θ

s.t. θ ≥
∑
k∈K

rk(ξ)dk(ξ)gk ξ ∈ Ξ (3)

(RND)
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka = 0, k ∈ K, v ∈ V \{s(k), t(k)} (4)

∑
k∈K

dk(ξ)fka ≤ ua + xa a ∈ A, ξ ∈ Ξ (5)

gk = 1−
∑

a∈δ−(t(k))

fka +
∑

a∈δ+(t(k))

fka k ∈ K (6)

f, x, g ≥ 0. (7)

In the above formulation, constraints (3) define the outsourcing cost, constraints (4) are the flow conserva-

tion constraints, constraints (5) impose that the total flow on each arc must not exceed the available capacity,

and constraints (6) define the outsourcing variables. Notice that term
∑
a∈δ+(t(k)) f

k
a of constraints (6) is

necessary to prevent the apparition of unrealistic cycle-flows. Formulation (RND) is a semi-infinite linear

programming formulation since there are infinite numbers of constraints (3) and (5). We propose in Sections

3 and 4 two approaches to solve (RND) exactly. The first consists in applying known robust optimization

results to reformulate constraints (3) and (5) as finite number of conic constraints. The second relaxes these

constraints and proposes cutting plane algorithms to recover the solution feasibility.

In this paper, we follow the literature on robust network design and suppose that the uncertainty set

is one of the following: a symmetric polytope, the intersection of an ellipsoid and a box, or an ellipsoid.

Note that Ξ is symmetric in the three cases as assumed before. The polytope model supposes that Ξ is

described by a given system of linear inequalities. Different polytopes have been used in the literature to

model uncertainty on the demand for robust network design problems. The most common ones are the

budget uncertainty set (Poss and Raack, 2013; Ouorou, 2013) and the Hose model see Altin et al. (2011) and

the references therein. The second uncertainty set we consider has been used by Babonneau et al. (2013),

among others, and defines Ξ as

{ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖2 ≤ κ2},

6



where κ2 is a given constant. In order to compare our cutting plane algorithm to the semidefinite pro-

gramming reformulation from the literature (Ben-Tal et al., 2002), we will also use the purely ellipsoidal

model

{ξ | ‖ξ‖2 ≤ κ2}.

We finish this section by situating (RND) in the vast literature on robust network design. We use

the so-called static routing in (RND) where the flow on a ∈ A for k ∈ K is given by dk(ξ)fka , which is a

linear function of dk. This routing framework is largely used in the literature, see Altin et al. (2011); Koster

et al. (2013) and the references therein. At the opposite of static routing stands dynamic routing which

assumes that there is no relation between the routing used for two different demand vectors d1 and d2, that

is, the flow for each a ∈ A and k ∈ K becomes an arbitrary function of d (Mattia, 2013). Intermediary

routing schemes have also been considered, see Poss (2014a) and the references therein, among which affine

routing, introduced by Ouorou and Vial (2007), stands out for offering a good balance between computational

complexity and flexibility. In this paper, we stick to static routing rather than affine routing to keep the

presentation as simple as possible and better focus on the implications of considering uncertain outsourcing

costs. Nevertheless, one can easily see that all ideas developed in the following can be extended to affine

routing, and the computational complexity of the resulting optimization problems is the same as in the case

of static routing.

Other models require to introduce integer variables. The aforementioned routing frameworks suppose

that the flow for each commodity can be split among an arbitrary number of paths, which is not always

a realistic assumption. Alternative models bound the number of paths that can be used simultaneously to

route a demand by a small number (Babonneau et al., 2013), which could be equal to one when bifurcations

of the flow is not allowed (Lee et al., 2012). The capacity on each link of the network could also be modeled

by a finite set of discrete modules, each having different characteristics (Altin et al., 2011; Koster et al., 2013).

Each of these technicalities leads to integer programming formulations, which are significantly harder to solve

than their fractional counterparts. In theory, the different solution approaches presented in this paper could

be applied to refinements of (RND) with integer variables, by using the appropriated branch-and-bound and

branch-and-cut algorithms. Namely, the approaches based on conic reformulations could be embedded into

a branch-and-bound algorithm with non-linear relaxation, while the decomposition approach would lead to

a branch-and-cut algorithm with linear relaxation. In practice however, the decomposition approach is likely

to cope more easily with integer variables because branch-and-cut solvers based on liner formulations have

more scientific maturity than the emerging branch-and-bound solvers based on conic formulations.
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3. Conic reformulation

We apply in this section classical reformulation results of robust optimization (Ben-Tal et al., 2009) to

provide a conic reformulation for (RND). Hence, the results of this section are presented without proof.

The main success of robust optimization is largely due to the fact that the infinite number of constraints

that appear in robust problems can often be reformulated as finite numbers of conic constraints, or even

linear constraints when Ξ is a polyhedron. When the constraints of the original problem are linear in the

problem variables and uncertain parameters, these reformulations are essentially based on the duality theory

for conic optimization. However, if the original constraints involve non-linearities, one must use more subtle

techniques.

Constraint (3) has a quadratic dependency on Ξ preventing us from applying the duality-based refor-

mulations. Nevertheless, a different approach can be used when Ξ is an ellipsoid. Rather than using duality

theory, the approach is based on another result from convex programming: the S-lemma. We provide in this

section conic reformulations for constraints (3) and constraints (5) as conic constraints.

3.1 Outsourcing cost

We study first how to reformulate constraint (3). To highlight the quadratic nature of the constraint, it is

useful to rewrite the latter by grouping its terms according to their degree in ξ:

θ ≥
∑
k∈K

rkgk(1 + βξ0)(d
k − αdkξ0 + d̂kξk) ξ ∈ Ξ

⇔ 0 ≤ α(g) + 2ξTβ(g) + ξTΓ(g)ξ ξ ∈ Ξ, (8)

where

• α(g) = −
∑
k∈K

rkd
k
gk + θ ,

• βk(g) = −r
kd̂kgk

2
for each k ∈ K, β0(g) = −β − α

2

∑
k∈K

rkd
k
gk,

• Γkh(g) = 0 for each k, h ∈ K, Γ0k(g) = −βr
kd̂kgk

2
for each k ∈ K, and Γ00(g) = αβ

∑
k∈K

rkd
k
gk.

Problem (RND) contains an infinite number of constraint (8). A natural approach to handle them would

seek to separate the constraints and rely on cutting plane algorithms. This approach is described in Section 4.

In this section, we would like to consider a compact reformulation for constraint (8). Unfortunately, such a

reformulation is known only when Ξ is an ellipsoid, see Ben-Tal et al. (2002) for details.

Theorem 1. Robust constraint

0 ≤ α(g) + 2ξTβ(g) + ξTΓ(g)ξ for all ξ ∈ Ξ = {ξ | ‖ξ‖2 ≤ κ2}
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is equivalent to the following LMIs in g, and v(
Γ(g) + κ−2

2 v Id β(g)
βT (g) α(g)− v

)
� 0

v ≥ 0,
(9)

where Id is the (|K|+ 1)× (|K|+ 1) identity matrix.

3.2 Capacity constraints

In this section, we consider constraints (5). These constraints involve only affine functions of ξ, so that they

can be rewritten as follows:

∑
k∈K

d̂kfka ξ
k +

∑
k∈K

d
k
fka − αξ0

∑
k∈K

d
k
fka ≤ ua + xa a ∈ A, ξ ∈ Ξ

⇔ ξTµa(f) ≤ νa(f, x) a ∈ A, ξ ∈ Ξ, (10)

where

• µka(f) = d̂kfka for each a ∈ A, k ∈ K, µ0
a(f) = −α

∑
k∈K

d
k
fka for each a ∈ A, and

• νa(x, f) = ua + xa −
∑
k∈K

d
k
fka for each a ∈ A.

It is well known in robust optimization that duality theory for convex optimization yields a direct refor-

mulation for constraints (10) when Ξ is described by conic constraints, see (Ben-Tal et al., 2009, Theorem

1.3.4) . Next, we recall the specific reformulation that we obtain for the different types of uncertainty sets

considered in this paper.

Theorem 2. Let a ∈ A be fixed and Ξ be an uncertainty set, and consider robust constraint

ξTµa(f) ≤ νa(f, x) for all ξ ∈ Ξ. (11)

The following holds:

1. If Ξ = {ξ | ‖ξ‖2 ≤ κ2}, then constraint (11) is equivalent to the following constraints in x and f :

κ2‖µa(f)‖2 ≤ νa(f, x). (12)

2. If Ξ = {ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖p ≤ κp} with p = 1 or p = 2, then constraint (11) is equivalent to the

following constraint in x, f , and w:

κp‖µa(f)− w‖q + ‖w‖1 ≤ νa(f, x), (13)

with q =∞ if p = 1 and q = 2 if p = 2.
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3. If Ξ = {ξ | Bξ ≤ b}, then constraint (11) is equivalent to the following constraints in x, f , and w:

bTw ≤ νa(f, x)
BTw = µa(f)
w ≥ 0

(14)

Theorem 2 enables us to solve (RND) with mathematical programming solvers for the cases where

constraint (3) can be reformulated conveniently. As we have seen in Section 3.1, the latter constraint

can be reformulated as a LMI when Ξ is an ellipsoid. Hence, to obtain a pure semidefinite programming

reformulation for (RND) in the case of ellipsoidal uncertainty, we should also reformulate constraints (12)

as LMIs. This can be done using the following basic property of semidefinite positiveness.

Lemma 1. For any vector λ ∈ R|K| and positive scalar λ0 ∈ R+, the following holds:

‖λ‖2 ≤ λ0 ⇔
(
λ0 Id λ
λT λ0

)
� 0.

Using the above result and Theorem 2, we can reformulate constraints (10) as LMIs.

Corollary 1. Robust constraints

µTa (f)ξ ≤ νa(f, x) for all ξ ∈ Ξ = {ξ | ‖ξ‖2 ≤ κ2} and a ∈ A

are equivalent to constraints in x and f(
νa(f, x) Id κ2µa(f)
κ2µ

T
a (f) νa(f, x)

)
� 0 a ∈ A, (15)

where Id is the (|K|+ 1)× (|K|+ 1) identity matrix.

4. Decomposition

The reformulation from the previous section handles only pure ellipsoidal uncertainty sets. These sets are

however not used in the robust network design literature because they tolerate very high individual demand

perturbations, which does not happen in practice. This situation does not occur with the alternative sets

described in Section 2. Therefore, our first motivation in this section is to provide a solution methodology for

solving (RND) exactly that is also able to cope with an uncertainty set that is a polytope or the intersection of

a box and an ellipsoid. To this end, we propose the cutting plane algorithm described in what follows. Then,

we report numerical experiments that show for ellipsoidal uncertainty sets that our method outperforms the

semidefinite programming reformulation by orders of magnitude. For the remaining uncertainty sets, we

prove in this section that (RND) is also polynomially solvable.

We specify in the next subsection our cutting plane algorithm. The separation of robust constraints (5)

and (3) is then discussed in Subsections 4.2 and 4.3, respectively.
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4.1 Cutting plane algorithm

Problem (RND) is a linear program that contains an infinite number of constraints. A solution approach for

the problem could seek to solve it by separating the required constraints on the fly. Let Ξ∗0 and Ξ∗a, a ∈ A,

denote finite subsets of Ξ. The algorithm we propose in this section relies on a master problem

min
∑
a∈A

caxa + θ

(MP ) s.t. θ ≥
∑
k∈K

rk(ξ)dk(ξ)gk ξ ∈ Ξ∗0 (16)∑
k∈K

dk(ξ)fka ≤ ua + xa a ∈ A, ξ ∈ Ξ∗a (17)

(4), (6), (7),

derived from (RND) by relaxing all constraints (3) and (5) corresponding to vectors ξ not belonging to

Ξ∗0 and Ξ∗a, respectively. Problem (MP ) is a finite linear program so that it can be solved by efficient

solvers such as the simplex algorithm from CPLEX (2013). Then, if the optimal solution to (MP ) violates

constraints (3) and (5) corresponding to vectors ξ that do not belong to Ξ∗0 or Ξ∗a, the corresponding vectors

are appended to Ξ∗0 or Ξ∗a and (MP ) is solved again. This iterative procedure continues until the optimal

solution to (MP ) does not violate any constraint in Ξ. For completeness, this cutting-plane algorithm is

formally described in Algorithm 1.

Algorithm 1: Cutting-plane algorithm

repeat
solve (MP );
let (θ∗, x∗, f∗, g∗) be an optimal solution;
foreach a ∈ A do

solve max
ξ∈Ξ

∑
k∈K

dk(ξ)f∗ka − ua + x∗a; // Separating capacity constraints

let ξ∗ be an optimal solution and z∗a be the optimal solution cost;
if z∗a > 0 then add ξ∗ to Ξ∗a;
;

solve max
ξ∈Ξ

∑
k∈K

rk(ξ)dk(ξ)g∗k − θ∗; // Separating cost constraints

let ξ∗ be an optimal solution and z∗0 be the optimal solution cost;
if z∗0 > 0 then add ξ∗ to Ξ∗0;
;

until z∗a ≤ 0 for all a ∈ A and z∗0 ≤ 0;

The crucial step of Algorithm 1 lies in the efficient separation of capacity and cost constraints. This is

detailed in the next subsections.
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4.2 Capacity constraints

Let a ∈ A be fixed and recall the notations µa(f) and νa(f, x) introduced in subsection 3.2. In what follows,

we take a closer look at the separation problem

max
ξ∈Ξ

ξTµa(f)− νa(f, x), (18)

which amounts to maximize a linear function of ξ over a convex uncertainty set Ξ, which is polynomially

solvable. Thus, the remaining of this subsection aims at reducing the time complexity for the special cases

considered in this paper. Clearly, the complexity of problem (18) depends on the structure of Ξ. If Ξ is a

polyhedron such as the hose model or the budgeted polytope, then problem (18) turns to a linear program.

If Ξ is the intersection of an ellipsoid and a box or an ellipsoid, problem (18) turns to convex optimization

problems with one second-order cone constraint with and without bounds on ξ, respectively. In fact, these

two problems can be solved much faster than second-order cone programs by using the special structure

of the uncertainty set. If Ξ is an ellipsoid of radius κ2, then it is well-known that the optimal solution ξ∗

to problem (18) is obtained when ξ∗ is collinear to µa(f), that is, for ξ∗ = κ2
µa(f)

‖µa(f)‖2
. Finally, if Ξ is

the intersection of a box and an ellipsoid, Kreinovich et al. (2008) showed that the problem can be solved

essentially by ordering the coefficients µa(f) for a ∈ A. Our proof below is simpler and more direct than

the general result from Kreinovich et al. (2008). To simplify notations, µa(f) is denoted by µ in the result

below.

Lemma 2. There exists a set K+ ⊆ K containing all the indices k having µk strictly larger than a given

threshold µ∗ such that the optimal solution to optimization problem

max
ξ
{ξTµ : ‖ξ‖∞ ≤ 1, ‖ξ‖2 ≤ κ2} (19)

is attained at ξ∗k = 1 for each k ∈ K+ and ξ∗k =

√
κ2

2 − |K+|µk√∑
k∈K\K+(µk)2

for each k ∈ K\K+.

Proof. Assume without loss of generality that µk ≥ 0 for each k ∈ K, so that ‖ξ‖∞ ≤ 1 can be replaced by

ξk ≤ 1 for each k ∈ K. (20)

For λ ≥ 0, we define below the lagrangean relaxation of (19) by dualizing constraints (20):

L(λ) = max
∑
k∈K

µkξk −
∑
k∈K

λk(ξk − 1) =
∑
k∈K

(µk − λk)ξk +
∑
k∈K

λk

s.t.
∑
k∈K

(ξk)2 ≤ κ2
2.

(21)

For any λ ≥ 0, the optimal solution of L(λ) is attained at

ξ∗k =
κ2(µk − λk)√∑
k∈K(µk − λk)2

for each k ∈ K. (22)
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Let λ∗ be the optimal solution of minλ L(λ) and let ξ∗ be the associated primal solution defined by equations

(22). Because κ2 > 0, Slater’s condition holds, implying the complementarity slackness conditions (1 −

ξ∗k)λ∗k = 0 for each k ∈ K.

Let K+ = {k ∈ K|λ∗k > 0}. For each k ∈ K+, the complementarity slackness conditions impose that

ξ∗k = 1, and Eq. (22) for k becomes

µk − λ∗k =

√∑
h∈K(µh − λ∗h)2

κ2
≡ µ∗. (23)

Because ξ∗ is feasible for problem (19), we have for each k ∈ K\K+ that

ξ∗k =
κ2µ

k√∑
h∈K(µh − λ∗h)2

≤ 1 =
κ2µ

∗√∑
h∈K(µh − λ∗h)2

.

Hence, µk ≤ µ∗ < min
h∈K+

µh for each k ∈ K\K+, where the strict inequality follows from Eq. (23). Therefore,

we have proven that there exists a set K+ ⊆ K containing all the indices k having µk > µ∗ such that ξ∗k = 1

for each k ∈ K+, and the result follows from optimizing the remaining values of ξ∗ over the ellipsoid of

radius
√
κ2

2 − |K+|.

Lemma 2 enables us to solve problem (19) in polynomial time in a two-steps algorithm. First, we sort the

elements of µ. Then, we search for the optimal K+ through a linear search on |K+| where both
√
κ2

2 − |K+|

and
√∑

k∈K\K+(µk)2 are updated in O(1) time at each step.

4.3 Outsourcing costs

In what follows, we comment on how to solve the separation problem

max
ξ∈Ξ

∑
k∈K

rk(ξ)dk(ξ)gk. (24)

We can assume that g 6= 0 since otherwise the maximum can be trivially computed. The objective function

of problem (24) is a bi-affine function. Denoting affine functions 1 + βξ0 and
∑
k∈K r

kdk(ξ)gk by a(ξ) and

b(ξ), respectively , problem (24) can be reformulated as

max
ξ∈Ξ

a(ξ)b(ξ). (25)

Problem (25) is often denoted as a linear multiplicative program in the literature and is known (Matsui,

1996) to be NP-hard when no assumption is made on the affine functions and Ξ is a general polyhedron.

Recalling the discussion that follows Eq. (2), problem (25) can be reformulated as

sup
ξ∈Ξ,a(ξ)>0,b(ξ)>0

a(ξ)b(ξ). (26)
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Hence, the optimal solution ξ∗ to problem (25) is the same as the optimal solution to

sup
ξ∈Ξ,a(ξ)>0,b(ξ)>0

ln(a(ξ)) + ln(b(ξ)), (27)

which is a convex optimization problem that can be solved in polynomial time for any convex set Ξ that has

a polynomial time separation oracle. Among the many optimization algorithms that exist to solve convex

optimizations problems such as problem (27), we opted for a cutting-plane algorithm inspired by Kelley

(1960), which relies on approximating the objective function via tangent cutting planes corresponding to

elements in a finite subset Ξ′ ⊂ Ξ:

sup γ

(SLA) s.t. γ ≤ (ξ − ξ′)T∇(ln(a) + ln(b))(ξ′) ξ′ ∈ Ξ′

ξ ∈ Ξ

a(ξ) > 0, b(ξ) > 0.

For completeness, the algorithm is described in Algorithm 2. An interesting property of our algorithm is

that the solution of (SLA) is implemented with the efficient simplex solver of CPLEX.

Algorithm 2: Kelley’s cutting-plane algorithm

repeat
solve (SLA);
let (ξ∗, γ∗) be an optimal solution;
define z∗ = γ∗ − ln(a(ξ∗))− ln(b(ξ∗));
if z∗ > 0 then add ξ∗ to Ξ′;
;

until z∗ ≤ 0;

4.4 Complexity of (RND)

We have seen in this section that constraints (3) and (5) can be separated in polynomial time whenever Ξ

is a convex uncertainty set. Using the equivalence between separation and optimization (Grötschel et al.,

1993), it follows that (RND) can be solved in polynomial time.

Theorem 3. Consider problem (RND) and let Ξ be a convex uncertainty set that has a polynomial time

separation oracle. Then, problem (RND) can be solved in polynomial time.

5. Commodity dependent outsourcing costs
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We suppose in this section that the rejection cost for each commodity is an arbitrary affine function of ξ

denoted by ρk(ξ). Hence, the worst-case cost of outsourcing demands becomes

max
ξ∈Ξ

∑
k∈K

ρk(ξ)dk(ξ)gk. (28)

One readily sees that the previous approach does not lead to polynomial time algorithm in this case, because

problem (28) is now a sum of linear multiplicative programs. Namely, replacing the objective function of

problem (28) by its logarithm does not make it concave. In fact, we show next that the problem turns out to

be hard when rejection costs can be different. More precisely, let (RND(ρk)) be the problem of minimizing

c(f, x, g) ≡
∑
a∈A caxa + maxξ∈Ξ{

∑
k∈K ρ

k(ξ)dk(ξ)gk} subject to (4),(5),(6), and (7). The decision version

of (RND(ρk)), referred to as (RND(ρk, η)), is then defined by the following question.

Question 1. Given a threshold robust cost η, is there a feasible solution (f, x, g) to (RND(ρk)) such that

c(f, x, g) ≤ η?

We prove that (RND(ρk, η)) is coNP-complete in the strong sense for general polytopes Ξ.

Theorem 4. If Ξ is a general polytope, the (RND(ρk, η)) is strongly coNP-complete.

Proof. First, we show that (RND(ρk, η)) belongs to coNP. To see this, let c(f, x, g, ξ) ≡
∑
a∈A caxa +∑

k∈K ρ
k(ξ)dk(ξ)gk. A positive answer to question 1 indicates that there exists (f, x, g) that satisfies

(4),(5),(6), (7), and c(f, x, g, ξ) ≤ η for all ξ ∈ Ξ. Hence, to answer “no” to this question, one must

prove that the previous semi-infinite linear program is infeasible. Since only |A| × |K|+ |A|+ |K|+ 1 linear

constraints are always sufficient to ensure that a linear program with |A| × |K| + |A| + |K| variables is

infeasible, there always exists a certificate for the answer “no” that can be verified in polynomial time.

Now, we present a reduction from the σ-stable set problem defined as follows: given an undirected graph

G′ = (V ′, E′) and an integer σ, find a subset S of V ′ with cardinality σ such that, for every pair of vertices

i, j /∈ S, (i, j) ∈ E′. Let us refer to the aforementioned subset S as a σ-stable set for G′. In our reduction, it

exists if and only if the answer to question 1 for the corresponding instance of (RND(ρk, η)) is “no”, which

leads to this theorem.

Let us assume without loss of generality that σ ≤ |V ′|/2. If this is not the case, one can obtain an

equivalent instance of the σ-stable set problem that satisfies the previous condition by adding vertices to G′

connected to all other vertices.

We build the following instance of (RND(ρk, η)): V = {1, 2}, A = {(1, 2)}, K = {1, . . . , 2|V ′|}, dk(ξ) =

ρk(ξ) = ξk, for each k ∈ K, u(1,2) = 0, c(1,2) = 2, and η = |V ′| − ε, where ε will be defined later. Moreover,

we define the following polytope as an uncertainty set:
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Ξ = {ξ ∈ [0, 1]|K| | (∀i ∈ V ′, ξ2i−1 + ξ2i ≤ 1), (∀(i, j) ∈ E′, ξ2i + ξ2j ≤ 1),
∑
i∈V ′

ξ2i ≥ σ}.

Notice that Ξ is never empty because ξk = 0.5 for all k ∈ K always belong to it. The last constraint

that defines Ξ is satisfied because of the assumption that σ ≤ |V ′|/2. Then, the corresponding instance of

(RND(ρk, η)) asks for a solution (f, x, g) such that

c(1,2)x(1,2) +
∑
k∈K

(ξk)2gk ≤ η ξ ∈ Ξ (29)

(RND(ρk, η)) for (σ, V ′, E′)
∑
k∈K

ξkfk(1,2) ≤ x(1,2) ξ ∈ Ξ (30)

gk = 1− fk(1,2) k ∈ K (31)

f, x, g ≥ 0. (32)

Since we always have (ξk)2 ≤ ξk, it is always worth rejecting all the demand to minimize the left-hand

side of (29). It remains to decide whether there exists ξ ∈ Ξ such that
∑
k∈K(ξk)2 > η. For that, we

first prove that
∑
k∈K(ξk)2 ≥ |V ′| is possible if and only if there exists a σ-stable set for G′. This is true

because, by the definition of Ξ,
∑
k∈K(ξk)2 ≥ |V ′| if and only ξ is an integer vector, in which case the set

{i ∈ V ′ | ξ2i = 1} is a σ-stable set for G′.

It only remains to give a polynomial value for ε such that
∑
k∈K(ξk)2 > |V ′| − ε suffices to ensure the

existence of a σ-stable set for G′. If the answer to the stable set instance is “no”, then any integer ξ violates

at least one of the constraints that define Ξ by at least one unit. As a result, any ξ ∈ Ξ must be at least

“one unit apart” from any integer solution. More formally, we must have

∑
k∈K

min{ξk, 1− ξk} ≥ 1. (33)

Since the function F (ξ) =
∑
k∈K(ξk)2 is convex, this function is maximized subject to (33) and ξ2i−1 +

ξ2i ≤ 1 for all i ∈ V ′ when ξk is integer for all k ∈ K except two, for which ξk = 0.5. Hence, we must have

F (ξ) ≤ |V ′| − 1 + 2(0.5)2 = |V ′| − 0.5

for any ξ ∈ Ξ. Thus, any ε ≤ 0.5 suffices.

6. Computational experiments

We present in this section our computational study carried out on the real networks from SNDlib. The

main objective of this section is to prove that cutting plane algorithms are more appropriated to handle
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constraints (3) than the classical SDP reformulation. As a byproduct of this approach, we compare the

computational complexity and solution costs provided by the three uncertainty sets introduced in Section 2

solved by two variants of cutting plane algorithms. Finally, we also compare our new model with the classical

robust network design model where no demand outsourcing is permitted, and to the deterministic models

where the uncertainty sets are reduced to the nominal value.

6.1 Test problems

6.1.1 Instances

We test our models and algorithms on fifteen realistic network instances available from SNDlib (Orlowski

et al., 2010). The main characteristics of these instances are reminded in Table 1. The networks being

undirected, we chose to duplicate each arc to be sure that each commodity can be served by at least one

directed path. For each network, we consider that the price elasticity of demand −α/β can take each value

in {−0.2,−0.5,−0.8}, which are reasonable values according to the literature (Agiakloglou and Yannelis,

2006). Then, the value of β is set to 0.5 and α is computed accordingly.

|V | |A| |K|
di-yuan 11 84 22

pdh 11 68 24
polska 12 36 66

nobel-us 14 42 91
atlanta 15 44 210

newyork 16 98 240
france 25 90 300
india35 35 160 595
cost266 37 114 1332

abilene1 12 30 66
abilene2 12 30 65

germany17 17 52 106
geant1 22 72 181
geant2 22 72 170

germany50 50 352 662

Table 1: Instances description.

6.1.2 Uncertainty

We describe in the following how uncertainty has been characterized in our numerical experiments. Recent

published results (Babonneau et al., 2013; Poss and Raack, 2013) state that forecast errors on demand are

of the order of 50% of the nominal value of the demand. Hence, for the first nine networks, we fix d̂k = 0.5d
k

for each k ∈ K. For the last six networks, our values for d̂k and d
k

are those proposed by Koster et al.
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(2013), which are based on historical data. Deciding for realistic values of r is harder because previous

literature on the problem decide for somewhat arbitrarily high values for r, and suppose that the parameters

are fixed, see Andrade et al. (2006). We considered two sets of instances which generate r in two distinct

ways. In the first set, the value of rk for each k ∈ K is equal to r̃, which is comprised between 104% and

106% of the capacity cost per unit of nominal demand, computed as follows. Let z be the optimal solution

cost for the deterministic version of the problem where the demand takes its nominal value d. The nominal

outsourcing cost is defined as r̃ = ∆z∑
k∈K d

k , where ∆ can take any value in {1.04, 1.05, 1.06}. In the second

set of instances, the value of rk for each k ∈ K is given by rk = SPk

SP r̃, where SP k is the value of the

shortest path from s(k) to t(k) using costs c, and SP =
∑
k∈K

SPk

|K| . Next, we recall how to choose the size

of uncertainty sets to ensure a probabilistic protection of the capacity constraints when no precise knowledge

about the actual probability distributions for demands is available.

We consider constraint-wise uncertainty in this paper so that we can recall the probabilistic results for

a single robust constraint. Let η(ξ) denote a vector of uncertain coefficients ηi(ξ) for i ∈ I which depend

affinely on the uncertainty, that is, η = η0 +
∑
k∈K η

kξk for given vectors η0 and ηk in R|I|. Let us also

denote by γ a constant scalar and by y a vector of optimization variables. Given uncertainty set Ξ, we

consider robust constraint ∑
i∈I

ηi(ξ)yi ≤ γ for all ξ ∈ Ξ. (34)

We can associate an ambiguous chance constraint to robust constraint (34) by introducing arbitrary random

variables independently and symmetrically distributed in [−1, 1], denoted by ξ̃k for each k ∈ K, and defining

the random variable associated to η as η̃ = η0 +
∑
k∈K η

k ξ̃k. We recall below two well-known bounds for

the ambiguous chance constraint associated with robust constraint (34). The proofs are omitted and can be

found, for instance, in Bertsimas and Sim (2004) and Ben-Tal et al. (2009).

Theorem 5. Let y∗ be a vector that satisfies the robust constraint (34). It holds that

P

(∑
i∈I

η̃iy
∗
i > γ

)
≤ ε,

where ε is defined as follows:

1. If Ξ = {ξ | ‖ξ‖2 ≤ κ2} or Ξ = {ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖2 ≤ κ2}, then ε = exp(−κ2
2/2).

2. If Ξ = {ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ κ1}, then ε = 1
2|K|

(
(1− µ)

(|K|
bνc
)

+
∑|K|
l=bνc+1

(|K|
l

))
, where ν = (κ1 +

|K|)/2, µ = ν − bνc.

Notice that Poss (2013, 2014b) has recently pointed out the conservatism of the second probabilistic

bound from Theorem 5. Poss (2013) proposes an alternative approach based on using multifunctions instead
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of the classical budgeted uncertainty set, which is tractable for problems involving only binary variables. For

optimization problems involving real variables as in this paper, the approach of Poss (2013) is NP-hard so

that we stick to the classical budgeted uncertainty set in the following.

6.2 Experiments

Our model has been solved for the three uncertainty sets recalled in Theorem 5, denoted Ξell (Ellipsoid), Ξint

(Ellipsoid+box), and Ξbud (Budgeted) in what follows. We have considered two solution algorithms calling

the linear and conic quadratic solvers of CPLEX 12.4 (CPLEX, 2013). The first algorithm, denoted by CP ,

is a pure cutting plane algorithm that follows Algorithm 1. The second algorithm, denoted by CP+D, only

separates cost constraints; capacity constraints are dualized according to Theorem 2 and included in the

master problem. For the pure ellipsoidal uncertainty set and model (RND), we have also solved the SDP

reformulation obtained by combining Theorem 1 and Corollary 1 by csdp (Borchers, 1999), denoted by SDP .

The experiments are carried on a computer equipped with a processor Intel Core i7 at 2.90 GHz and 8 GB of

RAM memory. Table 2 provides the number of additional variables (coming from the dualization of robust

constraints) and the number of constraints present in the conic reformulations (before cutting planes are

added) for each type of uncertainty set; notice that in the ellipsoidal case, we consider separately algorithms

CP+D and SDP because the former contains linear and second-order cone constraints (LC and SOCC,

respectively) while the latter contains only LMIs.

Budgeted Ellipsoid + box Ellipsoid Ellipsoid
CP+D CP+D CP+D SDP

Flow conservation |K|(|V | − 1) |K|(|V | − 1) |K|(|V | − 1) |K|(|V | − 1)
(4),(6) LC LC LC LMIs of size 1

Capacity |A|(|K|+ 2) LC |A| SOCC |A| SOCC |A| LMIs of size |K|+ 1
(5) |A|(|K|+ 2) variables 2|A|(|K|+ 1) variables

Outsourcing cost
– – –

1 LMI of size |K|+ 2
(9) 1 LMI of size 1

1 variable

Table 2: Numbers of constraints and additional variables in the conic reformulations.

Our results are grouped into two sets of experiments. In Section 6.2.1, we consider only four networks

(di-yuan, nobel-us, abilene1, and germany 17 ) and compare all algorithms for all parameters combinations

in terms of computational times. This yields a set of 288 different instances, each of them solved for the

three different uncertainty sets. Then, we study sensibility of the computational times and solutions costs

to each individual parameter.

In Section 6.2.2, we fix all parameters to a single value and solve the fifteen networks for the different

uncertainty sets with the most efficient algorithm (CP ). We provide detailed results, including the numbers

of cutting planes generated and iterations of the algorithm. In this second set of experiments, we have also
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(d) CP for the three uncertainty sets.

Figure 1: Performances profiles aggregating all solution times.

considered a simplification of (RND) where no outsourcing is allowed. We also compare these models to the

deterministic models where the uncertainty sets are reduced to the nominal values.

6.2.1 Comparison of all algorithms on four networks

We present in this section aggregated results realized on four networks: di-yuan, nobel-us, abilene1, and

germany 17. We chose networks of moderated dimensions to avoid memory overloads with SDP and very

high solution times with CP+D and SDP .

Figure 1 exhibits performance profiles (Dolan and Moré, 2002) that compare the different algorithms

available for each uncertainty set. We see from Figure 1(b) and Figure 1(c) that for Ξell and Ξint, CP

outperforms by far CP+D. For instance, half of the instances are solved around 32 times faster by CP than

CP+D. We also see from Figure 1(c) that CP+D clearly outperforms SDP . The difference between CP

and CP+D is even more important, the former being at least 128 times faster than the latter for half of

the instances, a tenth of them being solved at least 1000 times faster. Figure 1(a) shows that in the case of

polyhedron Ξbud, the performance of CP and CP+D are much closer, CP having a slight advantage over

CP+D. Since CP is the fastest algorithm for the three uncertainty sets, the objective of Figure 1(d) is

compare CP among different uncertainty sets. We see that problems under Ξbud are easier to solve than the

others, while problems under Ξell are slightly easier than those under Ξint.
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Figure 2: Geometric means of the relative solution times for the different values of ε.
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Figure 3: Geometric means of the relative solution times for the different values of α/β.
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Figure 4: Geometric means of the relative solution times for the different values of ∆.

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

CP CPD 

M
e

an
 r

e
la

ti
ve

 s
o

lu
ti

o
n

 t
im

e
s 

yes 

no 

(a) Ξbud

0 

0.5 

1 

1.5 

2 

2.5 

CP CPD 

M
e

an
 r

e
la

ti
ve

 s
o

lu
ti

o
n

 t
im

e
s 

yes 

no 

(b) Ξint

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

CP CPD SDP 

M
e

an
 r

e
la

ti
ve

 s
o

lu
ti

o
n

 t
im

e
s 

yes 

no 

(c) Ξell

Figure 5: Geometric means of the relative solution times depending on whether gk is build using
shortest paths.
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We study next how varying individually each parameter affects the solution times of each algorithm for

each uncertainty set. Figures 2–5 report the mean relative solution times, computed as follows. For each

network, algorithm and uncertainty set, we compute the geometric mean of all solution times. Then, we

divide each solution time by the computed mean, to obtain normalized solution times. Finally, Figures 2–5

report the geometric means of the normalized solution times, associating to different columns the instances

that correspond to different values of the studied parameter. Notice that using these relative solution

times instead of absolute solution times allows us aggregate solution times for instances that have different

dimensions and complexity. Figure 2 analyzes the solution times when varying the probabilistic guarantee ε

in {0.01, 0.05, 0.10, 0.15}. For CP and CP+D, smaller values of ε yields harder optimization problems, and

the means of the normalized solution times vary between 0.8 and 1.65 times the mean value. The effect is

particularly important for CP+D applied to Ξint where instances corresponding to ε = 0.15 are solved, on

average, 2.5 times faster than instances corresponding to ε = 0.01. Figure 2(c) shows that varying ε has only

a marginal effect on SDP , and in fact, Figures 3(c), 4(c), and 5(c) yield the same conclusion when varying

the other parameters. Figure 3 analyzes the solution times when varying the price elasticity of demand

−α/β in {−0.2,−0.5,−0.8}, setting β to 0.5. The mean of the normalized solution times ranges between 0.6

and 1.4 times the mean value. No clear tendency can be drawn from the picture, since the different types of

instances react differently for distinct algorithms and uncertainty sets. Figure 4 analyzes the solution times

when varying the nominal outsourcing cost through parameter ∆ taking value in {1.04, 1.05, 1.06}. This

parameter seems to have only a marginal effect on the solution times. Nevertheless, for CP it seems that

instances corresponding to smaller values of ∆ are slightly easier to solve than those corresponding to higher

values of the parameter. Finally, Figure 5 analyzes how the solution times are impacted when considering

the shortest paths values in the outsourcing costs (denoted by yes). Apart from Ξbud and SDP applied

to Ξell, instances built according to shortest paths are clearly easier to solve than those which ignore the

shortest paths. The effect is maximized for CP+D applied to Ξint, where the former are solved almost 6

times faster than the latter, in average.

Figures 6 and 7 analyze the optimal solution costs when varying each parameter individually. Figure 6

reports the geometric means of relative solution costs, defined similarly to the relative computational times.

Figure 6(a) shows that, as expected, the solution costs increase with the probabilistic level of protection ε,

and that the effect is more marked for the ellipsoidal uncertainty set. Similarly, Figure 6(c) logically shows

that increasing the nominal outsourcing cost leads to a cost increase. According to Figure 6(d), it seems that

outsourcing costs depending on shortest paths lead to slightly more expensive solutions, and Figure 3(b)

shows that the more expensive solutions are related to average elasticity. Overall, the solution costs seem to

be marginally affected by these changes in parameters values. This is contrast with Figure 7, which presents
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Figure 6: Geometric means of the relative solution costs.

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Ξbud Ξint Ξell 

M
e

an
 p

e
rc

e
n

ta
ge

 o
f 

o
u

ts
o

u
rc

in
g 

co
st

s 

0.01 

0.05 

0.1 

0.15 

(a) Variation of ε

0 

10 

20 

30 

40 

50 

60 

70 

Ξbud Ξint Ξell 

M
e

an
 p

e
rc

e
n

ta
ge

 o
f 

o
u

ts
o

u
rc

in
g 

co
st

s 0.2 

0.5 

0.8 

(b) Variation of α/β

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

Ξbud Ξint Ξell 

M
e

an
 p

e
rc

e
n

ta
ge

 o
f 

o
u

ts
o

u
rc

in
g 

co
st

s 0.4 

0.5 

0.6 

(c) Variation of ∆

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Ξbud Ξint Ξell 

M
e

an
 p

e
rc

e
n

ta
ge

 o
f 

o
u

ts
o

u
rc

in
g 

co
st

s 

yes 

no 

(d) Using Shortest Paths ?

Figure 7: Arithmetic means of proportional outsourcing costs (expressed in %).
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the arithmetic means of the outsourcing costs expressed as percentages of the total costs. In the latter figure,

the results can vary heavily with the values of the parameters. Figure 6(a) shows that the percentages may

increase or decrease with ε, depending on the model of uncertainty. Figure 6(b) shows that the percentages

increase significantly when the elasticity rises. More expectedly, Figure 6(c) shows that increasing nominal

outsourcing costs leads to a lesser use of outsourcing. Finally, Figure 6(d) shows that the impact of using

shortest paths in the outsourcing costs gives different results for the different uncertainty sets.

6.2.2 Cutting plane algorithms for all networks

We present next detailed results for the fifteen networks, setting the parameters as follows: ε = 0.10,

−α/β = −0.5, ∆ = 0.5, and the shortest paths are not used in the outsourcing costs. We also focus on

the cutting-plane algorithm, CP , which appears to be the most efficient algorithms. This reduced set of

instances allows us to present detailed results, including the numbers of cutting planes and iterations of the

algorithm. We also compare (RND) to the model without outsourcing, (RND0), obtained from (RND) by

adding constraint

gk = 0, k ∈ K.

Additionally, we compare both models to their deterministic versions, (ND) and (ND0), respectively. The

deterministic models rely on optimistic or pessimistic data, where optimistic data consider that parameters

take their nominal values, dk = d
k

and rk = rk, for each k ∈ K, while pessimistic data consider that

parameters take their worst values and ignore the price elasticity of demand, dk = d
k
(1 + α) + d̂k and

rk = (1 +β)rk, for each k ∈ K. Although cheaper than model pessimistic, model optimistic yields infeasible

solutions. Namely, if we were to use the fractional routings and capacities corresponding to its optimal

solution, we would overload our capacities, which would result in very high delays and a poor quality of

service (e.g. Ouorou et al. (2000)). Hence, in the absence of robust or stochastic models, decision makers

are forced to use pessimistic data, which results in waste of capital. Therefore, the purpose of the robust

models, such as those considered in this paper, is to reduce the cost of the pessimistic models, while ensuring

a high protection against unexpected outcomes.

Table 3 presents the optimal solution costs for all models. For the deterministic models (ND) and

(ND0), we provide these costs explicitly. For the robust models, we provide the cost reduction of each model

when compared to the cost of the pessimistic version of (ND), denoted (ND)pessimistic and (ND0)pessimistic,

respectively. Namely, we report

100
cost((ND)pessimistic)− cost(M)

cost((ND)pessimistic)
, (35)

for each model M with outsourcing, and similarly for the models without outsourcing. We make next some

comments about the table. First, we see that the optimistic models are much less expensive than the other
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Network (ND) (ND0) (RND) (RND0)
optimistic pessimistic optimistic pessimistic Ξbud Ξint Ξell Ξbud Ξint Ξell

di-yuan 3.29E+06 6.18E+06 3.53E+06 6.18E+06 4 6 0 0 0 -13
pdh 1.67E+07 2.93E+07 1.67E+07 2.93E+07 0 0 -15 0 0 -24

polska 2.94E+04 5.30E+04 3.03E+04 5.30E+04 8 10 7 0 6 1
nobel-us 3.93E+06 7.52E+06 4.30E+06 7.52E+06 16 19 16 0 6 2
atlanta 2.26E+07 1.08E+08 2.34E+07 1.09E+08 12 20 10 2 11 -1

newyork 1.15E+05 2.13E+05 1.25E+05 2.19E+05 12 15 10 -3 2 -5
france 1.81E+04 3.30E+04 1.89E+04 3.30E+04 12 18 15 3 14 7
india35 3.12E+03 5.59E+03 3.20E+03 5.59E+03 14 19 17 1 14 7
cost266 6.66E+06 1.24E+07 7.16E+06 1.25E+07 17 24 21 1 15 8

abilene1 1.04E+01 3.17E+01 1.09E+01 3.17E+01 3 5 -35 0 4 -38
abilene2 1.02E+01 2.13E+01 1.09E+01 2.13E+01 8 13 10 1 7 3

germany17 1.36E+01 3.32E+01 1.44E+01 3.33E+01 9 15 7 1 8 -3
geant1 1.30E+01 2.65E+01 1.34E+01 2.65E+01 11 15 8 1 8 2
geant2 1.21E+01 2.80E+01 1.27E+01 2.81E+01 10 14 4 0 6 -4

germany50 1.80E+01 4.29E+01 1.85E+01 4.29E+01 8 15 10 1 10 0

Arithmetic means 9 14 6 0 7 -4

Table 3: Optimal solution costs for deterministic models and percental cost reductions for robust
models.

models. Unfortunately, they cannot be used in practice. Fortunately, the cost reductions offered by the

robust models can be significant, rising up to 24% and 15% for (RND) and (RND0), respectively. The table

also suggests that Ξint offers the highest cost reduction for both (RND) and (RND0). In contrast with

these good results obtained by Ξint, Ξell can yield solutions even more expensive than the pessimistic model,

represented by the negative numbers in the table. This situation happens because the diameter of the set

prescribed by Theorem 5, κ2, is usually greater than one, so that individual deviations can be greater than

the pessimistic values described above. While Ξbud never yields negative cost reductions, its performance is

not much better than Ξell, reminding the discussion of Poss (2013) on the conservatism of the probabilistic
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Figure 8: Cost reduction when allowing outsourcing (%).
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bounds for Ξbud. Figure 8 provides a different perspective on the numbers from Table 3, by comparing the

cost reductions between models allowing outsourcing or not, using formulae similar to (35). We see from

the figure that there is almost no benefit to allow outsourcing for the pessimistic model, while outsourcing

yields cost reductions of up to 16% and 14%, for Ξbud and Ξint, respectively.

Tables 4 and 5 present detailed computational results for models (RND) and (RND0). Namely, we

report solution times in seconds, numbers of iterations, and numbers of cuts generated throughout CP . We

also report geometric and arithmetic means of these results. The arithmetic mean give more weight to hard

instances, the geometric mean allows to aggregate results obtained for instances of different computational

complexities in a balanced manner. Table 4 shows that Ξbud almost always leads to simpler optimization

problems than Ξell, which itself leads to easier optimization problems than Ξint. In Table 5, we see that

Ξint is still the more complex uncertainty set, while Ξbud and Ξell yields optimization problems of similar

difficulties, Ξell being faster than Ξbud for the largest instances. Analyzing the number of cutting planes,

we see that Ξint requires, on average, almost twice as many cost cuts as the other models. We also realize

that Ξint and Ξell generate more capacity cuts than Ξbud in almost all instances. Let us compare finally the

solutions of (RND) and (RND0). For set Ξbud, (RND) is clearly easier than (RND0), being one order of

magnitude faster to solve, in average. This is a very good result since the introduction of outsourcing does

not make the problem harder, even the contrary. For Ξint and Ξell the results are more contrasted. Hard

instances are easier to solve for (RND) than for (RND0) (this is especially true for Ξint), while it is the

opposite for easy instances.

7. Concluding remarks

We introduce in this paper a new model of robust telecommunications network design with outsourcing.

Differently from previous literature on the topic that ignores the uncertainty in outsourcing costs, we argue

that the price elasticity of demand leads to a negative correlation between uncertain demands and outsourcing

costs. We reformulate the resulting optimization problem as a linear program that involves the separation

of an additional set of inequalities. The separation problem is convex and can be solved in polynomial time,

and therefore, the full model can be solved in polynomial time. The theoretical complexity is confirmed by

our numerical experiments, which show that considering outsourcing does not make the problem harder to

solve. For the budgeted uncertainty set, our experiments even show that outsourcing makes the optimization

problem much easier to solve. We point out that the nice complexity properties hold only because the random

part of outsourcing cost is identical for all commodities. If this were not the case, the resulting optimization

problem would be coNP-hard for arbitrary polyhedral uncertainty sets.
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Network Time Iterations Cost cuts Capacity cuts
Ξbud Ξint Ξell Ξbud Ξint Ξell Ξbud Ξint Ξell Ξbud Ξint Ξell

di-yuan 0.03 0.36 0.31 13 57 29 11 56 28 96 114 241
pdh 0.03 0.08 1.00 10 14 127 7 12 125 33 36 88

polska 0.23 1.53 0.84 49 125 49 48 124 48 195 772 1047
nobel-us 0.14 0.87 0.92 24 82 48 23 81 47 123 415 716
atlanta 0.75 3.88 2.32 49 133 87 48 129 81 446 1561 1187

newyork 0.41 2.12 2.22 36 113 48 35 112 47 388 613 1437
france 4.07 40.9 17.1 102 123 84 62 107 58 814 4171 2691
india35 127 691 155 79 132 51 78 105 49 2596 9693 4900
cost266 44.2 211 68.1 146 92 61 145 74 48 1537 5604 3497

abilene1 0.13 0.56 0.31 37 54 23 36 53 22 176 324 261
abilene2 0.13 0.69 0.59 33 65 41 30 64 40 174 277 420

germany17 0.34 1.81 0.56 55 115 28 46 114 21 260 294 326
geant1 1.30 3.40 5.71 73 107 85 72 106 84 465 408 752
geant2 0.81 1.95 2.12 66 84 42 65 83 41 379 262 476

germany50 53.1 98.1 60.5 125 141 29 124 140 23 2026 1702 1856

Geom. mean 0.83 3.93 3.04 47 85 49 43 80 45 346 644 791
Arithm. mean 15 70 21 60 96 55 55 91 51 647 1750 1326

Table 4: Detailed computational results for (RND).

Network Time Iterations Capacity cuts
Ξbud Ξint Ξell Ξbud Ξint Ξell Ξbud Ξint Ξell

di-yuan 0.06 0.03 0.13 12 57 16 123 165 336
pdh 0.03 0.03 0.06 4 14 4 33 37 220

polska 0.09 0.33 0.30 16 125 55 193 716 752
nobel-us 0.09 0.66 0.34 14 82 45 318 1127 832
atlanta 0.59 1.76 0.78 40 133 102 460 1278 812

newyork 0.80 2.71 2.78 25 113 69 768 1768 2002
france 10.7 100 84.6 95 123 288 1444 6597 6198
india35 692 2610 389 100 132 296 6000 15773 8360
cost266 402 397 96.9 109 92 127 5175 8687 3834

abilene1 0.08 0.06 0.06 23 54 16 219 212 175
abilene2 0.08 0.09 0.09 22 65 22 249 285 271

germany17 0.55 1.36 0.84 30 115 56 572 738 718
geant1 12.9 6.82 7.39 75 107 39 1796 1205 1177
geant2 13.4 5.85 3.76 76 84 36 1744 1118 997

germany50 1190 254 139 105 141 63 5203 3287 3019

Geom. mean 1.91 2.89 2.16 34 85 49 661 1047 1040
Arithm. mean 154 226 48 50 96 82 1620 2866 1980

Table 5: Detailed computational results for (RND0).

Another important contribution of this work points out the weakness of the classical semidefinite pro-

gramming reformulation of robust inequalities with quadratic dependency on the uncertainty and ellipsoidal

uncertainty set. While convex, this reformulation is up to three orders of magnitude slower than the sim-
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pler cutting plane algorithms implemented in this paper. Moreover, our approaches can handle uncertainty

sets richer and more meaningful than the pure ellipsoidal model. Finally, cutting plane algorithms can, in

theory at least, easily be embedded into branch-and-cut and branch-and-cut-and-price algorithms. Hence,

an interesting topic of future research would see how to efficiently adapt our algorithms to robust network

design problems with outsourcing and modular capacities and/or single path routing.
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