Double-dimers and the hexahedron recurrence
Résumé
We define and study a recurrence relation in $\mathbb{Z}^3$, called the hexahedron recurrence, which is similar to the octahedron recurrence (Hirota bilinear difference equation) and cube recurrence (Miwa equation). Like these examples, solutions to the hexahedron recurrence are partition functions for configurations on a certain graph, and have a natural interpretation in terms of cluster algebras. We give an explicit correspondence between monomials in the Laurent expansions arising in the recurrence with certain double-dimer configurations of a graph. We compute limit shapes for the corresponding double-dimer configurations. The Kashaev difference equation arising in the Ising model star-triangle relation is a special case of the hexahedron recurrence. In particular this reveals the cluster nature underlying the Ising model. The above relation allows us to prove a Laurent phenomenon for the Kashaev difference equation.
Nous définissons une relation sur $\mathbb{Z}^3$ appelée “hexahedron recurrence”, qui est un cousin des relations bilinéaires “octaédrale” et “cubique”. Comme ces exemples, ses solutions peuvent être décrites comme fonctions de partition pour certaines configurations d’arêtes sur un graphe planaire, et ont une interprétation naturelle en termes de clusters. Nous trouvons une correspondance explicite entre les termes dans les développements de Laurent dans cette récurrence et certains double-recouvrements par dimères du graphe sous-jacent. On calcule les formes limites.
L’équation de Kashaev paraissant dans l’opération triangle-étoile du modèle d’Ising est un cas spécial de notre récurrence. Ce fait révèle la nature “cluster” du modèle d’Ising, et nous permette de montrer la propriété de Laurent pour l’équation de Kashaev.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|