The height of the Lyndon tree - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2013

The height of the Lyndon tree

Lucas Mercier
  • Fonction : Auteur
  • PersonId : 775642
  • IdRef : 195497066
Philippe Chassaing

Résumé

We consider the set $\mathcal{L}_n<$ of n-letters long Lyndon words on the alphabet $\mathcal{A}=\{0,1\}$. For a random uniform element ${L_n}$ of the set $\mathcal{L}_n$, the binary tree $\mathfrak{L} (L_n)$ obtained by successive standard factorization of $L_n$ and of the factors produced by these factorization is the $\textit{Lyndon tree}$ of $L_n$. We prove that the height $H_n$ of $\mathfrak{L} (L_n)$ satisfies $\lim \limits_n \frac{H_n}{\mathsf{ln}n}=\Delta$, in which the constant $\Delta$ is solution of an equation involving large deviation rate functions related to the asymptotics of Eulerian numbers ($\Delta ≃5.092\dots $). The convergence is the convergence in probability of random variables.
Fichier principal
Vignette du fichier
dmAS0181.pdf (776.65 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01229697 , version 1 (17-11-2015)

Identifiants

Citer

Lucas Mercier, Philippe Chassaing. The height of the Lyndon tree. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.957-968, ⟨10.46298/dmtcs.2357⟩. ⟨hal-01229697⟩
109 Consultations
778 Téléchargements

Altmetric

Partager

More