The height of the Lyndon tree - Archive ouverte HAL
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2013

The height of the Lyndon tree

Lucas Mercier
  • Function : Author
  • PersonId : 775642
  • IdRef : 195497066
Philippe Chassaing

Abstract

We consider the set $\mathcal{L}_n<$ of n-letters long Lyndon words on the alphabet $\mathcal{A}=\{0,1\}$. For a random uniform element ${L_n}$ of the set $\mathcal{L}_n$, the binary tree $\mathfrak{L} (L_n)$ obtained by successive standard factorization of $L_n$ and of the factors produced by these factorization is the $\textit{Lyndon tree}$ of $L_n$. We prove that the height $H_n$ of $\mathfrak{L} (L_n)$ satisfies $\lim \limits_n \frac{H_n}{\mathsf{ln}n}=\Delta$, in which the constant $\Delta$ is solution of an equation involving large deviation rate functions related to the asymptotics of Eulerian numbers ($\Delta ≃5.092\dots $). The convergence is the convergence in probability of random variables.
Fichier principal
Vignette du fichier
dmAS0181.pdf (776.65 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01229697 , version 1 (17-11-2015)

Identifiers

Cite

Lucas Mercier, Philippe Chassaing. The height of the Lyndon tree. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.957-968, ⟨10.46298/dmtcs.2357⟩. ⟨hal-01229697⟩
107 View
749 Download

Altmetric

Share

More