Homomesy in products of two chains - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2013

Homomesy in products of two chains

Résumé

Many cyclic actions $τ$ on a finite set $\mathcal{S}$ ; of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit ``homomesy'': the average of $f$ over each $τ$-orbit in $\mathcal{S} $ is the same as the average of $f$ over the whole set $\mathcal{S} $. This phenomenon was first noticed by Panyushev in 2007 in the context of antichains in root posets; Armstrong, Stump, and Thomas proved Panyushev's conjecture in 2011. We describe a theoretical framework for results of this kind and discuss old and new results for the actions of promotion and rowmotion on the poset that is the product of two chains.
Fichier principal
Vignette du fichier
dmAS0180.pdf (436.28 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01229696 , version 1 (17-11-2015)

Identifiants

Citer

James Propp, Tom Roby. Homomesy in products of two chains. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.945-956, ⟨10.46298/dmtcs.2356⟩. ⟨hal-01229696⟩

Collections

TDS-MACS
99 Consultations
658 Téléchargements

Altmetric

Partager

More