Patterns in matchings and rook placements - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2013

Patterns in matchings and rook placements

Résumé

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards. We enumerate 312-avoiding matchings and partitions, obtaining algebraic generating functions, unlike in the 321-avoiding (i.e., 3-noncrossing) case. Our approach also provides a more direct proof of a formula of Bóna for the number of 1342-avoiding permutations. Additionally, we give a bijection proving the shape-Wilf-equivalence of the patterns 321 and 213 which simplifies existing proofs by Backelin–West–Xin and Jelínek.
Fichier principal
Vignette du fichier
dmAS0177.pdf (343.86 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01229694 , version 1 (17-11-2015)

Identifiants

Citer

Jonathan Bloom, Sergi Elizalde. Patterns in matchings and rook placements. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.909-920, ⟨10.46298/dmtcs.2353⟩. ⟨hal-01229694⟩

Collections

TDS-MACS
82 Consultations
880 Téléchargements

Altmetric

Partager

More