Convolution Powers of the Identity
Résumé
We study convolution powers $\mathtt{id}^{\ast n}$ of the identity of graded connected Hopf algebras $H$. (The antipode corresponds to $n=-1$.) The chief result is a complete description of the characteristic polynomial - both eigenvalues and multiplicity - for the action of the operator $\mathtt{id}^{\ast n}$ on each homogeneous component $H_m$. The multiplicities are independent of $n$. This follows from considering the action of the (higher) Eulerian idempotents on a certain Lie algebra $\mathfrak{g}$ associated to $H$. In case $H$ is cofree, we give an alternative (explicit and combinatorial) description in terms of palindromic words in free generators of $\mathfrak{g}$. We obtain identities involving partitions and compositions by specializing $H$ to some familiar combinatorial Hopf algebras.
Nous étudions les puissances de convolution $\mathtt{id}^{\ast n}$ de l’identité d’une algèbre de Hopf graduée et connexe $H$ quelconque. (L’antipode correspond à $n=-1$.) Le résultat principal est une description complète du polynôme caractéristique (des valeurs propres et de leurs multiplicités) de l’opérateur $\mathtt{id}^{\ast n}$ agissant sur chaque composante homogène $H_m$. Les multiplicités sont indépendants de $n$. Ceci résulte de l’examen de l’action des idempotents eulériens (supérieures) sur une algèbre de Lie $\mathfrak{g}$ associée à $H$. Dans le cas où $H$ est colibre, nous donnons une description alternative (explicite et combinatoire) en termes de mots palindromes dans les générateurs libres de $\mathfrak{g}$. Nous obtenons des identités impliquant des partitions et compositions en choisissant comme $H$ certaines algèbres de Hopf combinatoires connues.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|