Pattern-avoiding Dyck paths - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2013

Pattern-avoiding Dyck paths

Résumé

We introduce the notion of $\textit{pattern}$ in the context of lattice paths, and investigate it in the specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set of all Dyck paths, which we call the $\textit{Dyck pattern poset}$. Given a Dyck path $P$, we determine a formula for the number of Dyck paths covered by $P$, as well as for the number of Dyck paths covering $P$. We then address some typical pattern-avoidance issues, enumerating some classes of pattern-avoiding Dyck paths. Finally, we offer a conjecture concerning the asymptotic behavior of the sequence counting Dyck paths avoiding a generic pattern and we pose a series of open problems regarding the structure of the Dyck pattern poset.
Fichier principal
Vignette du fichier
dmAS0158.pdf (388.54 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01229675 , version 1 (17-11-2015)

Identifiants

Citer

Antonio Bernini, Luca Ferrari, Renzo Pinzani, Julian West. Pattern-avoiding Dyck paths. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.683-694, ⟨10.46298/dmtcs.2334⟩. ⟨hal-01229675⟩

Collections

TDS-MACS
159 Consultations
1397 Téléchargements

Altmetric

Partager

More