On the ranks of configurations on the complete graph - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2013

On the ranks of configurations on the complete graph

Résumé

We consider the parameter rank introduced for graph configurations by M. Baker and S. Norine. We focus on complete graphs and obtain an efficient algorithm to determine the rank for these graphs. The analysis of this algorithm leads to the definition of a parameter on Dyck words, which we call prerank. We prove that the distribution of area and prerank on Dyck words of given length $2n$ leads to a polynomial with variables $q,t$ which is symmetric in these variables. This polynomial is different from the $q,t-$Catalan polynomial studied by A. Garsia, J. Haglund and M. Haiman.
Fichier principal
Vignette du fichier
dmAS0156.pdf (332.38 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01229672 , version 1 (17-11-2015)

Identifiants

Citer

Robert Cori, Yvan Le Borgne. On the ranks of configurations on the complete graph. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.659-670, ⟨10.46298/dmtcs.2332⟩. ⟨hal-01229672⟩

Collections

CNRS TDS-MACS
122 Consultations
691 Téléchargements

Altmetric

Partager

More