Generalized monotone triangles - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2013

Generalized monotone triangles

Résumé

In a recent work, the combinatorial interpretation of the polynomial $\alpha (n; k_1,k_2,\ldots,k_n)$ counting the number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ was extended to weakly decreasing sequences $k_1 ≥k_2 ≥⋯≥k_n$. In this case the evaluation of the polynomial is equal to a signed enumeration of objects called Decreasing Monotone Triangles. In this paper we define Generalized Monotone Triangles – a joint generalization of both ordinary Monotone Triangles and Decreasing Monotone Triangles. As main result of the paper we prove that the evaluation of $\alpha (n; k_1,k_2,\ldots,k_n)$ at arbitrary $(k_1,k_2,\ldots,k_n) ∈ \mathbb{Z}^n$ is a signed enumeration of Generalized Monotone Triangles with bottom row $(k_1,k_2,\ldots,k_n)$. Computational experiments indicate that certain evaluations of the polynomial at integral sequences yield well-known round numbers related to Alternating Sign Matrices. The main result provides a combinatorial interpretation of the conjectured identities and could turn out useful in giving bijective proofs.
Fichier principal
Vignette du fichier
dmAS0155.pdf (325.63 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01229671 , version 1 (17-11-2015)

Identifiants

Citer

Lukas Riegler. Generalized monotone triangles. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.647-658, ⟨10.46298/dmtcs.2331⟩. ⟨hal-01229671⟩

Collections

TDS-MACS
61 Consultations
664 Téléchargements

Altmetric

Partager

More