The combinatorics of CAT(0) cubical complexes - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2013

The combinatorics of CAT(0) cubical complexes

Résumé

Given a reconfigurable system $X$, such as a robot moving on a grid or a set of particles traversing a graph without colliding, the possible positions of $X$ naturally form a cubical complex $\mathcal{S}(X)$. When $\mathcal{S}(X)$ is a CAT(0) space, we can explicitly construct the shortest path between any two points, for any of the four most natural metrics: distance, time, number of moves, and number of steps of simultaneous moves. CAT(0) cubical complexes are in correspondence with posets with inconsistent pairs (PIPs), so we can prove that a state complex $\mathcal{S}(X)$ is CAT(0) by identifying the corresponding PIP. We illustrate this very general strategy with one known and one new example: Abrams and Ghrist's ``positive robotic arm" on a square grid, and the robotic arm in a strip. We then use the PIP as a combinatorial ``remote control" to move these robots efficiently from one position to another.
Fichier principal
Vignette du fichier
dmAS0172.pdf (611.69 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01229663 , version 1 (17-11-2015)

Identifiants

Citer

Federico Ardila, Tia Baker, Rika Yatchak. The combinatorics of CAT(0) cubical complexes. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.849-860, ⟨10.46298/dmtcs.2348⟩. ⟨hal-01229663⟩

Collections

TDS-MACS
62 Consultations
967 Téléchargements

Altmetric

Partager

More