A bijection between permutations and a subclass of TSSCPPs
Abstract
We define a subclass of totally symmetric self-complementary plane partitions (TSSCPPs) which we show is in direct bijection with permutation matrices. This bijection maps the inversion number of the permutation, the position of the 1 in the last column, and the position of the 1 in the last row to natural statistics on these TSSCPPs. We also discuss the possible extension of this approach to finding a bijection between alternating sign matrices and all TSSCPPs. Finally, we remark on a new poset structure on TSSCPPs arising from this perspective which is a distributive lattice when restricted to permutation TSSCPPs.
Origin | Publisher files allowed on an open archive |
---|
Loading...