Balanced labellings of affine permutations - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2013

Balanced labellings of affine permutations

Résumé

We study the $\textit{diagrams}$ of affine permutations and their $\textit{balanced}$ labellings. As in the finite case, which was investigated by Fomin, Greene, Reiner, and Shimozono, the balanced labellings give a natural encoding of reduced decompositions of affine permutations. In fact, we show that the sum of weight monomials of the $\textit{column strict}$ balanced labellings is the affine Stanley symmetric function defined by Lam and we give a simple algorithm to recover reduced words from balanced labellings. Applying this theory, we give a necessary and sufficient condition for a diagram to be an affine permutation diagram. Finally, we conjecture that if two affine permutations are $\textit{diagram equivalent}$ then their affine Stanley symmetric functions coincide.
Fichier principal
Vignette du fichier
dmAS0166.pdf (298.29 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01229656 , version 1 (17-11-2015)

Identifiants

Citer

Hwanchul Yoo, Taedong Yun. Balanced labellings of affine permutations. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.779-790, ⟨10.46298/dmtcs.2342⟩. ⟨hal-01229656⟩

Collections

TDS-MACS
66 Consultations
740 Téléchargements

Altmetric

Partager

More