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Dynamical selective ltering for the Lattice Boltzmann Method

In this study, a new selective ltering technique is proposed for the Lattice Boltzmann Method. This technique is based on dynamical implementation of the selective lter coefcient σ. The proposed model makes the latter coecient dependent on the shear stress in order to restrict the use of the spatial ltering technique in the sheared stress region where numerical instabilities may occur. Dierent parameters are tested on a 3D decaying Taylor Green Vortex and compared to the classical static ltering technique and to the use of a standard subgrid-scale model. I.

Introduction

The Lattice Boltzmann Method [START_REF] Skordos | Initial and Boundary Conditions for the lattice Boltzmann Method[END_REF] (LBM) is used to simulate the behavior of weakly compressible ows. Some studies [START_REF] Marié | Comparison between Lattice Boltzmann Method and Navier-Stokes high order schemes for Computational Aeroacoustics[END_REF] have shown the capabilities of LBM to perform aeroacoustic simulations due to its low dissipation error. However, as a counterpart, LBM suers from numerical instabilities when Reynolds number becomes high. Moreover, numerical instability waves are often generated by unadapted initial conditions, geometric singularities or in region where large numerical approximations are done. In industrial applications several of these numerical defaults are present, thus computations often become catastrophically unstable.

Various studies have proposed stabilization techniques. 47 Lots of stabilizing strategies have a global eect on the viscosity thus modifying the eective Reynolds number. Another eect of stabilizing methods is to increase the global dissipation then impacting pressure uctuation from which it could be important to keep an accurate estimation (e.g. for aeroacoustic simulations). Ricot et al. [START_REF] Ricot | Lattice Boltzmann Method with selective viscosity lters[END_REF] proposed to use selective spatial lters [START_REF] Bogey | A family of low dissipative explicit schemes for ow and noise computations[END_REF] to stabilize the method by increasing the dissipation for high wavenumbers where the LBM instabilities occur and then keeping a low dissipation at small wavenumbers. This approach can be applied to aeroacoustic simulations by maintaining an acceptable level of dissipation error at low wavenumbers. However, this method basically applies to the whole domain and becomes useless outside of sheared region where numerical instabilities have less chances to develop. Furthermore, the use of high-order lters have the eect of increasing the stencil of LBM which is low by nature and lead to a loss of locality of the method which is known to be one of the main advantages of the method. Finally, from a dynamical point of view, the selective spatial lters have never been tested on transition situation where the dynamical evolution prediction is of major importance for accuracy of the results. Therefore, the need for improved stabilization procedure is justied and should be carried out, in particular in the framework of the Lattice Boltzmann Method.

The idea of the present study is to propose an improved ltering strategy restricted to highly sheared region keeping low-sheared ones free of articial dissipation. The proposed strategy is developed in the framework of the Lattice Boltzmann Method and applied to a dynamical test-case highly sensitive to the numerical dissipation. After a brief presentation of the Lattice Boltzmann model, the new ltering strategy is described and validated on a 3D decaying Taylor Green Vortex and then compared to the usual ltering techniques.

II.

Model

II.A. Lattice Boltzmann Method

The Lattice Boltzmann method 1 is described by the following algorithm:

g α (x + c α , t + 1) = g α (x, t) - 1 τ g [g α (x, t) -g eq α (x, t)] (1) 
where g α are distribution functions computed on a regular velocity lattice c α , colliding and relaxing to a local equilibrium g eq α with a relaxing parameter

τ g = ν c2 0 + 1 2
where ν and c0 being the adimensional viscosity and speed of sound respectively. In this study, we use the D3Q19 model described by the following parameters:

g eq α (x, t) = ρω α (1 + u.c α c2 0 + (u.c α ) 2 2c 4 0 - |u| 2 2c 2 0 ) (2) 
ω α =              1 3 , α = 0 1 18 , α = 1 → 6 1 36 , α = 7 → 18 c2 0 = 1 3 (3) 
It should be noticed that the construction of Eq.( 1) enforces the space and time discretization to be linked by the relation:

∆t = c0 ∆x c 0 (4) 
This enforces the CFL number (c 0 ∆t/∆x) to be the same for each simulations (CFL= c0 ). The macroscopic quantities ρ and u can be computed from the distribution functions with the discrete momenta:

ρ = α f α (5) ρu = α c α f α (6) 
The pressure is recovered by the relation:

p = c2 0 ρ (7) 
Based on these parameters, it can be shown 2 that LBM simulates the 3D compressible Navier-Stokes equations in the limit of low Mach numbers with a 2nd order accuracy in space and time.

II.B. Dynamical selective spatial lters

As proposed by Ricot et al., [START_REF] Ricot | Lattice Boltzmann Method with selective viscosity lters[END_REF] the stability of LBM can be enhanced by space-ltering the momenta of eq.( 5) and (6). Spatial ltering of a quantity Q is dened by subtracting a weighted combination of the symmetric neighboring points:

Q(x) = Q(x) -σ D j=1 N n=-N d n Q(x + n∆x j ) (8)
where σ is a coecient between 0 and 1 often taken to 0.1, d n are coecients depending on the lter order and D is the number of spatial dimension. In this study, classical 3-point, 5-point stencil and optimized 9-point stencil lters are used. [START_REF] Bogey | A family of low dissipative explicit schemes for ow and noise computations[END_REF] The coecients of the lters are summarized in table 1.

The idea of this study is to make the coecient σ dependent on the shear stress. For instance, let's consider σ d (x) to be of the form:

σ d (x) = σ 0 1 -e -(|S(x)|/S0) 2 2 (9) 2 of 8 d 0 d 1 d 2 d 3 d 4 SF-3 1/2 -1/4
SF-5 where |S| = 2S ij S ij , σ 0 is the static lter amplitude and S 0 is the shear stress amount from which the dynamical lter start to be active. Thus, when the shear stress is low, the lter has no eect (σ d ∼ 0) and when shear stress rises to higher values, the lter acts normally (σ d ∼ σ 0 ). Then S 0 should be seen as a sensitivity parameter and its inuence will be further discussed in section III.B.2. The quantity |S| involves spatial derivatives that must be computed during the simulations. From a Lattice Boltzmann point of view, this quantity could be computed from the second order momentum:

τ ij = 2ρνS ij = - α c α,i c α,j (g α -g eq α ) (10) 
which gives:

|S| = Q f 2ρν (11) 
with

Q f = 2P ij P ij and P ij = α c α,i c α,j (g α -g eq α ).
Relation ( 11) is often use for the implementation of subgrid scale models in the Lattice Boltzmann Method. [START_REF] Dong | Inertial consistent subgrid model for Large Eddy Simulation based on Lattice Boltzmann Method[END_REF] In the following, the present model is tested on a 3D decaying Taylor-Green vortex and compared to the classical static lters and to the Smagorinsky subgrid-scale model.

III.

Taylor Green Vortex

III.A. Test case implementation

In order to study the eect of the present ltering technique, the decaying Taylor-Green vortex is used.

It is a fundamental case used as prototype for vortex stretching and production of small-scale eddies and therefore allows the study of the dynamics of transition to turbulence. This test-case has been widely used to study the dissipation errors of numerical schemes. [START_REF] Fauconnier | On the performance of relaxation ltering for large-eddy simulation[END_REF] In particular, Aubard et al. [START_REF] Aubard | Comparison of subgrid-scale viscosity models and selective ltering strategy for large-eddy simulations[END_REF] have recently used this test-case to confront the selective ltering techniques to the use of subgrid-scale models.

The initialization of the Taylor-Green vortex is done by setting velocity and pressure variables as follows:

                   p = p ∞ + ρ ∞ U 2 ∞ 16 [cos(2z) + 2][cos(2x) + cos(2y)] u = U ∞ sin(x) cos(y) cos(z) v = -U ∞ cos(x) sin(y) cos(z) w = 0 (12) 
In order to reduce numerical oscillations at the beginning of the simulation, the distribution functions g α are initialized to their equilibrium state with an additional non-equilibrium part based on the Chapman-Enskog micro-scale expansion. More discussions about LBM initialization are detailed in Skordos. [START_REF] Skordos | Initial and Boundary Conditions for the lattice Boltzmann Method[END_REF] For this study, the Mach number is taken to M ∞ = 0.085 and ρ ∞ = 1 xing the other parameters to U ∞ = 0.049 and p ∞ = 1/3 in lattice unit. The relaxation parameter is set with the Reynolds number Re to

τ g = U ∞ ∆xc 2 0 Re + 1 2
. For the validation of this test case, the spectral data from Brachet et al. [START_REF] Brachet | Small-scale structure of the Taylor-Green vortex[END_REF] are used and compared to our reference simulation on a 256 3 grid.

III.B. Results and discussion

All the simulations of this study are performed on 2π-periodic cubic domain with a Reynolds number of Re = 1600. A reference simulation is performed on a 256 3 grid without any ltering technique. Figure 1 displays the evolution of the sheared quantities in the domain. The classical behaviour of the Taylor-Green vortex is observed, the initial eld gives rise to large vortices which are then stretched and lead to the production of small-scale eddies and decaying turbulence. In the following, a series of tests are performed to characterize the present ltering strategy. First, the inuence of the grid resolution on the non-ltered scheme is presented, then the inuence of parameters σ 0 and S 0 in equation ( 9) are scrutinized and nally, a comparison with the static ltering strategy and the subgrid-scale model is performed.

III.B.1. Inuence of the resolution

The lattice Boltzmann method is a 2nd-order accuracy scheme in space and time. In the literature, few studies have been published on the validation of the 3D Taylor-Green vortex with LBM simulations. Then it could be interesting to see the capabilities of the classical scheme to simulates the dynamics of a 3D decaying vortex. For that purpose, the evolution of the kinetic energy dissipation rate = -∂ t k is scrutinized for various resolution from 64 3 to 256 3 and compared with the spectral simulation of Brachet et al. [START_REF] Brachet | Small-scale structure of the Taylor-Green vortex[END_REF] The TGV dynamical evolution is characterized by three main steps visible in the time trace of . First, the initial laminar state is transitioning to turbulence until the stretched vortex tubes break down into small-scales around t = 5. Then the dissipation rate is rising to a sharp peak near t = 9 corresponding to the full turbulent state which is then decaying similarly to an isotropic and homogeneous turbulence.

The results of the classical LBM simulations without any technique are displayed in gure 2. The reference simulation on a 256 3 grid is observed to be in very good agreement with the spectral results. The 128 3 grid gives satisfactory results for the transition region but the peak in the dissipation rate is not fully reached and the decaying phase starts too early. Then the 64 3 and 96 3 simulations give rise to basic instability at dierent time. The 96 3 grid simulation exhibits a relatively good transition to turbulence but collapses just before the peak of dissipation around t = 8. Finally, the 64 3 grid simulation collapses around t = 5 when the stretched vortex tubes break down into small-scales.

Thus, the LBM scheme shows a good ability to simulate the Taylor-Green vortex dynamics when using ne grids but is limited by its inherent instability for coarser grids. Then the use of stabilizing ltering strategy becomes a crucial point to investigate turbulent simulation with the Lattice Boltzmann Method.

III.B.2. Tuning parameters

As described in section II.B, the dynamical ltering strategy is sensitive to two main parameters which are σ 0 and S 0 . The rst one determines the ltering amplitude when the shear stress is high and could be seen as the eciency of the lter. The latter one plays the role of shear stress selectivity and is essential for controlling the dissipation amount of the ltering technique.

The sensitivity to these parameters is then investigated on a 96 3 grid for various values of σ 0 , S 0 and the dierent selective lters presented in table 1. The nomenclature used to distinguish the simulation is based on a ssf f dd name where s = 100σ 0 , f is the number of points of the selective lter and d = 100S 0 . For example, the s5f 3d100 simulation refers to the use of the 3-points lter with σ 0 = 0.05 and S 0 = 1 in lattice unit. A rst sensitivity analysis is performed on the σ 0 parameter with a xed value of S 0 = 1. Results are reported in gure 3-left and exhibit relatively similar behaviour. A high value of σ 0 (thick dotted lines) induces more damped results, in particular after the vortex breakdown near t = 5 when the lter order is low (red curves). On the other hand, better results are obtained for low σ 0 values (thin lines). This improvement is particularly important for the 3-point lter which can handle the vortex breakdown around t = 5 when σ 0 is set to 0.01. Lower values of σ 0 have been tested but lead to unstable simulations. This suggest that the dynamical ltering strategy should be applied for values of σ 0 as low as possible in the limit of stability. By looking at gure 3-right where the time evolution of σ d is represented, one can see that the value of σ 0 has a direct impact on the time evolution of σ d . Indeed, when σ 0 changes, the ltering amount is modied and so is the shear stress which modies the local σ d value. Moreover, for higher values of σ 0 the maximum value of σ d is never reached suggesting that the ltering amount induces lower shear stress and then reducing σ d . As a counterpart, when σ 0 is low, the ltering amount allows larger shear stress values then increasing σ d to its maximum value xed by σ 0 . However, these considerations depends on the shear stress selectivity which is driven by the value of S 0 .

The second sensitivity analysis is performed on the S 0 parameter with a xed value of σ 0 = 0.05. Results are reported in gure 4-left. It shows that the selected S 0 values have an important impact on the results. A lower sensitivity (dashed lines) induces an earlier ltering which damp the initial laminar state and lead to a wrong dissipation rate evolution. Indeed, results of gure 4-right indicates that σ d starts to increase from a not zero value for low sensitivity lters. In contrast, when the sensitivity is high (solid lines), the lter does not act in low sheared region and is activated only when large vortices have broken up and small-scales structures are rising to turbulence. Moreover it could be seen from gure 4 that the impact of the lter order is reduced when increasing the sensitivity. Then, 3-points lter results are close to these of the 9-point lter when sensitivity is high (thick solid lines). This is an important consequence in terms of computational cost suggesting that the lter order could be reduced when increasing sensitivity.

These tuning tests have emphasized the important role played by the couple (σ 0 , S 0 ) on the simulation of a 3D decaying Taylor-Green vortex. In the following simulations, this couple will be set to (0.05, 1.).

III.B.3. Comparison with static lters

The static ltering technique could be seen as a particular case of the dynamical one when the sensitivity is set to zero (S 0 = 0). Then, static lters act everywhere with the same amount, with potential damping of important structures in the dynamical evolution. With the above discussion, the static ltering technique is then expected to give dissipated results. This is conrmed by looking at gure 5 which displays the comparison of static and dynamical ltering on a 96 3 grid (left) and a 128 3 grid (right). An important result is observed for 3-point stencil lter which gives completely wrong behaviour with a static strategy and exhibits results close to higher order lters for the dynamical strategy. This is particularly observed in the transition region where 3-point dynamical lter gives better results than the static 5-point lter and similar results with the static 9-point lter. Moreover, the dynamical ltering appears to better predict the dissipation peak around t = 9 than the static lters. The above discussions thus indicates that the results could be improved by increasing the ltering sensitivity and decreasing the σ 0 . Then the 96 3 grid simulation with σ 0 = 0.01 and S 0 2 is added for indication on gure 5-left and gives satisfactory results. This behaviour suggests that the wavenumber selectivity of the spatial lters plays a minor role compared to the shear stress selectivity. Indeed, the results indicates that applying a high-order wavenumber selectivity on non-sheared quantities (i.e. with static lters) could lead to over-dissipation in the transition region. As a counterpart, by introducing a shear-stress dependency on the lters, the wavenumber selectivity is forced to act on turbulent quantities with an important shear amount which corresponds to large-scale structures on which the wavenumber selectivity has no impact and could be reduced by decreasing the lter order. This result is of major importance in the framework of lattice Boltzmann method showing that relevant results could be obtained with a 3-point stencil selective lter which correspond to the LBM stencil, then conserving the locality of the scheme particularly important when dealing with heavy parallel implementations.

III.B.4. Comparison with SGS models

The Lattice Boltzmann implementation of subgrid-scale model is very close to the one of the present dynamical ltering. Relation ( 11) is used to estimate the eddy viscosity and thus the relaxation time τ g . The comparison between the implementation of the classical Smagorinsky model and the present methodology is presented on gure 6 where turb1 refers to the Smagorinsky model with a constant C s = 0.1 and turbSm with a constant 0.18. The results indicates that the SGS implementation appears to be too dissipative and describes poorly the laminar-turbulent transition region. Similar observations are detailed in Aubard et al. [START_REF] Aubard | Comparison of subgrid-scale viscosity models and selective ltering strategy for large-eddy simulations[END_REF] where various SGS strategy has been compared and found to be not adapted to this type of transition test case. The present dynamical strategy is found to better predict the transition region by ltering only the sheared region. The main dierence between the present implementation and the SGS methodology relies in the amount of ltering when shear stress is lower than the imposed sensitivity (S < S 0 ). Indeed for those values the lter have no impact and let the turbulent structures free of numerical dissipation. As a counterpart, the SGS implementation is directly proportional to the amount of shear stress and the eddy viscosity have a non zero value for shear stress amount close to S 0 thus imposing an over-dissipation for the concerned structures which are of primary importance for the dynamical evolution. Moreover, the SGS approach is not a bounded procedure and the eddy viscosity can reach arbitrary high value when highly sheared region are encountered whereas the presented strategy is limited by the σ 0 value restricting the numerical dissipation to a limited amount. Finally, from a general point of view, the SGS strategy could be seen as the present dynamical ltering technique with a low shear stress sensitivity and should be linked to the results of section III.B.2.

IV. Conclusion

A dynamical ltering technique for the lattice Boltzmann method has been presented and tested on a 3D decaying Taylor-Green vortex. It has been shown that the use of selective spatial lters with a coecient based on the amount of shear stress led to improved dynamical predictions of the 3D decaying Taylor-Green 7 of 8 vortex. In particular, it has been emphasized that the shear stress selectivity was the action of the lters to localized zones then reducing the global amount of numerical dissipation. The choice of shear stress selectivity has been motivated by the lattice Boltzmann framework for which the shear stress is a relevant quantity that can be accessed with a minimum amount of additional computational time. The results are particularly improved when the lter order is low, especially for the comparison with static selective lters suggesting that the wavenumber selectivity is dominated by the one of the shear stress. The comparison of the presented methodology to the classical subgrid-scale model methodology on a laminar-turbulent transition test case such as the Taylor-Green vortex have also led to promising results highlighting the importance of shear-stress selectivity in the prediction of the turbulence dynamical evolution. From a computational cost point of view, the presented strategy have shown interesting capabilities when using low-order lters thus reducing the eective stencil to the one of the LBM.

Then the dynamical ltering strategy should be seen as an enhanced stabilization procedure for the lattice Boltzmann method where the amount of numerical dissipation could be controlled in space. The presented methodology have been tested on a specic test-case and should be improved by making the sensitivity S 0 independent of the test case. Further studies must be carried out to overcome these limitations through a global stability analysis. Moreover, additional investigations must be carried out to characterize the dynamical ltering behaviour in the case of wall-bounded ows.

Finally it should be noticed that the presented methodology could be applied to a wide variety of numerical problems where only local dissipation is required. Moreover, the presented procedure should be extended to dierent physical problems by modifying the sensitive quantity and not restrict it to the shear stress. Furthermore, the presented dynamical ltering is not restricted to the Lattice Boltzmann method and could be applied to the classical nite dierences schemes.
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 1 Figure 1. Isosurface of the Q-criterion colored by kinetic energy at time t = 0,t = 4,t = 10,t = 16 for Re = 1600 on a 128 3 grid.
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 2 Figure 2. Non dimensional time evolution of the dissipation rate .
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 3 Figure 3. Inuence of the σ0 parameter. Non dimensional time evolution of the dissipation rate (left) and maximum value of normalized dynamic coecient max[σ d (x)]/σ0 (right).
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 4 Figure 4. Inuence of the S0 parameter. Non dimensional time evolution of the rate (left) and maximum value of normalized dynamic coecient max[σ d (x)]/σ0 (right).
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 5 Figure 5. Comparison between static lters (solid lines) and dynamical lters (dashed lines) on a 96 3 domain (left) and a 128 3 domain (right).
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 6 Figure 6. Comparison between dynamical ltering strategy and subgrid-scale model on a 96 3 domain (left) and a 128 3 domain (right).
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