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In this paper, we propose a Taylor's nonpolynomial series approximation and its application to the computation of approximate solution of differential equations as well as the representation of functions. We also present an extension of the Taylor's theorem for nonpolynomial series approximation and error analysis.

Introduction

The Maxwell's equations of electromagnetism, motion of objects, fluid and heat flow, bending and cracking of materials, vibrations, electrical circuits, chemical reactions, nuclear reactions, wave propagation, etc. are modelled by system of differential equations. Hence, the most important mathematical tool for modeling engineering systems and physical phenomena is the differential equation [START_REF] Kalogiratou | Runge-Kutta type methods with special properties for the numerical integration of ordinary differential equations[END_REF]. The Taylor series method, also called the recurrent power series method [START_REF] Roy | Studies in the application of recurrence relations to special perturbation methods I[END_REF][START_REF] Steffensen | On the differential equations of Hill in the theory of the motion of the Moon II[END_REF][START_REF] Deprit | Numerical integration of an orbit and its concomitant variations by recurrent power series[END_REF], is one of the fundamental building blocks of numerical analysis, has a long and rich history. The Taylor's polynomial series approximation method is well known and has been used in a variety of applications. Numerical solution of a system of differential systems, in the context of the periodic orbits, has been evaluated by using the Taylor method [START_REF] Choe | Computing periodic orbits with high accuracy[END_REF][START_REF] Guckenheimer | Computing periodic orbits and their bifurcations with automatic differentiation[END_REF][START_REF] Lara | Numerical continuation of families of frozen orbits in the zonal problem of artificial satellite theory[END_REF]. Performance of the Taylor series method, for ordinary differential equations (ODEs) and differential-algebraic equations (DAEs), has also been studied in [START_REF] Barrio | Performance of the Taylor series method for ODEs/DAEs[END_REF]. Some recent studies, on the Taylor series method have been performed for the analytic continuation of the Taylor series [START_REF] Abbasbandy | Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations[END_REF]. In these studies especially solution for a class of nonlinear singular boundary value problems (BVPs) without requiring any specific technique in handling the singularity at the origin [START_REF] Chang | Taylor series method for solving a class of nonlinear singular boundary value problems arising in applied science[END_REF] and ODE applications [START_REF] Barrio | Breaking the limits: The Taylor series method[END_REF] are investigated. Some more of the important applications of the Taylor method investigated in the literature, including among others, are numerical methods for differential equations [START_REF] Nedialkov | Validated solutions of initial value problems for ordinary differential equations[END_REF][START_REF] Hoefkens | Computing validated solutions implicit differential equations[END_REF][START_REF] Kumar | Numerical solution of singularly perturbed non-Linear elliptic boundary value problems using finite element method[END_REF], computer assisted proofs in dynamical systems, e.g. the existence of periodic orbits and the Lorenz attractor [START_REF] Tucker | A rigorous ODE solver and Smales 14th problem[END_REF].

The use of nonpolynomial functions, such as exponential and trigonometric functions, in Runge-Kutta methods are presented in [START_REF] Simos | An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions[END_REF][START_REF] Paternoster | Runge-Kutta(-Nystrom) methods for ODEs with periodic solutions based on trigonometric polynomials[END_REF][START_REF] Simos | Exponentially fitted Runge-Kutta-Nystrom method for the numerical solution of initial-value problems with oscillating solutions[END_REF]. The idea of matching the Taylor series of the exact solution with the Taylor series of the numerical solution has been used in the construction of Runge-Kutta methods [START_REF] Simos | An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions[END_REF][START_REF] Paternoster | Runge-Kutta(-Nystrom) methods for ODEs with periodic solutions based on trigonometric polynomials[END_REF][START_REF] Simos | Exponentially fitted Runge-Kutta-Nystrom method for the numerical solution of initial-value problems with oscillating solutions[END_REF][START_REF] Kalogiratou | A symplectic trigonometrically fitted modified partitioned Runge-Kutta method for the numerical integration of orbital problems[END_REF]. The presence of a parameter (ω), in nonpolynomial spline function, is shown to produce better results [START_REF] Kumar | Computational Techniques for Solving Differential Equations by Quadratic, Quartic and Octic Spline[END_REF][START_REF] Ramadan | Polynomial and nonpolynomial spline approaches to the numerical solution of second order boundary value problems[END_REF][START_REF] Srivastava | Quintic Nonpolynomial Spline Method for the Solution of a Special Second-Order Boundary-value Problem with engineering application[END_REF], in terms of maximum absolute error in approximation, than the polynomial spline function in the approximation of the numerical solution of the BVPs. Some nonpolynomial interpolations, with multiple parameters, have been discussed in [START_REF] Singh | Some studies on nonpolynomial interpolation and error analysis[END_REF], and nonpolynomial spline function is used to obtain upper and lower envelope in empirical mode decomposition (EMD) algorithm to reduce mode mixing and detrend uncertainty [START_REF] Singh | Nonpolynomial Spline Based Empirical Mode Decomposition[END_REF]. Thus, we propose to use the parameterized nonpolynomial series approximation in Taylor polynomial series method for the solution of differential equation and function representation.

This paper is organized as follows: In section 2, we discuss polynomial and nonpolynomial functions, the classical Taylor's series and Taylor's theorem. In section 3, we propose the Taylor's nonpolynomial approximation, extension of the Taylor's theorem for nonpolynomial series approximation and error analysis. Simulation results are presented in section 4. We present the conclusions in section 5.

Preliminaries: Polynomial and Nonpolynomial Series

If a function f (t) has a power series expansion at c (or about c or centered at c), that is, if

f (t) = ∞ k=0 c k (t -c) k and |t -c| < R, then c k = f (k) (c) k! , (1) 
where R is the radius of convergence. The power series in (1) is called the Taylor series of the function f (t) at c. For the special case when c = 0, the Taylor series becomes the Maclaurin series.

The following theorem, which is a generalization of the mean value theorem, known as the classical Taylor's theorem is stated here for quick reference: 

f ( t) = p( t) + f (n+1) (ξ) (n + 1)! ( t -c) n+1 (2) 
where

p(t) = n k=0 c k (t -c) k and c k = f (k) (c) k! .
Taylor's theorem states that the difference between p(t) and f (t) at some point t (other than c) is governed by the distance between t and c and by the (n + 1)th derivative of f (t).

Nonpolynomial, exponential and trigonometric, functions fitted Runge-Kutta methods [START_REF] Simos | An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions[END_REF][START_REF] Paternoster | Runge-Kutta(-Nystrom) methods for ODEs with periodic solutions based on trigonometric polynomials[END_REF][START_REF] Simos | Exponentially fitted Runge-Kutta-Nystrom method for the numerical solution of initial-value problems with oscillating solutions[END_REF] use the span of the functions in the following form

T ∈ span{1, t, t 2 , • • • , t q , exp(±ωt), t exp(±ωt), t 2 exp(±ωt), • • • , t n exp(±ωt)}, (3) 
and when ω = jµ, µ ∈ R the couple exp(±ωt) is replaced by sin(µt), cos(µt) and the method is referred as trigonometrically fitted [START_REF] Kalogiratou | Runge-Kutta type methods with special properties for the numerical integration of ordinary differential equations[END_REF]. We consider (3) with (n + 1) parameters {ω k } n k=0 of the form

T 2n ∈ span{1, t, t 2 , • • • , t q , exp(±ω 0 t), t exp(±ω 1 t), t 2 exp(±ω 2 t), • • • , t n exp(±ω n t)}. (4) 
The interrelation between the basis of polynomial functions and the basis of nonpolynomial functions is established in the following manner:

lim ω→0 span{1, sin(ωt), cos(ωt)} = lim ω→0 span{1, sin(ωt) ω , 2 ω 2 [cos(ωt) -1]} (5) 
From equation ( 5) it follows that lim ω→0 span{1, sin(ωt), cos(ωt)} = span{1, t, t 2 }.

Similarly, we obtain:

lim ω 1 →0 span{1, exp(ω 1 t), exp(ω 2 t)} = lim ω 1 →0 span{1, [exp(ω 1 t)-1] ω 1 , exp(ω 2 t)}, lim ω 1 →0 span{1, [exp(ω 1 t)-1] ω 1 , exp(ω 2 t)} = span{1, t, exp(ω 2 t)}, lim ω 2 →0 span{1, t, exp(ω 2 t)} = lim ω 2 →0 span{1, t, 2 ω 2 2 [exp(ω 2 t) -1 -ω 2 t]}, lim ω 2 →0 span{1, t, 2 ω 2 2 [exp(ω 2 t) -1 -ω 2 t]} = span{1, t, t 2 }, and hence lim ω 1 →0 ω 2 →0 span{1, exp(ω 1 t), exp(ω 2 t)} = span{1, t, t 2 }.
It is easy to show, for m ≥ 1, that:

t m = lim ω→0 m! ω m [exp(ωt) - m-1 k=0 (ωt) k k! ]; t 2m = lim ω→0 (-1) m (2m)! ω 2m [cos(ωt) - m-1 k=0 (-1) k (ωt) 2k (2k)! ]; t = lim ω→0 sin(ωt) ω , and 
t 2m+1 = lim ω→0 (-1) m (2m + 1)! ω 2m+1 [sin(ωt) - m-1 k=0 (-1) k (ωt) 2k+1 (2k + 1)! ]. (7) 
The relationship among polynomial, nonpolynomial and the Fourier series is established in [START_REF] Singh | Some studies on nonpolynomial interpolation and error analysis[END_REF] by the nonpolynomial function with n parameters {ω k } n k=1 of the form T 2n ∈ span{1, sin(ω 1 t), cos(ω 1 t), sin(ω 2 t), cos(ω 2 t), . . . , sin(ω n t), cos(ω n t)} or

T 2n = c 0 + c 1 sin(ω 1 t) + c 2 cos(ω 1 t) + • • • + c 2n-1 sin(ω n t) + c 2n cos(ω n t) (8)
and, using [START_REF] Lara | Numerical continuation of families of frozen orbits in the zonal problem of artificial satellite theory[END_REF], it is shown that:

lim ω 1 →0 T 2n ∈ span{1, t, t 2 , cos(ω 2 t), sin(ω 2 t), . . . , cos(ω n t), sin(ω n t)}, lim ω 1 →0 ω 2 →0
T 2n = span{1, t, t 2 , t 3 , t 4 , . . . , cos(ω n t), sin(ω n t)}, . . . , and lim

ω 1 →0 . . . ωn→0 T 2n ∈ span{1, t, t 2 , . . . , t 2n-1 , t 2n }. (9) 
In equation [START_REF] Barrio | Performance of the Taylor series method for ODEs/DAEs[END_REF], parameters {ω k } n k=1 may or may not be harmonically related with each other. If, for 1 ≤ k ≤ n, ω k = kω 1 and n → ∞ then equation ( 8) converge to well known classical Fourier series representation of any periodic signal.

We also consider the nonpolynomial function with n parameters {ω k } n k=1 of the form

T n ∈ span{1, exp(ω 1 t), exp(ω 2 t), exp(ω 3 t), . . . , exp(ω n t)} or T n = n k=0 c k exp(ω k t) (10) 
and, using [START_REF] Lara | Numerical continuation of families of frozen orbits in the zonal problem of artificial satellite theory[END_REF], it is easy to show that:

lim ω 1 →0 T n ∈ span{1, t, exp(ω 2 t), exp(ω 3 t), . . . , exp(ω n t)}, lim ω 1 →0 ω 2 →0
T n = span{1, t, t 2 , exp(ω 3 t), . . . , exp(ω n t)}, . . . , and lim

ω 1 →0 . . . ωn→0 T n ∈ span{1, t, t 2 , . . . , t n-1 , t n }. (11) 
Similarly, we can use combination of polynomial, sinusoidal and exponential functions to obtain the other span of nonpolynomial functions. From ( 9) and [START_REF] Barrio | Breaking the limits: The Taylor series method[END_REF], it is clear that polynomial functions are special cases of the nonpolynomial functions and hence the span of the nonpolynomial functions includes larger class of functions.

Taylor's Nonpolynomial Series Approximation

We propose a Taylor's nonpolynomial series expansion of a function f (t) by nonpolynomial function

p(t) = c 0 + c 1 sin(ω 1 (t -c)) + c 2 cos(ω 1 (t -c)) + • • • + c 2n cos(ω n (t -c))
as given in Eq. ( 8) with c = 0. Since, there are (2n+1) constants {c i } 2n i=0 in the expansion of f (t), we need (2n+1) equations to determine them. From (8), we obtain

f (c) = p(c) = c 0 + c 2 + c 4 + • • • + c 2n , (12) 
f (2m-1) (c) = p (2m-1) (c) = (-1) m+1 [ω 2m-1 1 c 1 + ω 2m-1 2 c 3 + • • • + ω 2m-1 n c 2n-1 ], (13) 
f (2m) (c) = p (2m) (c) = (-1) m [ω 2m 1 c 2 + ω 2m 2 c 4 + • • • + ω 2m n c 2n ] (14) 
for m = 1, 2, • • • , 2n. Similarly, we propose the Taylor's nonpolynomial series expansion of f (t) by nonpolynomial function p(t) = n k=0 c k exp(ω k (t -c)), as given in Eq. ( 10) with c = 0, and since there are (n + 1) constants {c i } n i=0 in f (t) expansion, we need (n + 1) equations to determine them. From [START_REF] Chang | Taylor series method for solving a class of nonlinear singular boundary value problems arising in applied science[END_REF], we obtain

f (c) = p(c) = c 0 + c 1 + c 2 + • • • + c n , (15) 
f (k) (c) = p (k) (c) = [ω k 1 c 1 + ω k 2 c 3 + • • • + ω k n c n ] (16) 
for k = 1, 2, • • • , n. Similarly, we can use combination of polynomial, sinusoidal and exponential functions to obtain nonpolynomial expansion of a function f (t) about c. We generalize the existing Taylor's result of polynomial approximations and propose the following result for nonpolynomial approximations. 

f ( t) = p( t) + f (n+1) (ξ) -p (n+1) (ξ) (n + 1)! ( t -c) n+1 . ( 17 
)
Proof. If t = c, the proof of the theorem is trivial. Therefore, we consider t = c. For fixed but arbitrary t (and t = c), we construct the function

F (x) = f (x) -p(x) -λ(x -c) n+1 , (18) 
where the constant λ is defined such that F ( t) = 0. It can be easily seen that

λ = f ( t) -p( t) ( t -c) n+1 . ( 19 
)
Clearly the function F (x) has the following properties:

F ( t) = 0, F (c) = 0, F (c) = 0, F (c) = 0, • • • , F (n) (c) = 0. ( 20 
)
Through the mean value theorem and ( 20), we obtain: F (c) = 0 and F ( t) = 0 ⇒ ∃ξ 1 , between c and t, such that F (ξ 1 ) = 0. F (c) = 0 and F (ξ 1 ) = 0 ⇒ ∃ξ 2 , between c and ξ 1 , such that F (ξ 2 ) = 0. . . .

F n (c) = 0 and F n (ξ n ) = 0 ⇒ ∃ξ, between c and ξ n , such that F n+1 (ξ) = 0.

From the above discussions and ( 18), we obtain

F (n+1) (ξ) = f (n+1) (ξ) -p (n+1) (ξ) -λ(n + 1)!, (21) 
and hence

λ = f (n+1) (ξ) -p (n+1) (ξ) (n + 1)! . ( 22 
)
This proves the theorem.

Theorem 3.1 becomes the Taylor's Theorem 2.1 of polynomial approximation if p(t) is a polynomial of degree at most n, i.e. p (n+1) (t) = 0 and hence p (n+1) (ξ) = 0. Thus this result provide an important link between the Taylor polynomial and nonpolynomial approximation and error analysis.

Since the nonpolynomial approximation, given in Eqs. ( 8) and [START_REF] Chang | Taylor series method for solving a class of nonlinear singular boundary value problems arising in applied science[END_REF], depend on the parameters {ω i }, it is pertinent to find values of those parameters, which minimize the approximation error. The error in nonpolynomial approximation can be computed from Eq. ( 17) as

e(t) = f (t) -p(t) = f (n+1) (ξ) -p (n+1) (ξ) (n + 1)! (t -c) n+1 . (23) 
We can derive an overall error bound by L ∞ -norm

|e(t)| ≤ max ξ |f (n+1) (ξ) -p (n+1) (ξ)| (n + 1)! max t |(t -c) n+1 | (24) 
and minimize it with respect to ω, as p (n+1) (ξ) is a function of ω. We can minimize the error |e(t)| with respect to ω by minimax approximation and obtain the value of ω for which error is minimum i.e. we obtain least infinity norm solution of min

ω max ξ |f (n+1) (ξ) -p (n+1) (ξ)| or min ω ||f (n+1) (ξ) - p (n+1) (ξ)|| ∞ .
Using [START_REF] Paternoster | Runge-Kutta(-Nystrom) methods for ODEs with periodic solutions based on trigonometric polynomials[END_REF] one can obtain better approximation than (2) by selecting ω such that min

ω max ξ |f (n+1) (ξ) -p (n+1) (ξ)| ≤ max ξ |f (n+1) (ξ)|.

Simulations

In this section, we consider two examples and apply proposed method to obtain the approximation of the solution of ODE and function representation and compare errors between polynomial and nonpolynomial approximations.

Example 1

The basic principle of the Taylor series method is simple. Let the solution y(t) to the initial-value problem y = f (t, y), a ≤ t ≤ b, y(a) = α (25) has (n + 1) continuous derivatives. If we expand the solution, y(t), in terms of its Taylor polynomial about t i and evaluate at t i+1 , we obtain

y(t i+1 ) = y(t i ) + y (t i )h + y (t i ) 2! h 2 + • • • + y (n) (t i ) n! h n , (26) 
where step size h = (b-a)

N = t i+1 -t i , t i = a + ih, for i = 0, 1, • • • , N .
Successive differentiation of the solution, y(t), gives y (t) = f (t, y), y (t) = f (t, y), • • • , y (n) (t) = f (n-1) (t, y). From these results and Eq.( 26) we obtain

y(t i+1 ) = y(t i ) + f (t i , y(t i ))h + f (t i , y(t i )) 2! h 2 + • • • + f (n-1) (t i , y(t i )) n! h n . (27) 
We consider the initial value problem y = y -t 2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5, N = 10 and apply the Taylor's method of order three, and obtain (with y i = y(t i ))

y i+1 = y i + h(y i -t 2 i + 1) + h 2 2 (y i -t 2 i + 1 -2t i ) + h 3 6 (y i -t 2 i -2t i -1). ( 28 
)
Similarly, from Eqs. ( 8), ( 12), ( 13), [START_REF] Kumar | Numerical solution of singularly perturbed non-Linear elliptic boundary value problems using finite element method[END_REF] and the Taylor's method of order two, we obtain where y 0 = 0.5. This reduces to a polynomial approximation of order two of the initial value problem in the limit as ω 1 → 0. For this problem, the exact solution is y(t) = (t + 1) 2 -0.5 exp(t) and we use this for error calculation. Figure 1 shows comparison of absolute errors (AE) between the Taylor's polynomial (of order 2 and 3) and nonpolynomial approximation (of order 2) of the initial-value problem in Example 1. It is clear that the AE in both polynomial and nonpolynomial cases are comparable when the value of t is closer to 0, whereas, when t is deviating further from 0, the AE in polynomial approximation of order two grows by polynomial growth rate. The AE in nonpolynomial approximation of order two increases only by small amount and is comparable with polynomial approximation of order three.

y i+1 = y i + sin(ω 1 h) ω 1 (y i -t 2 i + 1) + [1 -cos(ω 1 h)] ω 2 1 (y i -t 2 i + 1 -2t i ), (29) 

Example 2

In this example, we approximate the function f (t) = e sin(t) by the Taylor nonpolynomial and polynomial of degree 2 at c = 0. We obtain f (0) = 1, f (0) = 1, f (0) = 1, f (0) = 0, f (0) = -1 and hence the Taylor's polynomial approximation of order four is

f p (t) ≈ 1 + t + 1 2! t 2 - 1 4! t 4 . ( 30 
)
From Eqs.( 8), ( 12), ( 13), ( 14), we obtain the Taylor's nonpolynomial approximation of order two as

f np (t) ≈ (1 + 1 ω 2 1 ) + 1 ω 1 sin[ω 1 (t)] - 1 ω 2 1 cos[ω 1 (t)]. (31) 
This reduces to a polynomial approximation of order two of function in the limit as ω 1 → 0. Figure 2 shows comparison of absolute errors (AE), for 0 ≤ t ≤ 70, between the Taylor's polynomial and nonpolynomial approximation of function f (t) in Example 2. It is clear that the AE in both cases are comparable when the value of t is closer to c, whereas, when t is deviating further from c, the AE in polynomial approximation grow by polynomial growth rate and the AE in nonpolynomial approximation grow by small amount and then decrease.

Conclusion

In this paper, we have proposed the Taylor's nonpolynomial series approximation and presented error analysis result by extending the Taylor's theorem for nonpolynomial approximations. The applications of the proposed method are presented for the approximation of the solution of differential equations and the representation of functions. Simulation results demonstrate the accuracy of the proposed method.

Theorem 2 . 1 .

 21 (Taylor's theorem) Let f (t) ∈ C n+1 [a, b] and let p(t) ∈ C n [a, b] be the nth order Taylor polynomial approximation of f (t) with center c ∈ [a, b]. Then ∀ t ∈ [a, b], there exists some value ξ between c and t such that

Theorem 3 . 1 .

 31 Let f (t) ∈ C n+1 [a, b] and let p(t) ∈ C ∞ [a, b] be the Taylor nonpolynomial approximation of f (t) with center c ∈ [a, b]. Then ∀ t ∈ [a, b],there exists some value ξ between c and t such that

Figure 1 :

 1 Figure 1: Absolute error in the Taylor's polynomial and nonpolynomial (with L ∞ -norm minimization ω 1 = 0.69) approximation of y(t) in Example 1.
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