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Abstract. Open Information Extraction (OIE) aims to automatically
identify all the possible assertions within a sentence. Results of this task
are usually a set of triples (subject, predicate, object). In this paper, we
first present what OIE is and how it can be improved when we work
in a given domain of knowledge. Using a corpus made up of sentences
in building engineering construction, we obtain an improvement of more
than 18%. Next, we show how OIE can be used at a base of a high-
level semantic web task. Here we have applied OIE on formalisation of
natural language definitions. We test this formalisation task on a corpus
of sentences defining concepts found in the pizza ontology. At this stage,
70.27% of our 37 sentences-corpus are fully rewritten in OWL DL.

1 Introduction

In recent years, researchers have tackled the problem of Open Information Ex-
traction in different manner: from machine learning [11] to the exploitation of
sentence structure [10], [3]. This last type of approaches obtains the best results.
Unfortunately, their OIE-tools (exploiting grammatical dependencies [10] and
syntactic tree [3]) sometimes output incorrect tuples. These wrong extractions
are mainly due to parsing errors. Indeed, these approaches take advantage of the
syntactic tree or grammatical dependencies provided by a parser. Consequently,
a good way to improve Open Information Extraction is to handle parsing errors
before the extraction stage itself. To achieve this goal, we have decided to handle
multi-word expressions (MWE). A MWE is a phrase, made up of a set of words,
which has a precise meaning and is unbreakable. “MWE-errors” represent more
than 45% of parsing errors. We propose an algorithm to shorten multi-word
expressions (Sect. 3). We evaluate the algorithm on sentences targeting the do-
main of building engineering construction, and show how it outperforms existing
approaches (Sect. 5.1).

Now that we provide a tool which has the ability to split a complex sentence
into a set of simple triples we can use it to accomplish more high level task.
We illustrate this in an automatic Natural Language (NL) to Web Ontology
Language Description Logics OWL DL [1] conversion process. Here NL sentences
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are definitions of concepts found in an existing ontology. The goal is to help
ontology designers to acquire automatically the OWL DL expression of a concept
whose definition is expressed in natural language. For instance when defining a
Spiccy Pizza through the sentence “A spiccy pizza is any pizza that has a spicy
topping” the formalisation task aims to provide the following OWL DL expression:

SpiccyPizza ⊆ Pizza and (hasTopping some SpiccyTopping)

This result is built from entities (Pizza, SpiccyPizza, SpiccyTopping and
hasTopping) of the pizza ontology1. On the contrary of approaches like [16]
[23,24], we do not create new entities from scratch. Our approach has the ad-
vantage to avoid the proliferation of entities and OWL DL expressions by taking
advantage of the current state of the ontology. To obtain the formal expression
of a sentence, we first extract all the assertions it contains using OIE. Next
the challenge is to rewrite each triple as an OWL expression. Finally, all the ex-
pressions need to be recombined to obtain the final expression intended by the
original definition. A preliminary evaluation of this approach has been made on
a corpus of definitions of the pizza ontology. This corpus has 37 definitions from
which 26 are fully and correctly formalised by our tool.

The key contributions of this work include:

– A betterment of Open Information Extraction (OIE) when taking into ac-
count domain terminology (Sect. 3)

– The proposal of a straightforward approach to provide a formal expression,
in OWL DL, of a natural language definition (Sect. 4.1). This approach does
not require any learning or external resource.

– The proposal of a formalisation approach which avoids an anarchic growing of
new entities (Sect. 4.3). Indeed, the final expression, aligned with an existing
domain ontology, uses only entities found within this ontology.

– A formalisation process which takes into consideration all the piece of infor-
mation appearing in sentences (Sect. 4.2). This is done by taking advantage
of OIE to ensure the grabbing of all the pieces of information.

– An original approach which merges all the triple extract from the sentence
to obtain a single and coherent expression (Sect. 4.4).

The rest of the paper is organised as follows: first, a state of the art on
both the identification the formal expression of concepts and Open Information
Extraction (Sect. 2). Next, details about our approach to improve OIE when
aware of domain terminology (Sect. 3). Then we expose our approach to obtain
automatically OWL DL expressions from NL definitions, taking advantage of the
enhanced OIE method we propose (Sect. 4). Next, we evaluate the two main
problems we tackled (Sect. 5). Finally, we analyse the preliminary results we
obtain (Sect. 6).

1 http://www.cs.ox.ac.uk/isg/ontologies/UID/00793.owl

http://www.cs.ox.ac.uk/isg/ontologies/UID/00793.owl
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2 Related work

Some tasks in the Semantic Web community take as input a sentence and need
to deal with all the pieces of information contained within it. It is the case for
example of Question Answering (QA). To be able to answer a question, a QA
system needs to be able to decode all the chunks of information held by the
sentence. This inescapable need of identifying all what is said by the sentence
can be achieved by OIE and it is what we apply to provide the formal expression
of NL definitions. To the best of our knowledge, it is the first approach where
definitions in natural language are automatically converted in their correspond-
ing formal expressions containing entities completely disambiguated. Unlike ap-
proaches presented in [16] and [7], we do not learn the desired expression from
the ontology or the knowledge base. In this work, we derive it from the concept’s
definition. Compared with some approaches working with NL sentences, we do
not exploit partial information like in [25] where the authors focus on subsump-
tion and thus exploit the “is a” fragment of the definition. Indeed, we are able
to identify cardinality and value restrictions and we take in consideration all the
evidences available within the sentence. In the attempt to identify more complex
OWL restrictions, the interesting work of Tsatsaronis and colleagues [20] aims to
provide the exact property, within a given ontology, which links two previously
labelled concepts. Unlike our approach, a label denoting a class in the targeted
ontology, first needs to be manually assigned to concepts and at the end of the
process one does not have a complete formal expression reflecting the idea of
the input sentence. In addition, our approach is part of a process which avoids
the proliferation of new entities like in [23,24] where new ones are proposed
to formalise a sentence. In our approach, we find the most suitable entities in
the existing domain ontology able to transcript the idea conveyed by the NL
definition. We are able to enrich lightweight ontologies with high logical specifi-
cations. It enables to obtain complex formal ontologies which are thus suitable
for powerful reasoning (subsumption detection and consistency checking).

As mentioned in the above paragraph, OIE can help us to identify all the
pieces of information within definitions, hence we need to use the most accurate
OIE-tool. During the recent years, many systems were developed to perform OIE.
It is the case of ReVerb [11], OLLIE [17], ClausIE [10] and CSD-IE [3,4]. ReVerb
by means of efficient heuristics, focused on incoherent and uninformative triples.
Unfortunately, relations extracted by ReVerb were necessarily verb-based. This
is the main reason why OLLIE, developed by the same group of researchers, was
provided. In addition to be able to identify non verb-driven facts, OLLIE aims
to provide the context/condition, if existing, in which the extracted fact can
be considered true. These two previous tools are machine learning-based. The
most recent approaches do not need any additional resource. They only exploit
result of a standard parser. ClausIE uses grammatical typed dependencies and
CSD-IE the syntactic tree of the input sentence. These two tools dissect each
piece of the result they get from the parsing tool. Consequently, if a dependency
is wrong or a sub-tree is incorrectly labelled in the syntactic tree these OIE-
tools may provide inaccurate extraction. This is why we propose to make some
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preprocessing operations before OIE itself. The details of these tasks are given
in the next section.

3 Handle Multi-Word Expressions to Improve Open
Information Extraction

Recent approaches of OIE, for instance ClausIE [10] or CSD-IE [3,4], only use
syntactic pieces of information to identify informative triples from a sentence.
Consequently, errors in analysis of sentences by Natural Language Processing
(NLP) tools lead to major incorrect extractions in Open Information Extraction.
In a sample set of sentences selected from various regulatory texts in the field
of building engineering (see Sect. 5.1 for more details about this corpus), the
percentage of errors due to MWE is 46.15% using CSD-IE. To handle problems
caused by MWE is thus a relevant way to improve result of IE. Our solution
to improve the quality of results of OIE-tools is to handle MWE by means of
this three-step approach: (i) the detection of MWEs within the sentences, (ii)
their shortening and then the information extraction process is done within
each resulting triple containing a shortened-MWE, (iii) this shortened-MWE is
expanded to get back to its original form. This process is illustrated by Fig. 1
and detailed in the following subsections.

Step 1 - Detection of Multi-Word Expressions

For us, a MWE is every phrase which the meaning will be modified (even become
meaningless) by the addition or the deletion of any of its word. Consequently, a
domain term, an idiomatic expression, a phrasal verb, a named entity, a formula,
a quotation etc. is a MWE. These types of MWE make us foresee that MWE are
more easily and reliably identifiable in a given domain. One can have also domain-
independent terms that are not related to the field of study but are frequently
found in the corpus. It is the case of operators (example: less than, less than
or equal to, as much as), idiomatic expressions (example: “Loose your head”,
“Jump in feet first”), units of measurements, etc. So, a set of MWE in a precise
domain can be made up of the terminology of the field and frequent terms. This
last category of terms can be obtained by means of existing statistical methods
and the help of human experts. At this stage we identify the MWE present in
the original sentence. We thus have a list of possible MWE in our corpus (see
Sect. 5.1 for more details).

Step 2 - Compression of a Multi-Word Expression

The reason why precision of OIE-tools is affected by MWE is that the latter is
considered by the former to be non atomic. Hence, to limit potential hazardous
fragmentation of expressions, we propose to extract information from a new
version of sentences where each MWE will have been replaced by a shortened
version. So, now the question is: how do we get this short version of MWE?
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Fig. 1. An end-to-end example of Open Information Extraction when handling multi-
word expressions.

When trying to answer this question, we must have in mind that the shortened
sentences must always be semantically and syntactically correct to be appro-
priately handled by OIE-tools. We propose the following steps for shortening a
MWE (using its syntactic parse tree):

1. if the MWE is a clause (list of labels for clauses is available in [6]) or a verb
phrase, there is no shortening ;

2. else, if the MWE is a noun phrase, the first token labelled noun is considered
to be the shortened version of the MWE;

3. else, we take the string provided by the smallest phrase2 within the tree.

Let us note that some MWE will be short enough so that they will remain
the same after the shortening. Although such MWE (like any other MWE) is
considered to be atomic, this is important to have in mind because, if an OIE-tool
breaks a MWE, the resulting triple will be incorrect.

After this stage, we now perform OIE itself, which is the third step (Fig.
1). This OIE is done by using existing OIE-systems. Consequently, the following
steps come after OIE and take as input results of OIE, i.e triples.

2 An exhaustive list of labels for phrases is available in the Penn Treebank [6].
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Step 4 - Filtering of Open Information Extraction Results

Earlier in this work, we have pointed out a set of things which degrades precision
of OIE-tools. We have focused on the problematic role caused by multi-word
expressions. Now, we use the only characteristic of MWE to finalise our OIE-
process. Indeed, a MWE is unbreakable. Consequently, when a triple contains
only a fragment of a MWE, it is considered as incorrect. This filtering is done
before the expansion stage, so the MWE are in their “shortened” form.

Step 5 - Expansion of a Multi-Word Expression

After the OIE has been done from the shortened version of the sentence, and te
set of facts has been filtered, we now have to reconcile the remaining facts with
the original (long) sentence. We then look into the list of the extracted facts to
replace shorten version of MWE by their initial long form. This is the aim of
this step.

4 Automatic Acquisition of Axioms from Natural
Language Definitions via Open Information Extraction

In this section, we present our approach to formalise NL definitions (Sect. 4.1).
The first step of this approach uses straightforwardly the improvements of our
OIE method (Sect. 4.2). From OIE, we obtain a set of triples which are then
formalised (Sect. 4.3). Then, we recombine all the formalised triple to obtain a
single formal expression (Sect. 4.4). Finally, we provide a full example to illus-
trate our approach.

4.1 Overall Approach

Taking as input a sentence S, a domain ontologyO, our approach aims to provide
automatically the expression of the defined concept within S w.r.t to O. We
assume that the sentence follows the Aristotelian definition pattern [5]. In simple
terms our definitions are made up of defined concept that is put in relation to
one or more general concepts then, optionally, various precisions are added to
these general concepts. Our formalisation approach is summarised as follows:

1. Structural Sentence Decomposition of S via OIE.
The result of this step is a set of triples {τi} and their organisation (sentence
structure) Σ

2. For each triple τi
(a) Identify and decode non domain terms
(b) Identify possible concept Cs and Co in O using respectively the subject-

part and the object-part of the triple.
This identification is done by a string matching algorithm and we keep
only concepts with the highest similarity score.
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(c) Identify the list {pl} of properties of O whose domain and range are
simultaneously compatible with Cs and Co

(d) Rank {pl} according to the matching score between each of its elements
and the whole triple and select the top property

(e) Rewrite formally (C ⊆ DL(τi))

3. Link the triples as suggested in Σ

The rest of this section details the steps of our approach.

4.2 Structural Sentence Decomposition

In our approach, we take advantage of Structural Sentence Decomposition using
Open Information Extraction (OIE). This notion is exposed in details in [15].
Basically, when OIE is done, facts are simply extracted without any piece of in-
formation on how they are organised and linked. For instance, from the sentence
“If a building is intended to host the public then it should have two escapes or
three main entrances” we do not only have these three facts, triples Fact1 <A
building, is intended, to host the public>, Fact2 <it, should have, two escapes>
and Fact3 <it, should have, three main entrances>. Indeed, it is crucial to out-
put how all these assertions are related as shown here: If(Fact1) then (Fact2
or Fact3). Since this organisation reflects the structure of the sentence, we call
it Sentence Structure and we name it “Decomposition”.
Here we use OIE with improvements bring by the handling of MWE as described
earlier in this paper. A wrong information may lead to a wrong formalisation
result. This is why we choose to deal with our improved OIE approach, despite
some preprocessing steps before extraction itself. For the OIE step itself, we have
chosen CSD-IE of Bast and Haussman [3]. First, let us mention that ClausIE

[10] and CSD-IE are, to our knowledge, the best current OIE-tools. Secondly,
characteristics of CSD-IE in comparison with ClausIE make the former more
suitable for us than the latter. Indeed, CSD-IE was designed to provide triples
with some quality aspects, mainly:

– minimality : triples should be small enough so that a more fine extraction
cannot be made from them. In addition, in CSD-IE, coverage is a main con-
cern. It means that there is an effort to make appear in the whole set of
resulting triples each word of the original sentence at least once.

– accuracy : of course all systems, and thus ClausIE, are expected to be ac-
curate. But, in CSD-IE, there is a given heuristic which has a worth for us:
the predicate-part of their triples must only contain words which “belong to
the verb”. This is a guarantee of having a sort of format for resulting the
triples. It will allow us to find string which may lead to a possible concept
(Step 2.(b) of our approach in 4.1) only in the subject and object parts of
the triple. We thus assume that verbs’ (i.e predicates of our minimal triple)
contribution to the identification of a concept is negligible.
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4.3 Processing of each Triple

In accordance with the content of the previous section, our triples here are sup-
posed to be minimal. Consequently, each of these triple will lead to a “minimal
restriction” or a class subsumption. In OWL DL we have two main kinds of re-
strictions: value and cardinality constraints3. These restrictions in their minimal
form strictly follow the templates presented below:

– Value constraints
• owl:allValuesFrom: < property > only < Class >
• owl:someValuesFrom: < property > some < Class >
• owl:hasValue: < property > value < Class >

– Cardinality constraints
• owl:maxCardinality: < property > max < integer > < Class >
• owl:minCardinality: < property > min < integer > < Class >
• owl:cardinality: < property > exactly < integer > < Class >

In these templates, words between ′ <′ and ′ >′ represent slots to be filled.
The next paragraphs present elements related to the identification of the correct
restriction and then its filling.

Handling of non Domain Terms. When we look at our set of templates, we
have some non domain terms i.e terms not related to our domain ontology O.
These terms are OWL key terms. This operation consists of identifying the right
non domain elements when taking as input a triple. As shown in existing works,
mainly in Question Answering systems [21,22], they can be handled through a
lexicon of non-domain terms. In this lexical resource, we have a set of NL expres-
sions (e.g: at least, higher than, uniquely, only etc.) and their formal equivalents,
i.e. the exact OWL key term to which they refer and thus the right template. In
this work, we have essentially taken advantage of existing lexicon of TBSL [21].

Concepts Identification. In our approach, we uppermost identify concepts
instead of property. The reason is that, in one hand, we have some cases where
there is not any hint to directly identify a property from the verb of the phrase.
It mainly happens when the verb is a variation of the auxiliaries be or have (e.g:
<A wonderful pizza, has, a topping of tomato>). On the other hand, a given
predicate can be expressed using different NL expressions (e.g: A pizza has/is
made up of /contains tomato). Here, we find a concept Cs using the subject-
part and another one Co using the object-part of the triple. Co and Cs are found
within O.
Given an input string s and a domain ontology, we compare s with each label
of all classes and individuals of the ontology4. For each comparison, we have

3 http://www.w3.org/TR/owl-ref/#Restriction
4 With a large ontology, such comparison must take advantage of an index for the sake

of scalability.

http://www.w3.org/TR/owl-ref/#Restriction
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a matching score and the class with the highest score is considered to be the
concept (or individual) denoted by s. The challenge here is to have an appropriate
metric for string alignment. Since in this task we are dealing with multi-token
strings, we expect the following characteristics for the matching metric:

– the position of each token in corresponding string
– the similarity between each token of the two strings
– the editing distance (deletion, replacement, insertion) between the two strings

In the literature, we have found a string similarity metric which fulfil all
these features and which is called Liuppa [18]. It has been developed for ontol-
ogy alignment at the terminological level. To handle the “token-level” of string
comparison, designers of Liuppa first propose to rewrite each input string as a
“string of symbols” as illustrate by Tab. 1.

Table 1. From token to symbols as performed by Liuppa [18]. This operation takes as
input two strings (here S1 = toppings of tomato and S2 = tomato topping) and rewrite
them as a set of symbols (S1 = α1α2α3 and S2 = α3α1). Each αi represents two tokens
similar over a given threshold and is seen as a character in the alphabet {α1, α2, α3}

Token t Most similar token t′ score(t,t′) Symbol

S1 t1 toppings α1

t2 of α2

t3 tomato α3

S2 t4 tomato t3 = tomato 1.0 α3

t5 topping t1 = toppings 0.975 α1

We see that this replacement uses an existing string matching metric. After a
set of experiments on our corpus, the Jaro-Winkler metrics [26] with a thresh-
old equals to 0.85 gives the best results. The second and last step of matching
performed by Liuppa is to provide the similarity between the two “string of sym-
bols” (for the example exposed in Tab. 1, in this step one computes the similarity
between α1α2α3 and α3α1). Experimentally, we have chosen the Jaccard [12]
metrics for this second matching. Indeed it is suitable for set-based similarity.
Because there is a lost of the order of the symbols when using Jaccard, we relax
Liuppa(S1,S2) with Jaro-Winkler (S1,S2). The final similarity measure is
given by:

Sim(S1, S2) = 0.75× Liuppa(S1,S2) + 0.25× Jaro-Winkler (S1,S2) (1)

Properties Identification Now we have possible concepts Co and Cs, we
have to provide the property which links them. Since we are linking out input
triple with the domain ontology O, this property should be found in the set of
properties of O. For this reason, we should first identify the set of properties
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{pl} in the schema of O which are compatible both with Co and Cs. A property
pl is compatible with Co and Cs if and only if:

Domain(pl) ∩Hierarchy(Cs) 6= ∅ and Range(pl) ∩Hierarchy(Co) 6= ∅ (2)

In equation 2, Domain(pl) and Range(pl) are respectively the range and the
domain of pl and Hierarchy(x) = {c, x rdfs:subClassOf∗ c}. The star (∗) here
denotes the property path operator for an arbitrary path of a length equals to 0
or more 5. It allows us to select all the super-classes of x including x itself. {pl}
can be obtained using the following SPARQL query:

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

PREFIX :<http :// example.com/onto#>

SELECT DISTINCT ?p

WHERE {:Cs rdfs:subClassOf* ?Dp . ?p rdfs:domain ?Dp.

:Co rdfs:subClassOf* ?Rp . ?p rdfs:range ?Rp }

In this query :Co and :Cs are respectively URIs for the concepts Co and
Cs previously identified. When :Co or :Cs denotes an individual, the predicate
rdf:type replaces rdfs:subClassOf* in the above query.

Selecting the Top property From the set {pl} of possible properties, we now
need to rank them. This ranking will be done based on the strings provided by
our input triple. Let us remind that using the subject-part and the object-part
of the triple, we have identified the corresponding concepts Cs and Co in the
domain ontology O. As first mentioned in Sect. 4.1 sketching our approach, we
perform a matching between labels of each member of {pl} and the whole triple.
The matching score is obtained using the following formula:

score(pl, τi) = α.sim(pl, pred(τi)) + β. (score(pl, subj(τi)) + score(pl, obj(τi))) (3)

In equation 3, α and β are two scalars used to weight the similarity between the
current property and the predicate-part of the triple on one hand and the same
property and the rest of the triple on the other hand. The relation between them
is α+ 2.β = 1. We thus give more importance to the predicate than to the rest
of the triple for property ranking. subj(τi) and obj(τi) represent the subject-part
and the object-part of the triple τi. In this equation, sim represents the string
similarity measure expressed in equation 1. In practice we have chosen α = 0.5
and β = 0.25.

In brief, we assume that the predicate of a triple is pivotal for property
identification. But in some cases, predicates are not informative enough. It is
thus important to use the other part of the triple (subject and object).

Formal Rewriting of Triple In the step 2.a of our approach, we have already
identified the template of the restriction (and thus OWL key terms) and potential
values. Now, using the concepts (Co and Cs) and the property pr, we just have
to fill the selected template. We call R(τi) (Restriction from τi) the output of
this step.

5 http://www.w3.org/TR/sparql11-query/#propertypath-arbitrary-length

http://www.w3.org/TR/sparql11-query/#propertypath-arbitrary-length
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4.4 Triples Join

Now that we have built our set of minimal restrictions, it is time to put them
together to obtain the expression of our defined concept as stated by the input
definition. Let us remind that our triples (still in NL) (τi)

n
i=1 were obtained using

a “Structural” Information Extraction approach, meaning that we know exactly
how all these n triples are linked. As illustrated in Sect. 4.2, these links can be
expressed by subordinate conjunctions (if, then, while, etc.), conjunctive adverbs
(unless, otherwise, etc.) or by coordinating conjunctions (and, or). In this paper
we will focus on cases where triples are linked by coordinating conjunctions (we
discuss about other types of links in Sect. 5.2). We therefore notice that our
triples are linked by logical operators. For us, negation is handled here at the
level of triple. For instance, from the definition “A vegetarian pizza is any pizza
that does not have fish topping.” we extract τ1:-(A vegetarian pizza, is, any pizza)
and τ2:-(any pizza, does not have, fish topping). The structure of the sentence is
Σ = τ1 and τ2. We see that expressing τ2 by (not (any pizza, has, fish topping))
does not have any impact on Σ. Consequently, the negation operator is not a
possible link in Σ.

In this final step, we aim to answer the question raised by the following
example.

We have the current input data:

– τ1:-(A vegetarian pizza, is, any pizza)
and thus R(τ1) = :VegetarianPizza ⊆ :Pizza

– τ2:-(any pizza, does not have, fish topping)
and R(τ2) = (not (:Pizza :hasTopping some:FishTopping))

– Σ = τ1 and τ2
and thus R(Σ) = R(τ1) and R(τ2)

How can we obtain:
R(S) = :VegetarianPizza ⊆ (:Pizza and ( not(:hasTopping some :FishTopping))

When we look at the expected result R(S), the task to perform seems to be a
join, like in relational databases. Thus the name of triples join. In the above ex-
ample, the common attribute for the join is the concept :Pizza. To obtain R(S),
we will take advantage of join and boolean expressions simplification methods.
In R(Σ) we already have some boolean operators (links between triples). Now,
in the light of our approach to obtain them, for the sake of the current task, each
R(τi) is simply rewritten Cis ri C

i
o. In this expression ri stands for the restriction

parameters6.
For two triples τi and τj we perform simplification using these formulae:(

Cis ri C
i
o

)
∗
(
Cis rj C

j
o

)
= Cis ⊆

(
ri C

i
o ∗ rj Cjo

)
(4)

6 ri is the subsumption or the set of elements of a more complex restriction (URI of the
restriction property, OWL keywords for the type of the restriction, etc.) as explained
in the introduction of Sect. 4.3
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Cis ri C

i
o

)
∗
(
Cio rj C

j
o

)
= Cis ⊆

(
ri (Cio ∗ rj Cjo)

)
(5)

In these formulae, the operator ∗ represents a logical operator (and or or).
Moreover, as it is the case for join in relation database, a “common” operand to
τi and τj is needed (in the following numbered list, we suppose ∗ = and7):

1. within 4, we have Cis = Cjs (the two restrictions concerned the same subject).
The first member of this equation means “instances of Cis are individuals of
the anonymous class ri C

i
o and instances of Cis are individuals of the anony-

mous class rj C
j
o”. Consequently, instances of Cis are member (subsumption)

of both ri C
i
o and rj C

j
o . In this case the join is similar to a factorisation of

an arithmetic expression and we will refer to this first case by that name.
2. Cjs rj C

j
o means “instances of Cjs are individuals of the anonymous class

rj C
j
o”. Now, suppose Cio = Cjs (equation 5). It implies that the restriction

rj C
j
o has to be applied to Cio. This additional restriction for instances of Cio

thus needs to be inserted in τi = (Cis ri C
i
o). We call this equation where Cio

is refined refinement.

To evaluate the simplification of a complex expression, we use the algorithm 1
below. In this algorithm we suppose the existence of the directed graph G(V,E)
thus defined:

– V is made up of all the set of distinct concepts found in (τi)
n
i=1

– a directed edge (ep, eq) belongs to E if there exists a triple τi = (Cis ri C
i
o)

in (τi)
n
i=1 with Cis = ep and Cio = eq.

G is a dependency graph where a concept depends of another one if the former (in
object position) helps to provide more information about the latter (in subject
position). In G some vertices do not have any incoming edge and are element of
what we call Root. Moreover, we can know at any time what is the triple which
has lead to the edge

(
Cis, C

i
o

)
in G (this information is kept during the built of

G). We will use the function triple(Cs,Co,G) to denote this triple.
The recursive function FactorizationRec depicted below “factorises” an

input concept C. Before performing factorization itself (Factorization) the
object-concepts in triples having C in subject position are firstly factorised and
then refined (Refinement) in the aforementioned triples.
We call FactorizationRec for each element of Root. In practise this set is usually
a singleton containing the defined concepts. It is due to the Aristotelian form of
the definition considered here.

7 Only for better understanding. The choice of or would not have changed anything.
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input : C, Σ, G
output: A triple C r co which is the factorisation of all the triples having the

concept C in subject position // Equation 4

Cobjs ← G.children(C);
if |Cobjs| == 0 then return ε;
// It means there is not any triple with C as subject, thus no

factorization possible

else
BoolLinks ← BooleanLinks (Σ, Cobjs) // ‘‘Children’’ of C (i.e Cobjs)

and their links (boolean operators) in Σ (A directed edge in

G corresponds to a triple in Σ)

for each Co in Cobjs do
τ ← Triple (C, Co, G);
τ ′ ← FactorizationRec (Co, Σ, G);
BoolLinks ← Refinement (τ , τ ′, BoolLinks);// Equation 5

end
return Factorization (C, BoolLinks);

end

Algorithm 1: Recursive factorization (FactorizationRec) algorithm

4.5 An End-to-End Example

In this section we provide a full example of the formalisation of a NL definition.

Inputs: the defined concept “American Pizza” and its definition “An amer-
ican pizza is a pizza which has toppings of pepperoni, mozzarella and tomato.”

1. Decomposition
– τ1 (An american pizza, is, a pizza)
– τ2 (a pizza, has, toppings of pepperoni)
– τ3 (a pizza, has, toppings of mozzarella)
– τ4 (a pizza, has, toppings of tomato)
– Σ = (τ1) and τ2 and τ3 and τ4

2. (a) Identification and decoding of non domain terms
– τ1 An american pizza is a︸︷︷︸

⊆

pizza

– No identification in the triples τ2 − τ4
(b) Concepts identification

– (Cs, Co)τ1 = (pizza:AmericanPizza, pizza:Pizza)
– (Cs, Co)τ2 = (pizza:Pizza, pizza:PepperonniSausageTopping)
– (Cs, Co)τ3 = (pizza:Pizza, pizza:MozzarellaTopping)
– (Cs, Co)τ4 = (pizza:Pizza, pizza:TomatoTopping)

(c) Properties identification
– No identification in τ1 since the predicate part of the triple has lead

to a subsumption relation
– In τ2−τ4 we have the same set of properties { pizza:hasIngredient,
pizza:isIngredientOf, pizza:hasTopping}
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(d) Ranking
With the presence of words has and toppings the ordered list of proper-
ties (for triples τ2 − τ4) is (pizza:hasTopping, pizza:hasIngredient,
pizza:isIngredientOf).
Therefore the top property in this case is pizza:hasTopping.

(e) Formal rewriting (when there is not any hint on the type of the re-
striction, we choose the some values restriction)

– τ1 → AmericanPizza ⊆ Pizza

– τ2 → Pizza hasTopping some PepperonniSausageTopping

– τ3 → Pizza hasTopping some MozzarellaTopping

– τ4 → Pizza hasTopping some TomatoTopping
3. Final linking w.r.t Σ

The dependency graph here is depicted by Fig. 2. The only root element
(node without incoming edge) of this graph is the concept AmericanPizza.
To factorize it, we will first need to do so with Pizza using τ2−τ4. We obtain
for the factorization of Pizza:

Pizza ⊆ ((hasTopping some PepperonniSausageTopping) and (hasTopping some

MozzarellaTopping) and (hasTopping some TomatoTopping))

Now, by taking the above triple (Cjs = Pizza, rj =′⊆′, and Cjo = ((hasTopping
some PepperonniSausageTopping) . . . )) which adds more precision to the
concept Pizza, we refine the same concept present in τ1 and we obtain:

AmericanPizza ⊆ (Pizza and ((hasTopping some PepperonniSausageTopping)

and (hasTopping some MozzarellaTopping) and (hasTopping some

TomatoTopping))

Fig. 2. Dependency graph from the triples provide in the example in section 4.5

5 Overall Evaluation

The work we present in this paper tackle two main aspects. The first aspect is
about the improvement of OIE using domain knowledge and the second one is
an approach to provide the OWL DL expression of definitions in natural language.
These two major tasks are evaluated into two following subsections. A proof of
concept of the approach is available at http://tinyurl.com/ozkbmf3.

http://tinyurl.com/ozkbmf3
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5.1 Multi-Word Expressions Handling for Open Information
Extraction

After making some statistics on the factors which lead to incorrect Information
Extraction, we have decided to tackle the multi-word expressions-problem. The
first step of the approach we propose is to identify them in the input sentence. Be
able to perform such identification implies to have a list of possible MWE. That
is why we hypothesize that the sentence describes the realities of a specific field
of interest. Actually, to know that we are working in a specific domain implies
to have a good idea of the terminology of this domain. For our evaluation, we
have taken the list of terms (labels of the concepts in the field) as the set of our
MWE. These terms have been obtained through a key terms extraction process.
We have taken advantage of existing tools (Alchemy 8 in our case) to carry out
this extraction. For this preliminary evaluation, our corpus is made up of 50
random sentences from documents about fire safety [8], energy efficiency [9] and
accessibility [2]. Our list of MWE consists of result provided by Alchemy without
terms containing a proper noun. Moreover, we have added units of measurement.

To perform OIE itself after preprocessing tasks, we have used ClausIE of
Del Corro and Gemulla [10]. In addition, we compare our results to CSD-IE of
Bast and Haussmann [3] and to the “original” version of ClausIE. Results are
presented by Tab. 2.

Table 2. Results of the primary evaluation of OIE using ClausIE (by handling MWE
-thus called ClausIE-MWE) and CSD-IE (without any preprocessing) on a corpus built
from law in building engineering construction.

Tools #extractions #extractions-
correct

#extractions-
incorrect

#errors-due-
to-MWE

CSD-IE 218 127 (58,26%) 91 (41.74%) 42 (46.15%)

ClausIE 315 201 (63.80%) 114 (36.20%) 60 (52.63%)

ClausIE-MWE 165 135 (81.81%) 30 (18.89%) 9 (30%)

CSD-IE performance in this domain-specific corpus (58.26%) is less good than
in “open datasets” like the Wikipedia (70.0%) and New York Times dataset
(71.5%) [3]. The same remark can be made to ClausIE. But by handling the
MWE-problem, we obtain 81.81% of correct extractions (18.19% of errors). We
still have a certain number of errors. Some of these errors are caused by our
handling of MWE as discussed in Sect. 6.1 and others errors come from OIE-
tools we use at the extraction step itself.

8 http://www.alchemyapi.com/

http://www.alchemyapi.com/
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5.2 Automatic Formalisation Process of Definitions

Test Material. To the best of our knowledge, there is not any standard bench-
mark for automatic formalisation of NL definitions. Consequently we have made
preliminary test on a well-known ontology from the SW community: the pizza
ontology. The pizza ontology is very suitable for our task since it matches well
our hypothesis: we have and existing schema with a given hierarchy, we also have
a set of properties with their domain and range well defined, we have a set of new
concepts and their definition to add to this pre-existant schema. We have taken
the version 1.5 of the pizza ontology and gather their definitions (as stated in the
official documentation [13]) when not provided in the rdfs:comment annotation
of concepts. Since we have estimated that the 13 definitions we had after this
operation were not enough for a real evaluation, we have gather more definitions
on the Web. Indeed, there are many :NamedPizza is this ontology with no NL
definition or comment. We look for possible definitions in Wikipedia and various
restaurants sites9. In addition, these definitions are challenging because they do
not follow the “classical” pattern denoted by [Concept] <is a/are a> [Defi-
nition] like in [23] or [19]. Indeed, the defined term is not always the introducer
of the sentence (e.g: “Any pizza that has a spicy topping is a spicy pizza” ) or
can be done using another verb (e.g: “A high calorie pizza will be defined to be
any pizza . . . ”). Moreover, since the pizza ontology example has been designed
to illustrate the whole set of possible OWL restrictions, we have of course all
these possibles restrictions expressed in NL definitions. At this stage we have a
set of 37 definitions.

Results. The first step of our approach brings us to perform an Open Informa-
tion Extraction (OIE). Of course, this operation does not always provide accurate
results. An evaluation of OIE when taking into account domain knowledge (and
thus multi-word expressions - MWE) is described in [14]. There, the accuracy
is 81.81% when using ClausIE for the extraction task itself. In this case, the
domain knowledge (i.e the terminology) taken as input was the set of labels of
our entities. By taking into account this list of domain terms, we improve OIE
from 75.2% (when using directly CSD-IE) to 85.12% as shown by Table 3.

For the extraction of restrictions itself, validation was done manually. Over
the 37 expressions provided by the formalisation of our sentences, 26 (70.27%)
were correct (i.e both triples in OWL DL and the final expression of the defined
concept). From the 121 triples extracted (still in NL), 103 (85.12%) were accu-
rate. When formalising these triples, we get a precision of 79.61% (82 triples). We
remark that our matching process handle correctly noise10 in NL expressions.
These numbers are summarised in Table 4.

9 For example http://www.pizzaexpress.com/our-food/our-restaurant-menu/

mains/, http://www.nutritionrank.com/, etc.
10 Concepts’ tokens are usually surrounded by adjectives, adverbs, prepositions, etc.

http://www.cs.ox.ac.uk/isg/ontologies/UID/00793.owl
http://www.cs.ox.ac.uk/isg/ontologies/UID/00793.owl
http://www.pizzaexpress.com/our-food/our-restaurant-menu/mains/
http://www.pizzaexpress.com/our-food/our-restaurant-menu/mains/
http://www.nutritionrank.com/
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Table 3. Results of the evaluation of OIE when using CSD-IE (by handling MWE -thus
called CSD-IE-MWE) and CSD-IE (without any preprocessing) on our set of definitions.

Tools #Triples #Triples-correct #Triples-incorrect

CSD-IE 125 94 (75.2%) 31 (24.8%)

CSD-IE-MWE 121 103 (85.12%) 18 (14.88%)

Table 4. Results of the formalisation process

#Definitions #Correct-
Definitions-OWL

#Triples-correct #Triples.-correct-
OWL

37 26 (70.27%) 103 82 (79.61%)

6 Overall Discussion

Preliminary evaluations we have performed both on improving OIE and auto-
matic formalisation of definitions highlight some interesting points. They are
discussed in the next two subsections.

6.1 About Open Information Extraction Improvement

We have seen that handle MWE, in a given domain, helps to improve OIE on
sentences of that domain. However we see that our method to handle MWE has
to be improved. Indeed 30% of remaining errors after the shortening of MWE
are due to this shortening operation. Indeed:

– When we choose the first noun of a noun phrase-MWE to replace this MWE
it is not always its suitable representative. In practice, some nouns can some-
times be tagged as verb and thus a potential predicate (e.g: “fire” in the ex-
pression fire extinguisher, “means” in the term means of access, etc.) and it
can cause wrong extractions. Consequently, when we have more than a noun
in a noun phrase, we must have more criteria to choose the representative.

– In some sentences, parsers correctly identify the prepositional modifiers of
all verbs, nouns, adverbs, etc. Consequently the presence of MWE is a priori
not a problem for OIE-systems. Unfortunately, the deletion of prepositions
(found for example in a noun phrase-MWE) during the shortening may lead
to parsing errors. Indeed, parsers will try to identify new relations which
may be wrong leading to incorrect extractions as illustrated below:

1. Original sentence : “A stair is a fixed means of access.”

2. Shortened version : “A stair is a fixed means.”

3. OIE : CSD-IE→(A stair, means, is) & ClausIE→(A stair, a fixed means)
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One of the possible solutions to avoid the shortening of MWE to escape from
their multi-word problem is to replace a MWE by a synonym. Ideally, this syn-
onym should have fewer words (eventually a single word) than the original MWE.
Such synonyms could be found in Linked Open Data or in lexical databases like
Wordnet, etc.

6.2 Analysis of our Automatic Formalisation Approach

In this section, we analyse the key steps of our approach in the light of the
evaluation we have performed. In addition we highlight possible perspectives to
this work.

Improving OIE. By using the compression of multi-word expressions we make
a step in the direction of a more precise OIE-tool. But another weakness of
OIE tools is enumeration detection. In a definition it is very common to
enumerate items. The challenge for OIE-tools is to be able to decode cor-
rectly these items and to put them in the right place in a minimal <subject,
predicate, object> representation. This task goes directly in hand with the
identification of the structure of the sentence.

Triple Formalisation. We have made some (implicit) hypothesis for this step
and they are discussed here.
1. In our approach we assume that each triple correspond to a restriction. In

practice, it is not always the case. Some triples are not informative. For
instance, for the sentence “Sicilian pizza is a pizza prepared in a manner
that originated in Italy.” we have the following output <A pizza, is
prepared, in a manner> which does not have a correct formal expression
w.r.t the pizza ontology. Such cases must be handled.

2. We do not take into account the fact that the concepts Cs and Co could
play opposite roles w.r.t the ontology. For instance, let us take the triple
<Tomato, can be found, in Diavollo Pizza>. The restriction expected
here is DiavolloPizza ⊆ (hasTopping some TomatoTopping). There-
fore, in the query to identify compatibles properties (equation 2) we may
take this issue into account. Moreover, we may have a domain ontology
where there are only properties from Co to Cs.

3. We have performed a concept-driven approach (identification of concepts
first and then their compatible properties). In some cases where the
identification of the property (by means of a string matching) would
have been correct, the concepts are wrongly identified thus leading to
an incorrect property identification. We thus have to find hints, for each
specific triple whether to have a property or concept-driven approach.

4. Another assumption made in this approach is the fact that Cs and Co
are directly linked. In other words, there is a one length path between
them. Since we are in a perspective where the formalisation must be
done taking into account the complexity of the schema of the ontology,
we are not in principle aware of the existence of such a direct link. Thus,
we must be able to handle paths made of many edges between concepts.
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5. We have focused on object properties-based restrictions. But in practice
we may find some restrictions based on data properties. We have in mind
mainly the owl:dataSomeValuesFrom restriction which can be found for
instance in the definition of a High Calorie Pizza:
⊆ Pizza and (hasCalorificContentValue some integer[>= 400])

Going beyond Definitions. As early mentioned in section 4.4, definitions can
be done through sentences with a more complex structure than boolean
connections between facts (e.g: “If a pizza is made in Italy then it is an
Italian pizza”). If we are able to join correctly the triples provided by complex
NL definitions, it will open the way for a more general task on NL sentences:
we mainly think about automatic formalisation of rules.

7 Conclusion

Open Information Extraction is an NLP task which aims to identify all the
atomic facts within sentences. In this work we propose an approach to improve
current OIE-systems overall performance with domain knowledge. This better-
ment is done without modifying the code of existing tools by handling multi-word
expressions (domain terms) at the entry point (detection and shortening before
extraction-itself) and the exit point (re-expansion of shortened expressions). This
manner to deal with MWE allows us to improve OIE from more than 18%. The
ability of OIE to split a sentence into atomic and informative phrases is proposed
to formalise automatically NL definitions in OWL DL. This formalisation process
is straightforward and does not require any learning. In addition to subsumption
detection, we are able to identify more complex OWL DL restrictions: cardinality
and value restrictions. This formalisation task has been evaluated on a corpus
made of sentences defining concepts of the pizza ontology. From the 37 sentences
considered in the evaluation, 26 have been fully and accurately converted in an
OWL DL expression. In the future, we must extend the set of possible restrictions
actually considered in our approach. Moreover, we must enlarge the size of eval-
uation corpora. It may lead to some adjustments of some heuristics or weights
for string similarity measures we used.
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