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Abstract—Implementations of the reciprocal, square root and
reciprocal square root often share a common structure. This
article is a survey and comparison of methods (with only slight
variations for the three cases) for computing these functions.
The comparisons are made in the context of the same accuracy
target (faithful rounding) and of an arbitrary fixed-point format
for the inputs and outputs (precisions of up to 32 bits). Some
of the methods discussed might require some form of range
reduction, depending on the input’s range. The objective of the
article is to optimize the use of fixed-size FPGA resources (block
multipliers and block RAMs). The discussions and conclusions
are based on synthesis results for FPGAs. They try to suggest
the best method to compute the previously mentioned fixed-
point functions on a FPGA, given the input precision. This
work compares classical methods (direct tabulation, multipartite
tables, piecewise polynomials, Taylor-based polynomials, Newton-
Raphson iterations). It also studies methods that are novel in this
context: the Halley method and, more generally, the Householder
method.

I. INTRODUCTION

FPGAs are becoming increasingly large and complex, with
recent devices embedding computational features such as
single-precision floating-point operators [1]. If two decades
ago researchers were customizing floating-point arithmetic
in order for single operators to fit entire devices [2], the
thousands of embedded floating-point adders and multipliers
available in the Altera Arria10 devices make possible the
rapid construction of highly optimized datapaths which run
at FPGA nominal frequencies. Floating-point datapaths can
automatically cope with high dynamic data ranges, shortening
design time often at the expense of performance. Fixed-point
versions of addition and multiplication have traditionally been
implemented in FPGAs using dedicated circuitry. Embedded
ripple carry adder cells and DSP blocks containing small
embedded multipliers allow fixed-point datapaths to provide
small implementation footprints and shorter latency. The pitfall
when choosing fixed-point arithmetic is that the user needs to
manage data ranges manually – a task which requires good
algorithm understanding – often regarded as a rare skill.

In a fixed-point datapath, well trimmed adders and multi-
pliers will have efficient implementations. On the other hand,
fixed-point function computations (such as

√
x,1/
√

x,1/x) are
often overlooked in terms of resource requirements. Datapaths
embedding a mix of these resources need efficient fixed-
point function implementations. This is particularly important
since the properties of floating-point arithmetic allows for very

efficient implementations of these functions, which may over-
weigh the advantages of fixed-point adders and multipliers.

This paper focuses on the fixed-point implementation of
these functions, for bit-widths ranging from few bits up to 32
bits. The implementations are flexible in terms of input and
output formats allowing for fine-grain operator customization.
Input range can be restricted to the interval [1,2), or may span
the whole input range allowed by the input format. Multiple
implementation techniques from the literature are revisited and
employed in this generic context, from tabulation, multipartite
methods, Taylor series, Newton-Raphson, and higher order
methods. A generator which selects the suitable architectures
for user-specified constraints was constructed for this paper.

Due to the double-blind review process we are not describ-
ing the full details of this generator in this submission.

II. FPGA FEATURES

In this section we briefly present FPGA architectural fea-
tures relevant to this work. We restrict our study to using Altera
FPGA architectures, although the generic nature of the core
generator of this paper is actually vendor agnostic.

Out of the 3 FPGA families from Altera we focus on the
low-cost CycloneV [3] devices. In a nutshell, FPGA devices
are composed of millions of small tables (4-6 inputs) which
can be programmed to perform any logic function (of 4-6
inputs). These small tables are connected using a flexible, pro-
grammable interconnect network which allows interconnecting
any two nodes in the FPGA. In Altera devices, these table
based resources are encapsulated in Adaptive Logic Modules
(ALMs). Each ALM can be configured as 2 independent
4-input lookup tables (LUT), one 6-input LUT, and many
combinations of functions which share inputs. Logic resources
are usually reported in terms of ALMs in Altera devices.

Contemporary FPGA devices also contains hundreds (often
thousands - depending on the device) small flexible multipliers
(packaged in DSP blocks) and memory blocks. The DSP
blocks in the CycloneV device can be configured in the modes
presented in Table I.

Dedicated memory blocks in CycloneV devices have a
capacity of 10Kb each (M10K). The relevant configurations
for this works are: 2048x5bits, 1024x10bits, 512x20bits,
256x40bits.



TABLE I
SUBSET OF DSP-BLOCK FEATURES FOR CYCLONEV DEVICES

Blocks Mode CycloneV

1

9×9 3
16×16 2
18×18→ 32 2
18×18 2
18×19 2
27×27 1
2 18×18 MADD 1
2 18×19 MADD 1
18×18+36-bit 1

2 2 27×27 MADD 1

III. BACKGROUND

A. Choosing the Right Method

In order to chose the best method for implementing the
functions studied in this paper, the criteria on which to judge
the different methods first have to be decided. Having multiple
criteria has the disadvantage of complicating the selection
process, but it also has the advantage of allowing the user
to make the right choice on each separate scenario.

The methods presented in the following are differentiated
by three main aspects. This short list of criteria is in no
way exclusive, but it highlights some of the common design
challenges that users are faced with. It also highlights the
constant quest for a better use of all the available hardware
resources on FPGAs.

Bitwidth: computing just right in terms of precision, means
performing meaningful computations and ensuring the target
output precision, as well as using a minimal amount of
resources. Computing for a specific FPGA target means getting
the most out of what the FPGA has to offer. Choosing an
implementation method based on the targeted bitwidth can
ensure satisfying both points previously made.

Input range: making no assumptions about the inputs can
make a design as general as possible. It can also impose
additional constraints on the method used (and even make it
unsuitable) and incur the use of additional resources. Choosing
an implementation while having knowledge about the input
ranges allows more specialized solutions.

Approach: table-based, polynomial approximation and iter-
ative methods are the most common classes of methods used
for implementing the functions surveyed in this paper. We
have provided hybrids between some of these classes. The
choice between these approaches is influenced by the previous
two criteria, as well as by cost (resource/speed-wise) and the
flexibility each method offers.

Before moving on to classifying the different methods
into classes, based on the previously mentioned criteria, one
important point has to be made. While this article is interested
in fixed-point (FxP) implementations, most of the relevant
literature deals with floating-point (FP) implementations. This
means that previous findings (relevant in FP), may no longer be
valid, due to the limited convergence domains of the methods,
the need for range reduction, or due to the specificities of the
different target platform.

Another significant difference (from most of the existing
works) which may bias the findings in this article is allowing
the user to specify the input fixed-point format. This is another
aspect that is less common in the literature and which justifies
to a certain measure the choices made regarding the methods
described in the rest of the article.

B. Classes of methods based on input range

Reducing the range of the inputs is used in the methods
described throughout the article not just to speed up their con-
vergence, but more critically in order to ensure convergence.
Methods initially designed for FP representations require the
input to be in the interval [1,2). This is a requirement that
no longer holds for this study, due to the fact that the user is
allowed to specify the FxP format of the inputs.

The methods can, therefore, be devised into two separate
categories. The first are methods with reduced range inputs,
with an implicit assumption that the inputs are in [1,2). This
category of methods requires a scaling of the input, in order
to work with all the values of the user specified format. The
second category is composed of methods that accept the full
range of values of the inputs. They do not require scaling and
can be used as is.

With only one exception (the case of the multipartite
method), the same procedure can be used for scaling the inputs
(and re-scaling the outputs at the end), for all the reduced range
methods. Details of this procedure are given in what follows.

The range reduction is a classical one and consists of
performing the substitution:

x = 2s · x′

where x is the input to the algorithm and x′ ∈ [1,2). The value
of s is chosen in such a way so that the constraints on x′ are
satisfied. The methods presented in the next sections will take
as input x′.

For the post-processing phase of the range reduction, a
similar substitution is applied, which results in the following
set of equations: 

y = 2−s · y′
y = 2−

s
2 · y′

y = 2
s
2 · y′

where y is the output of the algorithm and y′ represents 1
x′ ,

1√
x′

and
√

x′ respectively, with the semantic of x′ previously
defined.

Figures 1 (a) and (b) present a schematic of the pre-
processing and post-processing phases of the range reduction.
The dotted rectangle on the top of Figure 1(a) is needed
only for computing the reciprocal, and simplifies the overall
architecture. The one in the bottom part of the figure computes
the shift amount for the post-processing phase (it is included in
this figure as it is more relevant in this context). For the post-
processing phase, the dotted rectangle represents logic that is
used to align y′, and adjust the shift amount accordingly, so
that the output is correctly interpreted as a 2’s complement
number. The block labeled ‘Restore Sign’ is only needed for



the reciprocal, and performs opposite function of the top dotted
block in Figure 1(a). When needed, restoring the sign and
rounding are combined into a single block.
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Fig. 1. Scaling range reduction

C. Classes of methods based on approach

While the methods listed in this classification are based
on the approach they take on computing the target functions,
they have also been selected with the bitwidth of the input in
mind. So, the possible approaches chosen are the ones which
were relevant to the targeted precisions. Even so, and while
not being exhaustive, the listing here covers the most used
methods.

One of the main components making up contemporary
FPGAs are look-up tables (LUT). This makes table-based
methods an interesting and omnipresent approach. The most
straightforward method is direct tabulation. It is suitable for
bitwidths up to the size of the number of inputs of the LUT
elements (also referred to as logic), or of the block RAM
elements. The former is usually 6, while the latter is 10, or
11. The correctly rounded results can be stored directly in the
table. Overflow and underflow detection can also be encoded
into the stored values, without any additional resources needed.

One drawback of direct tabulation is that the resource
requirement increase is exponential in the number of bits
to address the table. Several methods try to overcome this
shortcoming with as little extra resources as possible. These
methods include the ATA method [4], iATA [5], the bipar-
tite method [6], SBTM [7], STAM [8] and the generalized
multipartite method [9], [10], [11]. More details about these
methods are presented in Section IV.

As the input size increases, it becomes impractical to rely
solely on tabulation for implementing the target functions,
even when considering the advantages brought by the mul-
tipartite methods. Another classical approach are polynomial
approximation-based methods. The polynomial itself can be
obtained by either using a Taylor series to approximate the
function, or by using a generic polynomial approximation (like

for example a minimax polynomial). Some relevant examples
for the first approach would be [12], [13] for smaller bitwidths
(discussed in Section VI-A) or [14] for larger bitwidths
(discussed in Section VII-A).

For approximating the target functions on larger bitwidths,
an alternative approach to using a polynomial approximation is
to use iterative methods. The most popular of these methods is
the Newton-Raphson method (Section VII-B), a zero-finding
method which doubles the precision of the initial guess at
each iteration. To obtain an even more precise result at
each iteration, there are higher order methods, with Halley’s
method being the next in the series after Newton-Raphson.
The generalized order n version is known as the Householder
method [15]. More details on the iterative methods are shown
in Section VII-C.

IV. MULTIPARTITE METHODS

The bipartite method is a well known architecture for ap-
proximating functions using only tables and no multipliers. It
approximates the function using affine segments. The bipartite
method can be thought of as starting with a degree 1 Taylor
series in the point A:

f (x) = f (A)+ f ′(A)(x−A)

The input interval is split into a power of 2 number of
subintervals. A is selected as an easy to compute point in each
interval; A can be the top k bits of x, but a better value for
the approximation is obtained if the middle of each interval is
selected.

The second term is indexed by the remaining bits of x that
we denote by B = x−A and the derivative of the function in
A, The multiplication is avoided in the bipartite method by
performing a worst approximation of the derivative. Instead
of storing the slope on each subinterval, one slope is stored
for a larger number of subintervals:

f ′(A)≈ f ′(C),

where C is indexed by only a few bits of A. By having
this rough approximation of the slope, the entire right hand
term can be tabulated and indexed by B and C. There are
several optimizations regarding symmetry in this table, and
the interested reader should consult [8], [10].

V. APPROXIMATING ON THE FULL RANGE

In this section we will be focusing the discussions on the
reciprocal function. In the bipartite architecture, the approxi-
mation quality decreases as the derivative increases. The rough
approximation of the slope, especially as the input approaches
zero, where the reciprocal has the asymptotic behaviour, makes
the bipartite method a bad starting point for a full range
architecture.

Therefore, we start-off with a degree-1 Taylor polynomial
for the full-range approximation architecture. As expected, our
experiments using MPFR have confirmed that the accuracy of
the 1d Taylor is vastly superior to the bipartite method. Our



proposed architecture will use a fine-tuned Taylor approxima-
tion for most of the input range, then use a tabulation technique
for the range where the error exceeds the maximum admitted
error, knowing that the total error is less than 1ulp.

It is well known that the accuracy of Taylor polynomials
is significantly less than that of polynomials returned by
the Remez algorithm. Open source tool Sollya [16] provides
probably the best polynomial approximations by means of
the FPMinimax algorithm. We improved the accuracy of the
Taylor polynomials by finding the most accurate point in a
2 dimensional space where the two dimensions were given
by ulp movement of f (A) and f ′(A). Please note that we
selected A to be the exact midpoint of each segment. The error
improvement decreases the number of points which require
tabulation. Since FPGA memory blocks are monolithic, they
have hard thresholds. For instance lowering the number of
inputs tabulated by only a few can decrease the total memory
impact by half.

Depending on the input format, a large number of inputs
will produce outputs which exceed the output range maximum
value. For these inputs we choose to saturate the output.
Additionally, a number of outputs will be in the representable
range but the method error will exceed the admitted value.
A tabulation method is used for these inputs. The tabulation
architecture may be simple or composed of a base value and
an offset (in a similar way to [11]), as depicted in Figure 2.

x

1
x Table

1̃
x

x

Table base Table offset

Add

1̃
x

Fig. 2. The two architectures for the tabulation of outputs (method error
exceeds the admitted value)

The resources can be lowered by sometimes tabulating the
entire range: saturate range + error too large, if the total count
of these inputs is less than the memory block threshold. In
such case the tabulation comes for free.

The table output is equal to the output width of the
architecture. If the number of table elements is large, the
number of memory blocks required for implementing this table
can increase significantly. Since this table stores the function
value for consecutive inputs, the variation between consecutive
elements in the table can be quite small. Consequently, in
some cases a more efficient architecture can be obtained by
sampling the input table and storing the offset values from

the sample values in the offset table. Using a simple addition
we can exactly reconstruct the content of the initial table,
and can decrease memory impact significantly. Determining
if the base+offset architecture is more efficient than simple
tabulation depends on the input/output format and target FPGA
memory block architecture. For one such format a design-
exploration stage assesses the memory impact of several
decompositions: base+offset. The best architecture overall
is selected by first selecting the best candidate among the
base+offset architecture and the simple table-only architecture.

The output of the architecture may also underflow for a
large number of inputs, also depending on the input/output
format. One example is the input/output format with 16-bits
of precision (unsigned) and 4 bits of fraction. For this format
a separate underflow architecture is used.

The underflow architecture will use tabulation for values
which are neither overflow or underflow. It has two implemen-
tation options: 1/ tabulation is used for all values which do not
underflow (return 0) and 2/ tabulation is used for values which
are different to 1ulp or 0. A design-space exploration phase
determines the input indices for which values larger will return
1ulp (idx1ul p), and for which it would return 0 (idx0ul p).
Based on these 2 values the possible architectures are explored
and the one requiring the fewest memory blocks is selected. If
the architectures return the same number of memory blocks,
then 1/ is selected since the logic implementation is less.
Figure 3 depicts the two architectures of used underflow heavy
formats.
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Fig. 3. The two architectures of the underflow architecture

The results section presents the results of all these optimiza-
tions across an important number of input/output formats.

VI. TABULATE-AND-MULTIPLY METHOD

A. First Order

One of the shortcomings of the multipartite method is the
exponential growth of the memory resources required for
tabulation, as the input width increases.

The method introduced in [12] tries to reduce the memory
requirements. It is a linear polynomial approximation of xP

(for P = ±2k, k integer), and is based on the Taylor series
expansion.

The input x is split into two parts, x = x1+x2, with 1≤ x1 <
2 and 0 ≤ x2 < 2−m. The function xP is then approximated



around the point x = x1 + 2−m−1, with the first two terms of
the series:

xP ≈ (x1 +2−m−1)P +(x2−2−m−1) ·P · (x1 +2−m−1)P−1

Taking (x1 +2−m−1)P−1 as a factor we obtain:

xP ≈ (x1 +2−m−1)P−1 · (x1 +2−m−1 +P · (x2−2−m−1)) (1)

Keeping the notations of [12], we denote

C = (x1 +2−m−1)P−1

and

x′ = x1 +2−m−1 +P · x2−P ·2−m−1

The first term, C, can be obtained from a table addressed
by x1. As for x′, it can be obtained by using bit manipulations,
or relatively simple operations, on x2 and x1. Thus, equation
(1) can be re-written as:

xP ≈ C · x′ (2)

and requires a multiplication, aside from the operations already
mentioned.

In terms of the accuracy of the approximation, the error is
due to the omission of the higher order terms in the Taylor
series, and can be roughly approximated as:

εmethod ≈ P(P−1)(x1 +2−m−1)P−2 · 1
2
(x2−2−m−1)2 (3)

Which means that εmethod ≈ 2−2m−3+log |P(P−1)| . The method
error εmethod can be slightly improved by replacing C in eq.
(2) by C′ =C+P(P−1) ·xP−3

1 ·2−2m−4, thus eq. (2) becomes:

xP ≈ C′ · x′ (4)

The second term in the definition of C′ try to compensate for
the excluded terms in the Taylor series, as shown in [12].

A possible architecture for the method presented in this
section is shown in Figure 4.

For the reciprocal, square root and reciprocal square root
the ‘x Modify’ block consists mainly of inverting the bits of
x2 and concatenating them in a given order.

In terms of the implementation, the C′ table requires a 2m×
(w+1)-bit table (with w the input bitwidth and m≈ w

2 ). The
multiplication is of size (w+1)×w, and a truncated multiplier
can be used so that the final result is obtained on w+1 bits.
Obtaining x′ requires ≈ w−m LUTs, and a w-bit addition
is required for the final rounding. This all makes for a quite
compact architecture.

B. Second Order

The method presented in Section VI-A is based on the
Taylor series, but only utilizes the first two terms of the
development. As mentioned in the paragraphs discussing the
method’s error, the main source for the errors are the terms that
are left out of the development. In what follows an extension
of the method of Section VI-A is introduced, which makes
use of an extra term of the Taylor series, in order to improve
the accuracy of the estimation.

1.xxx . . . . . . x xxx . . . . . . x

C′ Table
x Modify

Multiply

Round

x̃P

x1 x2
x/ m

/ w+g

/ w+1

/ w+g

Fig. 4. Tabulate-and-Multiply Method Architecture

The input is split in the same way as before, x = x1 + x2,
with 1 ≤ x1 < 2 and 0 ≤ x2 < 2−m. The function xP is again
approximated around the point x = x1 +2−m−1:

xP ≈ (x1 +2−m−1)P +(x2−2−m−1) ·P · (x1 +2−m−1)P−1

+
1
2
(x2−2−m−1)2 ·P · (P−1) · (x1 +2−m−1)P−2

Taking again (x1 +2−m−1)P−1 as a factor we obtain:

xP ≈ (x1 +2−m−1)P−2 · [(x1 +2−m−1)2

+P(x2−2−m−1)(x1 +2−m−1)+(x2−2−m−1)2 P(P−2)
2

]

For the sake of brevity and clarity, the rest of the section
will deal with the case of the reciprocal (i.e. P = −1). The
equations for the sqrt (P = 1

2 ) and reciprocal sqrt (P = − 1
2 )

can be derived in a similar manner, and only incur different
alignments for the terms, or differences in the terms stored in
the tables. The previous equation thus becomes:

x−1 ≈ (x1 +2−m−1)−3 · [(x1 +2−m−1)2

+(x2−2−m−1)(x1 +2−m−1)+(x2−2−m−1)2] (5)

By regrouping the terms, eq. (5) can be written equivalently
as:

x−1 ≈ (x1 +2−m−1)−3 · [(x1 +2−m− x2)
2+

+(x2−2−m−1)(x1 +2−m−1)] (6)

Using the same style of notations as in [12], we denote

D = (x1 +2−m−1)−3

x′ = x1 +2−m− x2

E = x1 +2−m−1

F = x2−2−m−1



And eq. (6) becomes:

x−1 ≈ D · [(x′)2 +E ·F ] (7)

The D term can be read from a table addressed by x1. The
term E can be obtained by simply concatenating a bit of value
1 after the least significant bit (LSB) of x1, so it does not incur
any cost in hardware. The term F can be obtained by flipping
the value of the most significant bit (MSB) of x2, and storing
the new sign of F . The term x′ can also be obtained by using
bit manipulations, in this case it requires inverting the bits
of x2 and concatenating them to x1. One squaring and two
additions are also required, except for the operations already
mentioned.

1.xxx . . . . . . x xxx . . . . . . x

D Table
x Modify

Multiply SQR

Add
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Round

x̃P

x1 x2
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/ w+g

/ w+g

/ w+g

/ w+g

/ m

/ m+1/ m+1 / w+1

/ 2m+2

Fig. 5. Second Order Tabulate-and-Multiply Method Architecture

Depending on the trade-offs that the user is willing to make
for the operations (or on the available hardware resources),
equation (6) can be re-written as:

x−1 ≈ (x1 +2−m−1)−3 · [(x1 +2−m−1)2

− (x2−2−m−1) · (x1 +2−m− x2)] (8)

Using the notations:

G = (x1 +2−m−1)2

Equation (8) becomes:

x−1 ≈ D · [G−F · x′] (9)

Compared to eq. (7), the method based on eq. (9) only
requires two multiplications. On the other hand, it requires

storing two coefficients in tables, as opposed to a single one.
The terms D and G can be stored in a table addressed by
x1, while F and x′ can be obtained by bit manipulations, as
mentioned in the previous paragraphs.

The error of the method presented in this section (when
computations are performed with infinite accuracy) is, as
mentioned in the beginning of the section, due to the ignored
terms in the Taylor series development of xP. Thus, it can be
roughly approximated as:

εmethod ≈ P(P−1)(P−2)(x1 +2−m−1)−4 · 1
6
(x2−2−m−1)3

(10)

Which means that εmethod ≈ 2−3m−5+log |P(P−1)(P−2)/6| (with
values of P of −1, 1

2 and − 1
2 for the reciprocal, sqrt and recip-

rocal sqrt respectively). Compared to the method of Section
VI-A which offers a result that is correct to approximately 2m
bits, this method offers a result that is correct to approximately
3m bits. A possible architecture for implementing this method,
based on equation (7) is shown in Figure 5. The dotted
rectangle represents the part of the architecture which is
different from equation (9). Figure 6 presents the equivalent
part for the dotted rectangle of Figure 5, in order to have a
working architecture based on equation (9).

x x1

Operator Modify

Multiply

G Table

Subtract

F x′

/ w+g

/ m+1 / w+1 / 2m+2

Fig. 6. Alternate Second Order Tabulate-and-Multiply Method Architecture

In terms of the implementation, the squaring of x′ and
the final multiplication need not be performed on the whole
precision of their inputs. Truncating these operations, on the
other hand, entails rounding errors, which may prevent from
reaching the target output precision (faithfully rounded result).
So, a larger intermediary precision is used, adding a number
of g extra guard bits to the datapaths.

The total error budget (εtotal) is divided as follows:
εtotal = ε f inal round + εmethod + εround , with a final goal of
εtotal < 2−w. Half of an ulp (unit in the las place) is allocated
to the final rounding (ε f inal round). The rest is divided between
the method error (εmethod) and the rounding errors (εround),
which are due to the approximations performed during the
computations. Determining εmethod will give the value that



needs to be used for m, while determining εround will determine
the value of g and the widths of the datapaths.

In order to determine εround , eq. (7) is re-written to reflect
the approximations:

x−1 ≈ D̃ · [(̃x′)2 +E ·F ]

and can be further re-written as:

x−1 ≈ (D+ εtable) · [(x′)2 + εsqr +E ·F ]

where the tilde terms are the approximations that are obtained
from the table and the squarer, respectively, and the ε are the
corresponding errors. Developing the equation results in:

x−1 ≈ D · [(x′)2 +E ·F ]+ εtable[(x′)2 +F ·E]
+ εsqr(D+ εtable)+ εmult

from which εround can be identified as:

εround = εtable[(x′)2 +F ·E]+ εsqr(D+ εtable)+ εmult

Using the upper bounds for the expressions (x′)+E ·F and D
results in:

εround ≤ 4εtable + εsqr + εsqrεtable + εmult (11)

If the same internal precision is used for all the operations,
meaning that εtable = εmult = εsqr = 2−w−g, and keeping in
mind that εround < 2−w−2, the following expression is found
for g:

g > 2+ log(6+2−w−g)

This is, however, a pessimistic value, and testing has shown
that lower values of g might also suffice. It is also confirmed
by considering individual precisions for the datapaths (given
by the ε terms of eq. (11)).

If eq. (9) is used for implementing the method, a similar ap-
proach can be used in order to determine εround . As previously,
eq. (9) is then re-written as:

x−1 ≈ D̃ · [G− F̃ · x′]
and then as:

x−1 ≈ (D+ εtable) · [G−F · x′+ εmult1]+ εmult2

and finally as:

x−1 ≈ D · [G−F · x′]+G · εtable−F · x′ · εtable

+D · εmult1 + εmult1 · εtable + εmult2

from which εround can be identified as:

εround = G · εtable−F · x′ · εtable +D · εmult1

+ εmult1 · εtable + εmult2

Using the same reasoning and the same constraints as before,
a relation is found for g, as well:

g = 2+ log(4−2−m−1+2−w−g)

The same remarks can be made for the slightly pessimistic
relations found for g here, as the ones made for the previous
architecture, in the previous paragraphs.

The methods presented in Section VI can tackle, from a
practical point of view, precisions of up to about 24 bits.

VII. LARGE PRECISION METHODS

A. Taylor-based Method

The methods introduced in Section VI rely on first and
second order approximations using the Taylor series (as a
side note, the multipartite methods could be seen as well as
first order polynomial approximations). As the input width
increases, the methods require either an increasing number
of terms, as well as a rapidly increasing amount of storage for
the coefficients.

The method presented in [14] tries to overcome these
obstacles with an approach consisting of three steps. The first
step consists of a range reduction of the input. The next step
is the evaluation of the function on the reduced argument
using a series expansion of the target function. Last is a post-
processing phase, which is required due to the first step.

The main premise of the method is a classical one: the
evaluation of the function on the reduced argument is less
expensive than on the original input. This is due to the higher
order terms in the evaluation of the series being shifted out to
lower weights than the target precision, thus they do not need
to be computed.

The range reduction transforms the input 1 ≤ x < 2 into
−2−k < x′ < 2−k. x′ is obtained as x′ = x · x̂−1, where x̂ is a
k+1 bit approximation of 1

x . x̂ can be obtained from a table
addressed by the k MSBs of x.

The evaluation step consists of approximating the target
function ( f ) at x′. f can be expressed as:

f (x′) = C0 +C1 · x′+C2 · (x′)2 +C3 · (x′)3 + . . .

where the coefficients Ci are given by the Taylor series
development. The input x′ is split into 4 chunks of size k,
x′1 to x′4; as |x′|< 2−k, x′1 can be left out, as it only contains
sign bits. Replacing x′ in the previous equation and eliminating
terms of weight of less than 2−4k results in:

f (x′) ≈ C0 +C1 · x′+C2 · x′1 ·2−4k +2C2 · x′2 · x′3 ·2−5k

+C3 · (x′2)32−6k

The post processing consists of multiplying the result ob-
tained at the previous step with a term that can be obtained
similarly as x̂. This term is x̂, 1√

x̂
and
√

x̂ for the reciprocal,
sqrt and reciprocal sqrt.

One of the advantages of this method would be the small
multipliers and tables required for implementation, which
seem to map quite well to the hardware resources available
on the current generation FPGAs. Another advantage would
be the simple range reduction and post-processing phase.

It would be interesting to see, however, to what degree the
method could be improved by replacing the approximation of
f (x′) by the Taylor series development with a more accurate
polynomial approximation.

B. Newton-Raphson Method

Probably the best known iterative method is the Newton-
Raphson scheme. This is a root-finding scheme and has
quadratic convergence. In order to deduce the method, the



starting point is again the Taylor series, around the point xn,
limited to the first two terms:

f (x) = f (xn)+ f ′(xn) · (x− xn)

A root of f (x) satisfies f (x) = 0, so:

f (xn)+ f ′(xn) · (x− xn) ≈ 0

which gives:

x ≈ xn−
f (xn)

f ′(xn)

Thus we can obtain the recurrence relation: xn+1 = xn− f (xn)
f ′(xn)

.
The error entailed by this iteration can be approximated by a
recurrence relation as well:

εn+1 ≈ ε
2
n ·

f ′′(xn)

2 · f ′(xn)

which shows that the method converges quadratically.
Again, for the sake of brevity, the following discussions will

be limited to the case of the reciprocal. In order to compute
the reciprocal of a number a, a function f is needed so that
f ( 1

a ) = 0. A convenient choice for the function f is f (x) =
1
x − a. Replacing f into the recurrence relation results in the
following scheme:

xn+1 = xn · (2−a · xn) (12)

In terms of the implementation, the iteration given by eq.
(12) only requires additions and multiplications, once an initial
approximation has been obtained.

We perform an error analysis similar to those of Section
VI-B. The total error is again divided as εtotal = ε f inal round +
εround + εmethod , and εtotal < 2−w. Eq. (12) thus becomes:

xn+1 = x̃n · (2− ã · x̃n) (13)

This assumes that we have an initial approximation correctly
rounded to m = dw

2 e bits (which implies an error less than
2−m−1). Writing explicitly the errors in eq. (13), it becomes:

xn+1 = (xn +2−m−1) · (2−a · (xn +2−m−1)+ εmult1)+ εmult2

which can be written as:

xn+1 = xn · (2−a · xn)+ εround

where εround represents the rounding errors

εround = 2−m−1 · (2−a · xn)−2−m−1 ·a · (xn +2−m−1)

+ εmult1 · (xn +2−m−1)+ εmult2 (14)

The sum of the first two terms of eq. (14) is of the order
of magnitude of 2−2m−2. If εmult1 and εmult2 are of the form
2−w−g (where g gives the number of extra guard bits), eq. (14)
shows that at least 3 guard bits are needed.

A good option for the initial approximation is the use
of a bipartite/multipartite table. This is also the approach
used in this article. For target precisions of up to approx.
32 bits dw

2 e falls in the range of values that are suitable
for use with the bipartite method. Increasing the number
of iterations is also possible, thus increasing the number of
multiplications, but decreasing of resources needed to obtain
the initial approximation.

C. Generalized Iterative Methods

The Newton-Raphson method discussed in Section VII-B
has quadratic convergence. However, there are methods
with faster convergence. The second order Newton-Raphson
method is also known as the Halley method. In order to deduce
the method, we will have the same approach as in the previous
section, starting with the Taylor series around the point xn, but
using the first three terms:

f (x) = f (xn)+ f ′(xn) · (x− xn)+
1
2

f ′′(xn) · (x− xn)
2

A root of f (x) satisfies f (x) = 0, so:

f (xn)+ f ′(xn) · (x− xn)+
1
2

f ′′(xn) · (x− xn)
2 ≈ 0

which can be re-grouped as:

xn+1 = xn−
f (xn)

f ′(xn)+
f ′′(xn)·(xn+1−xn)

2

Knowing that xn+1− xn = − f (xn)
f ′(xn)

results in the iteration
formula:

xn+1 = xn−
2 · f (xn) · f ′(xn)

2 · ( f ′(xn))2− f (xn) · f ′′(xn)
(15)

Equation (15) is commonly known as the Halley itera-
tion/method. The error entailed by the method can be ex-
pressed a recurrence as well, as in the case of the Newton-
Raphson iteration:

εn+1 ≈ ε
3
n ·

f ′′′(xn)

6 · f ′(xn)

which shows the cubic convergence of the method.
The Newton-Raphson and the Halley method are the first

and the second in a class of iterative methods known as the
Householder methods [15]. The n+1-st term in the class has
the form:

xn+1 = xn +(n+1) ·

(
1

f (xn)

)(n)
(

1
f (xn)

)(n+1) (16)

where the (n) superscript represents the n-th order derivative.
It can be easily verified that choosing n = 0 results in the
Newton-Raphson iteration, while choosing n = 1 results in the
Halley iteration. In terms of the error, the Householder method
progresses at a pace of order n+1 towards the correct solution.

The Halley method (or the Householder method, more
generally) replaces the tangent to the function plot by a
curve (or a higher order curve, in the case of Householder).
This curve has a higher number of derivatives in common
with the function plot, at the point of the approximation.
This should, in principle, better fit the plot, giving, thus,
a better approximation. However, as remarked in [17], in
the case of the reciprocal this expansion is not particularly
useful. Plugging-in the same function as in the case of the
Newton-Raphson iteration in the Halley iteration requires the



computation of the inverse that we are trying to approximate
in the first place.

On the other hand, as remarked in [18] and even further back
presented in [19] taking a different approach to obtaining the
iteration in the first place seems to be more effective.

The starting point for the alternative approach is again the
Taylor series around the point xn:

f (x) = f (xn)+
f ′(xn)

1!
· (x− xn)+

f ′′(xn)

2!
· (x− xn)

2

+
f ′′′(xn)

3!
· (x− xn)

3 + . . . (17)

Again, a root of f (x) satisfies f (x) = 0. The value of x− xn
is expressed as a power series of f (xn):

(x− xn) = a · f (xn)+b · ( f (xn))
2 + c · ( f (xn))

3 + . . . (18)

By replacing eq. (18) in (17) and using the fact that f (x) = 0
results in:

0 = f (xn)

+
f ′(xn)

1!
· (a · f (xn)+b · ( f (xn))

2 + c · ( f (xn))
3 + . . .)

+
f ′′(xn)

2!
· (a · f (xn)+b · ( f (xn))

2 + c · ( f (xn))
3 + . . .)2

+ . . . (19)

If eq. (19) is seen as an equation with f (xn) as a variable, the
coefficients of the same powers of f (xn) on the two sides of
the equation can be identified. Thus, the a, b, c, . . . coefficients
can be found:

a = − 1
f ′(xn)

b = − f ′′(xn)

2 · ( f ′(xn))3

c = − ( f ′′(xn))
2

2 · ( f ′(xn))5

. . . (20)

Replacing the values of eq. (20) in eq. (18) results in an
iteration of the form (showing only the first three terms):

xn+1 = xn−
f (xn)

f ′(xn)
− ( f (xn))

2 · f ′′(xn)

2( f ′(xn))3 − . . . (21)

Eq. (21) can be used as an alternative to Halley’s method.
In order to obtain the cubic iteration for the reciprocal

function, f (x) in eq. (21) is chosen as f (x) = 1
x − a. This

results in:

xn+1 = xn · (1+hn(1+hn))

hn = 1−a · xn (22)

In order to obtain the iteration for the reciprocal sqrt, f (x)
in eq. (21) is chosen as f (x) = 1

x2 −a. This results in:

xn+1 =
1
8
· xn · (8+hn(4+3 ·hn))

hn = 1−a · x2
n

Both the iteration for the reciprocal and the one for recip-
rocal sqrt have cubic convergence.

The rest of this section is dedicated to the error analysis
for the datapath implementing eq. (22). The evaluation, on the
other hand, is done as (where hn keeps the meaning of eq.
(22)):

xn+1 = xn + xn · (hn +h2
n) (23)

This form of the iteration takes advantage of the fact that
hn < 2−m (the proof and reasoning are similar to the range
reduction of [14]). This means that less bits are needed for
the squaring of hn and for the multiplication xn · (hn + h2

n),
due to the terms being shifted to the right by 2m and m bits
respectively.

As for the case of the previous error analyses, the total
error is divided in three parts, εtotal = ε f inal round + εround +
εmethod < 2−w. The final result is rounded, so ε f inal round <
2−w−1. The method error, εmethod , was previously discussed.
What remains to be determined are the rounding errors,
εround . These are due to the initial approximation and to
truncating the multiplications in eq. (23). Making these errors
explicit, eq. (23) becomes (where m is the precision of the xn
approximation):

xn+1 = (xn +2−m−1)+(xn +2−m−1) · (hn−a ·2−m−1− εmult

+(hn−a ·2−m−1− εmult)
2)

or

xn+1 = xn + xn · (hn +h2
n)+ εround

where

εround = 2−m−1 · (1+hn +h2
n)+

+(xn +2−m−1) · (a ·2−m−1 + εmult)·
· (a ·2−m−1 + εmult −1−2 ·hn)

which can be re-written as:

εround = 2−m−1 · (1+hn +h2
n)+

+(xn +2−m−1) · [((−a)2−m−1 +a22−2m−2−a2−mhn)+

+ εmult(1− εmult −2hn +a2−m)] (24)

where εmult denotes the rounding error due to a multiplication
or of a squaring.

The terms of equation (24) that do not contain εmult will
result in a term that is of the order of 2−3m−3. Thus, if εmult
is of the form 2−w−g, where g is the number of guard bits, we
should ensure that g > 3 for a faithfully rounded result. This
has also been confirmed through testing.

VIII. RESULTS

In this section we present the resource utilization and
performance of cores generated using the previously described
methods.

In Table II we present the resources and performance of
the extended low order Taylor method that we introduced
in Section V for varying input formats. The table is split



into two sides: the left side presents the performance results
for the default Taylor series coefficients whereas the right
side presents the results for enhanced coefficients, found
starting from the previous coefficients. The search methods
applied allows exploring the design space and returning the
architecture which approaches the functions best in less than
1 second, on recent compute architecture (Core i7).

There are several architectural variations of this solution:

• specialized underflow architecture; this architecture will
generally trigger when the formats are of such sort that a
significant number of inputs will underflow. There are 2
variations of this architecture: as depicted in Figure 3. An
example which triggers the left architecture is the (16,4)
format, and which triggers the right is the (16,5) format.

• architecture for which the approximation is sufficiently
accurate on the compute range (except overflow). An
example of this architecture is given by the (16,15)
format.

• architecture for which an extra table is used for inputs
for which the 1st degree approximation is not sufficiently
accurate. The architecture of the extra table is selected
in order to minimize memory block utilization. This
table may also capture the inputs which cause the output
to overflow, if doing so does not increase the memory
block requirements. For the table itself there are two sub-
architectures possible, depicted in Figure 2. For instance,
format (16,12) will save 1 memory block by using the
base+offset architecture, and will have the table indexed
by x. Format (16,14) will also save 1 memory block but
the table will be indexed by an offset version of x; the
range close to 0 will be handled separately as handling
it in the table would increase the memory requirements.

Among the presented formats, some show better savings
than others in therms of the optimizations effect. For the ones
which show little-to-no savings, we observed this was due to
the size of memories; we were unable to reduce the number
of data elements sufficiently (usually below a power of 2) to
trigger a smaller memory block utilization.

The final row in Table II shows the resource requirements
and performance for a bipartite implementation which uses an
input shifter and leading-zero-counter to normalize the input,
and a right shifter to denormalize the result. This type of
implementation is regarded as classical when dealing with
fixed-point implementations on a generic range. This imple-
mentation is generally agnostic to the input/output format, so
we only give results for one such format. When comparing this
method with the previously optimized method for the whole
range we observe that the latency of this implementation is
significantly larger. Next, since based on the bipartite imple-
mentation, the architecture does not consume any DSP blocks
but it consumes more logic (ALMs) than all the presented
architectures. In terms of memory blocks, the architecture
performs significantly better for inputs ranging from (16,10)
to (16,14) but is on par, or consumes more memories for the
rest of the formats.

These results show that in the context of a core generator,
the user requirements will determine which architecture will
be returned. If the objective is latency or ALMs alone then the
method for the entire range will be better; if targeting memory
blocks, then the tie-break will be played on formats.

In Table III we present the resource requirements together
with the performance for cores having inputs in the interval
[1,2), and precision varying from 10 bits up to 32 bits.
The varying precisions will trigger the different architectures:
table-based, bipartite, Taylor-based, and high-order based on
Newton-Raphson, Halley and Taylor. As expected, bipartite
methods perform well up to 16-bit precisions. The method
Tabulate and Multiply presented in Section VI-A performs
well up to 24 bits. With higher precision one can observe
the increase in memory blocks for this architecture. Finally,
for 32-bits we compare the requirements and performance of
a Newton-Raphson-based implementation bootstrapped by a
bipartite approximation, a higher-order Taylor based imple-
mentation, and two variations of Halley’s method: first boot-
strapped by a table, and the second bootstrapped by a bipartite
approximation. These implementations show interesting trade-
offs: Newton-Raphson+ bipartite shows the highest number of
memory blocks (5) but the lowest number of DSPs (2), an
average-low number of ALMs, and a short latency; Taylor
uses the most ALMs, but fewest memory blocks, highest
number of DSPs and highest latency; Halley bootstrapped by
a table has the lowest ALM and latency but highest DSP and
memory; Halley bootstrapped by bipartite reduces the number
of memory blocks to minimum, but slightly increases the
number of ALMs.

Table III misses the implementation of the second-order
Tabulate and Multiply method presented in section VI-B which
is expected to lower memory requirements around the 24-bit
precisions where the current first order implementation uses 5
memory blocks. The results for this method will be present in
the final version of the paper.

Table IV presents the resource utilization and performance
of small precision floating-point cores. The utilization num-
bers are presented in order to contrast these implementations
against the fixed-point counterparts. The floating-point imple-
mentations are based on a piecewise-polynomial approxima-
tion with half-precision using a degree 1 polynomial, whereas
remaining precisions presented in the table using a degree 2
polynomial. Implementations use the Horner scheme and the
coefficient sizes follow closely [20]. Horner scheme also uses
truncated multipliers, however the low degree polynomials
and larger monolithic multipliers in the target FPGA device
diminish the benefits. Please note that the kernels used in
these implementations directly use normalized inputs, so are
comparable to Table III.

IX. CONCLUSION

In this article we have revisited some well known methods
for implementation of fixed-point kernels, and depicted their
performance on a contemporary FPGA device: an Altera



TABLE II
RESOURCE UTILIZATION AND ESTIMATED PERFORMANCE OF OUR FIRST DEGREE TAYLOR BASED METHOD WORKING ON THE FULL INPUT RANGE, FOR
16-BIT PRECISION INPUTS, VARYING INPUT/OUTPUT FORMATS FROM 15 FRACTIONAL BITS DOWN TO 4 FRACTIONAL BITS. RESULTS ARE GIVEN FOR A
CYCLONEV C6 DEVICE. THE FINAL ROW SHOWS THE UTILISATION AND PERFORMANCE OF A GENERIC IMPLEMENTATION OF THE OPERATOR BASED ON

THE RANGE-REDUCTION TO THE INTERVAL [1,2). THIS IMPLEMENTATION IS AGNOSTIC TO THE INPUT FORMAT.

Input/Output Format Resource utilization and Performance Default Resource utilization and Performance Optimized
(width, fraction) ALMs DSPs M10Ks Latency Frequency ALMs DSPs M10Ks Latency Frequency
16,15 61 1 3 7 310MHz 54 1 3 7 310MHz
16,14 101 1 12 9 242MHz 96 1 8 9 235MHz
16,13 107 1 15 9 236MHz 101 1 10 9 240MHz
16,12 103 1 11 9 233MHz 105 1 11 9 232MHz
16,11 88 1 12 7 240MHz 86 1 8 6 235MHz
16,10 95 1 8 7 241MHz 95 1 8 7 236MHz
16, 9 85 1 6 7 228MHz 86 1 6 7 235MHz
16,8 61 1 5 6 241MHz 61 1 5 6 241MHz
16,7 59 1 5 6 237MHz 61 1 5 6 231MHz
16,6 52 1 4 6 303MHz 52 1 4 7 303MHz
16,5 58 1 2 6 308MHz 58 1 2 7 308MHz
16,4 28 0 1 2 315MHz 28 0 1 2 315MHz
16,8 (GRR) 126 0 5 12 240MHz ← Generic Range Reduction

TABLE III
RESOURCE UTILIZATION AND ESTIMATED PERFORMANCE ARCHITECTURES IMPLEMENTED USING THE METHODS PRESENTED IN THIS ARTICLE. THE

TARGET DEVICE IS CYCLONEV C8 SPEEDGRADE. INPUT IS UNSIGNED, AND IN THE INTERVAL [1,2)

Input/Output Format Implementation Resource utilization and Performance
(width, fraction) ALMs DSPs M10Ks Latency Frequency
11,10 Tabulation 1 0 3 2 315MHz
16,15 Bipartite 27 0 3 4 315MHz
18,17 Tabulate and Multiply 54 1 1 5 200MHz
20,19 Tabulate and Multiply 48 1 1 6 310MHz
23,22 Tabulate and Multiply 58 1 3 6 310MHz
24,23 Tabulate and Multiply 64 1 5 6 310MHz
32,31 Bipartite+ Newton-Raphson 188 2 5 15 285MHz
32,31 Taylor 282 3 1 23 267MHz
32,31 Halley 155 3 3 15 235MHz
32,31 Bipartite+ Halley 159 3 1 15 228MHz

TABLE IV
FLOATING-POINT IMPLEMENTATIONS OF 1/x. THE FLOATING-POINT FORMATS DENOTE (EXPONENT WIDTH, FRACTION WIDTH). IMPLEMENTATIONS

FLUSH SUBNORMALS TO ZERO. IMPLEMENTATIONS TARGET FAITHFUL ROUNDING

f Type I/O Performance

1/x

FP (5,10) 58ALMs, 1DSP, 0M20K, 3clk, 600MHz
FP (8,17) 116ALMs, 2DSP, 0M20K, 5clk, 441MHz
FP (8,23) 126ALMs, 2DSPs, 3M20K, 9clk, 450MHz
FP (8,26) 152ALMs, 2DSP, 3M20K, 10clk, 424MHz

CycloneV. Unlike previous works which generally focus im-
plementations of normalized inputs ([1,2) or [0.5,1)), we have
focused in this work on the the full implementation range.
Where possible we have modified the classical architecture
to directly handle the full input range; the results of this
work were competitive architectures which trade off logic
resources for memory blocks. Our results also show that
the behaviour and performance of the modified full-range
architectures are highly dependent on the input and output
format. Therefore, our architectures are more likely to be
regarded as implementation tradeoffs. We have shown our
results on the reciprocal function, but we have used the
same templates for the reciprocal square root and square root
functions. We have also revisited higher order methods based
on the Newton-Raphson algorithm, Taylor series, and Halley’s

method, and proposed combined architectures; there, Newton-
Raphson and Halley are bootstrapped using a bipartite-based
implementation. The results shown in this paper confirm
that fixed-point arithmetic is very relevant for contemporary
FPGAs containing up to thousands of embedded memory
blocks and multipliers, and the low resources of these cores
in combination with the low resource of primitive components
will keep fixed-point datapaths relevant in resource critical
scenarios, and when expertise exists to bound variable ranges.
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