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An obstrution to small time loal null ontrollability

for a visous Burgers' equation

Frédéri Marbah

∗

November 16, 2015

Abstrat

In this work, we are interested in the small time loal null ontrollability for the visous

Burgers' equation yt − yxx + yyx = u(t) on the line segment [0, 1], with null boundary onditions.

The seond-hand side is a salar ontrol playing a role similar to that of a pressure. In this setting,

the lassial Lie braket neessary ondition [f1, [f1, f0]] introdued by Sussmann fails to onlude.

However, using a quadrati expansion of our system, we exhibit a seond order obstrution to

small time loal null ontrollability. This obstrution holds although the information propagation

speed is in�nite for the Burgers equation. Our obstrution involves the weak H−5/4
norm of

the ontrol u. The proof requires the areful derivation of an integral kernel operator and the

estimation of residues by means of weakly singular integral operator estimates.

1 Introdution

1.1 Desription of the system and our main result

For T > 0 a small positive time, we onsider the line segment x ∈ [0, 1] and the following one-

dimensional visous Burgers' ontrolled system:



















yt − yxx + yyx = u(t) in (0, T )× (0, 1),

y(t, 0) = 0 in (0, T ),

y(t, 1) = 0 in (0, T ),

y(0, x) = y0(x) in (0, 1).

(1.1)

The salar ontrol u ∈ L2(0, T ) plays a role somewhat similar to that of a pressure for multi-

dimensional �uid systems. Unlike some other studies, our ontrol term u depends only on time and not

on the spae variable. It is supported on the whole segment [0, 1]. For any initial data y0 ∈ H1
0 (0, 1)

and any �xed ontrol u ∈ L2(0, T ), it an be shown (see Lemma 8 below) that system (1.1) has a

unique solution in the spae XT = L2((0, T );H2(0, 1))∩H1((0, T );L2(0, 1)). We are interested in the

behavior of this system in the viinity of the null equilibrium state.

De�nition 1. We say that system (1.1) is small time loally null ontrollable if, for any small time

T > 0, for any small size of the ontrol η > 0, there exists a region δ > 0 suh that:

∀|y0|H1
0
≤ δ, ∃u ∈ L2(0, T ), |u|2 ≤ η suh that y(T, ·) = 0, (1.2)

where y ∈ XT is the solution to system (1.1) with initial ondition y0 and ontrol u.

Theorem 1. System (1.1) is not small time loally null ontrollable. Indeed, there exist T, η > 0 suh
that, for any δ > 0, there exists y0 ∈ H1

0 (0, 1) with |y0|H1
0
≤ δ suh that, for any ontrol u ∈ L2(0, T )

with |u|2 ≤ η, the solution y ∈ XT to (1.1) satis�es y(T, ·) 6= 0.

We will see in the sequel that our proof atually provides a stronger result. Indeed, we prove that,

for small times and small ontrols, whatever the small initial data y0, the state y(t) drifts towards a
�xed diretion. Of ourse, this prevents small time loal null ontrollability as a diret onsequene.
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1.2 Motivation: small time obstrutions despite in�nite propagation speed

As an example, let us onsider the following transport ontrol system:











yt +Myx = 0 in (0, T )× (0, L),

y(t, 0) = v0(t) in (0, T ),

y(0, x) = y0(x) in (0, L),

(1.3)

where T > 0 is the total time, M > 0 the propagation speed and L > 0 the length of the domain.

The ontrol is the boundary data v0. No ondition is imposed at x = 1 sine the harateristis �ow

out of the domain. For system (1.3), small time loal null ontrollability annot hold. Indeed, even if

the initial data y0 is very small, the ontrol is only propagated towards the right at speed M . Thus,

if T < L/M , ontrollablity does not hold. Of ourse, if T ≥ L/M , the harateristis method allows

to onstrut an expliit ontrol to reah any �nal state y1 at time T . In this ontext, the obstrution

to ontrollability omes from the fat that the information propagation speed is bounded. Indeed, let

us modify slightly system (1.3) into:



















yt − νyxx +Myx = 0 in (0, T )× (0, L),

y(t, 0) = v0(t) in (0, T ),

y(t, 1) = 0 in (0, T ),

y(0, x) = y0(x) in (0, L),

(1.4)

where ν > 0 is a (very small) visosity. This system is small time globally null ontrollable, for any

ν > 0. Of ourse, the ost of ontrollablity must explode as ν → 0 if T is too small (see [22℄ for a

preise study of the ost of ontrollability for (1.4)). What we want to underline here, is that the

in�nite information propagation speed yields (at least in this ontext) small time loal ontrollability.

Therefore, there is a strong interest for systems where small time loal ontrollability does not

hold despite an in�nite information propagation speed.

An example of suh a system is the ontrol of a quantum partile in a moving potential well (box).

This is a bilinear ontrollability problem for the Shrödinger equation. For suh system, it an be

shown that large time ontrollablity holds (see [4℄ if only the partile needs to be ontrolled or [5℄ to

ontrol both the partile and the box). For small times, negative results have been obtained by Coron

in [18℄ (when one tries to ontrol both the partile and the position of the box), by Beauhard, Coron

and Teissman in [6℄ for large ontrols (but smooth potentials) and by Beauhard and Moraney in [7℄

(under an assumption orresponding to a Lie-braket ondition [f1, [f1, f0]] 6= 0). This last paper is

related to ours sine their proof relies on a oerivity estimate involving the H−1
norm of the ontrol.

This is natural as we will see in paragraph 1.5. We refer the reader to these papers for more details

and surveys on the ontrollability of Shrödinger equations.

Theorem 1 an be seen as another example of a situation (in the ontext of �uid dynamis) where

small time loal ontrollability fails despite an in�nite propagation speed.

1.3 Previous works onerning Burgers' ontrollability

Let us reall known results onerning the ontrollability of the visous Burgers' equation. More

generally, we introdue the following system:



















yt − yxx + yyx = u(t) in (0, T )× (0, 1),

y(t, 0) = v0(t) in (0, T ),

y(t, 1) = v1(t) in (0, T ),

y(0, x) = y0(x) in (0, 1),

(1.5)

where v0 and v1 are seen as additional ontrols with respet to the single ontrol u of system (1.1).

Various settings have been studied (with either one or two boundary ontrols, with or without u). One
again, here u only depends on t and not on x. Some studies have been arried out with v0 = v1 = 0
and a soure term u(t, x)χ[a,b] for 0 < a < b < 1. However, these studies are equivalent to boundary

ontrols thanks to the usual domain extension argument. Up to our knowledge, Theorem 1 is the �rst

result onerning the ase without any boundary ontrol and a salar ontrol u.
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We start with results involving only a single boundary ontrol (either v0 or v1 by

symmetry) and u = 0.
In [31℄, Fursikov and Imanuvilov prove small time loal ontrollability in the viinity of trajetories

of system (1.5). Their proof relies on Carleman estimates for the paraboli problem obtained by seeing

the non-linear term yyx as a small foring term.

Global ontrollability towards steady states of system (1.5) is possible in large time. Suh studies

have been arried out by Fursikov and Imanuvilov in [30℄ for large time global ontrollability towards

all steady states, and by Coron in [20℄ for global null ontrollability in bounded time (ie. bounded

independently on the initial data).

However, small time global ontrollability does not hold. The �rst obstrution was obtained by

Diaz in [24℄. He gives a restrition for the set of attainable states starting from 0. Indeed, they must

lie under some limit state orresponding to an in�nite boundary ontrol v1 = +∞.

Fernández-Cara and Guerrero derived an asymptoti of the minimal null-ontrollability time T (r)
for initial states of H1

norm lower than r (see [25℄). This shows that the system is not small time

globally null ontrollable.

We move on to two boundary ontrols v0 and v1, still with u = 0. Guerrero and Imanuvilov

prove in [32℄ that neither small time null ontrollability nor bounded time global ontrollability hold in

this ontext. Hene, ontrolling the whole boundary does not provide better ontrollability properties.

When three salar ontrols (namely u(t), v0 and v1) are used, Chapouly has shown in [17℄

that the system is small time globally exatly ontrollable to the trajetories. Her proof relies on the

return method and on the fat that the orresponding invisid Burgers' system is small time exatly

ontrollable (see [19, Chapter 6℄ for other examples of this method applied to Euler or Navier-Stokes).

When v1 = 0, but u and v0 are ontrolled, the author proved in [35℄ that small time global

null ontrollability holds. Indeed, although a boundary layer appears near the unontrolled part of

the boundary at x = 1, preise estimation of the reation and dissipation of the boundary layer allows

to onlude.

Conerning the ontrollability of the invisid Burgers' equation, some works have be

arried out. In [2℄, Anona and Marson desribe the set of attainable states in a pointwise way for

the Burgers' equation on the half-line x ≥ 0 with only one boundary ontrol at x = 0. In [33℄, Horsin

desribes the set of attainable states for a Burgers' equation on a line segment with two boundary

ontrols. Thorough studies are also arried out in [1℄ by Adimurthi et al. In [39℄, Perrollaz studies the

ontrollability of the invisid Burgers' equation in the ontext of entropy solutions with the additional

ontrol u(·) and two boundary ontrols.

1.4 A quadrati approximation for the non-linear system

Starting now, we introdue ε = T to remember that the total allowed time for ontrollability is small.

Moreover, we want to use the well-known saling trading small time with small visosity for visous

�uid equations. Therefore, we introdue, for t ∈ (0, 1) and x ∈ (0, 1), ỹ(t, x) = εy(εt, x). Hene, ỹ is

the solution to:



















ỹt − εỹxx + ỹỹx = ũ(t) in (0, 1)× (0, 1),

ỹ(t, 0) = 0 in (0, 1),

ỹ(t, 1) = 0 in (0, 1),

ỹ(0, x) = ỹ0(x) in (0, 1),

(1.6)

where ũ(t) = ε2u(εt) and ỹ0 = εy0. This saling is widely used for ontrollability results sine small

visosity developments are easier to handle. As we will prove in setion 6, system (1.6) an help us

to dedue results for system (1.1). To further simplify the omputations in the following setions, let

us drop the tilda signs and the initial data. Therefore, we will study the behavior of the following
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system near y ≡ 0:


















yt − εyxx + yyx = u(t) in (0, 1)× (0, 1),

y(t, 0) = 0 in (0, 1),

y(t, 1) = 0 in (0, 1),

y(0, x) = 0 in (0, 1).

(1.7)

Properties proven on system (1.7) will easily be translated into properties for system (1.1) in Setion 6.

Moreover, sine we are studying loal null ontrollability, both the ontrol u and the state y are small.

Thus, if η desribes the size of the ontrol as in De�nition 1, let us name our ontrol ηu(t), with u of

size O(1). We expand y as y = ηa+ η2b+O(η3), and we ompute the assoiated systems:



















at − εaxx = u(t) in (0, 1)× (0, 1),

a(t, 0) = 0 in (0, 1),

a(t, 1) = 0 in (0, 1),

a(0, x) = 0 in (0, 1)

(1.8)

and



















bt − εbxx = −aax in (0, 1)× (0, 1),

b(t, 0) = 0 in (0, 1),

b(t, 1) = 0 in (0, 1),

b(0, x) = 0 in (0, 1).

(1.9)

It is easy to see that system (1.8) is not ontrollable. Indeed, the ontrol u(t) an atually be written

as u(t)χ[0,1], and χ[0,1] is an even funtion on the line segment [0, 1]. Thus, the ontrol only ats on

even modes of a. In the linearized system (1.8), all odd modes evolve freely. This motivates the seond

order expansion of our Burgers' system in order to understand its ontrollability properties using b.
Given systems (1.8) and (1.9), we know that a is even and b is odd.

1.5 A �nite dimensional ounterpart

Systems (1.8) and (1.9) exhibit an interesting struture. Indeed, the �rst system is fully ontrollable

(if we onsider that a lives within the subspae of even funtions), while the seond system is indiretly

ontrolled through a quadrati form depending on a. Let us introdue the following �nite dimensional

ontrol system:

{

ȧ =Ma+ u(t)m in (0, T ),

ḃ = Lb+Q(a, a) in (0, T ),
(1.10)

where the states a(t), b(t) ∈ R
n ×R

p
, M is an n×n matrix, m is a �xed vetor in R

n
along whih the

salar ontrol ats, L is a p×p matrix and Q is a quadrati funtion from R
n×R

n
into R

p
. Moreover,

we assume that the pair (M,m) satis�es the lassial Kalman rank ondition (see [19, Theorem 1.16℄).

Hene, the state a is fully ontrollable. We onsider the small time null ontrollability problem for

system (1.10). We want to know, if, for any T > 0, for any initial state (a0, b0), there exists a ontrol
u : (0, T ) → R suh that the solution to (1.10) satis�es a(T ) = 0 and b(T ) = 0. As proved in [11℄ for

the ase L = 0, the answer to this question is always no in �nite dimension, whateverM,m,L and Q.
System (1.10) is a partiular ase of the more general lass of ontrol a�ne systems. Indeed, if we

let x(t) = (a(t), b(t)) ∈ R
n+p

, we an write system (1.10) as:

ẋ = f0(x) + u(t)f1(x), (1.11)

where f0(x) = (Ma,Lb + Q(a, a)) and f1(x) = (m, 0). The ontrollability of systems like (1.11) is

deeply linked to the iterated Lie brakets of the vetor �elds f0 and f1 (see [19, Setion 3.2℄ for a

review).

Let us give a few examples with n = 3. We write a = (a1, a2, a3) and we onsider the system:

ȧ1 = a2, ȧ2 = a3, ȧ3 = u. (1.12)

Although the strong struture of equation (1.12) an seem a little arti�ial, it is in fat the general

ase. Indeed, up to a translation of the ontrol, ontrollable systems an always be brought bak
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to this anonial form introdued by Brunovsky in [12℄ (for a proof, see [45, Theorem 2.2.7℄). The

resulting system is �at. We an express the full state as derivatives of a single salar funtion. Indeed,

if we let θ = a1, we have a2 = θ′, a3 = θ′′ and u = θ′′′. If we hoose an initial state (a0, b0) with
a0 = 0, we obtain θ(0) = θ′(0) = θ′′(0) = 0. Moreover, if we assume that the ontrol u drives the state

(a, b) to (0, 0) at time T , we also have θ(T ) = θ′(T ) = θ′′(T ) = 0. These onditions allow integration

by parts without boundary terms.

To keep the examples simple, we hoose p = 1 (hene b = b1 ∈ R) and we let L = 0.
First example. We onsider the evolution ḃ = a22 + a1a3. If the initial state is (a0, b0) where

a0 = 0, we an ompute b(T ) = b0 +
∫ T

0 θ′2(t) + θ(t)θ′′(t)dt = b0. Hene, null ontrollability does not

hold sine any ontrol driving a from 0 bak to 0 has no ation on b. This obstrution to ontrollability
is linked to the fat that dimL(0) = 3, where L is the Lie algebra generated by f0 and f1. The system
is loally onstrained to evolve within a 3 dimensional manifold of R

4
. Indeed, the evolution equation

an be rephrased as ḃ = d
dt (a1a2). Thus, the quantity b− a1a2 is a onstant (onservation law of the

system).

Seond example. We onsider the evolution ḃ = a23. Thus, b(T ) = b0 +
∫ T

0
θ′′(t)2dt. This is

also an obstrution to null ontrollability. Indeed, all hoies of ontrol will make b inrease. In this

setting, we reover the well known seond order Lie braket ondition disovered by Sussmann (see [43,

Proposition 6.3℄). Indeed, here, [f1, [f1, f0]] = (0R3 , Q(m,m)) = (0R3 , 1). System (1.11) drifts in the

diretion [f1, [f1, f0]] and the ontrol annot prevent it beause this diretion does not belong to the

set of the �rst order ontrollable diretions (m, 0), (Mm, 0) and (M2m, 0) (Lie brakets of f0 and f1
involving f1 one and only one).

Third example. We onsider ḃ = a22. Thus, b(T ) = b0 +
∫ T

0 θ′2(t)dt. Again, b an only in-

rease. Here, the �rst bad Lie braket [f1, [f1, f0]] vanishes for x = 0. However, we an hek that

[f1, [f0, [f0, [f1, f0]]]] = (0R3 , Q(Mm,Mm)) = (0R3 , 1). Compared with the seond example, the in-

rease of b is weaker. Indeed, in the seond example, we had b(T ) = b0 + |u|2H−1(0,T ). In this third

example, b(T ) = b0 + |u|2H−2(0,T ).

Although these examples may seem ariatural, they re�et the general ase. In �nite dimension,

systems like (1.10) are never small time ontrollable. Either beause they evolve within a strit

manifold, or beause some quantity depending on b inreases. Moreover, the amount by whih b
inreases is linked to the order of the �rst bad Lie braket and an be expressed as a weak norm

depending on the ontrol. One of the goals of our work is thus also to investigate the situation in

in�nite dimension, where Lie brakets are harder to de�ne and ompute.

Therefore, the �rst natural question is to ompute the Lie braket [f1, [f1, f0]](0) for systems (1.8)

and (1.9). As we have seen in �nite dimension, this Lie braket is (0, Q(m,m)). In our setting, m is the

even funtion χ[0,1] and Q(a, a) = −aax. Thus Q(m,m) is null. This an be proved omputationally

using Fourier series expansions. Let us give a muh simpler argument inspired by the formal fat that

∂x1 = 0. For any a ∈ L2(0, 1) and any smooth test funtion φ suh that φ(0) = φ(1) = 0, we have:

∫ 1

0

Q(a, a)φ =
1

2

∫ 1

0

a2(x)φx(x)dx. (1.13)

Hene, even if q := Q(1, 1) was de�ned in a very weak sense, (1.13) yields:

〈q, φ〉 = 1

2

∫ 1

0

φx =
1

2
φ(1)− 1

2
φ(0) = 0 (1.14)

Sine (1.14) is valid for any smooth φ null at the boundaries, we onlude that indeed, q = Q(1, 1)
is null. Therefore, the lassial [f1, [f1, f0]] neessary ondition by Sussmann does not provide an

obstrution to small time ontrollability for our system. This also explains why the oerivity property

we are going to prove is in a weaker norm than H−1
.

1.6 Strategy for the proof

Most of this paper is dediated to the asymptoti study of systems (1.8) and (1.9) as the visosity

ε tends to zero. In Setion 6, we prove that this study is su�ient to onlude about the loal null

ontrollability for system (1.1). In order to prove that system (1.1) is not small time loally null
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ontrollable, we intend to exhibit a quantity depending on the state y(t, ·) that annot be ontrolled.
For ρ ∈ H1(0, 1), we will onsider quantities of the form 〈ρ, y(t, ·)〉.

Looking at system (1.9) when ε is very small, we get the idea to onsider ρ(x) = x − 1
2 . Indeed,

we obtain:

d

dt

∫ 1

0

ρ(x)b(t, x)dx =
1

2

∫ 1

0

a2(t, x)dx +
ε

2
(bx(t, 1)− bx(t, 0)) . (1.15)

Formally, if we let ε = 0 in equation (1.15), it is very enouraging beause it shows that the quantity

〈ρ, b〉 an only inrease, whatever is the hoie of the ontrol. Moreover, sine we an ompute the

amount by whih it inreases, we have a kind of oerivity and we an hope to be able to use it

to overwhelm both residues oming from the fat that ε > 0 and residues between the quadrati

approximation and the full non-linear system. Sadly, the seond term in the right-hand side of

equation (1.15) is hard to handle. However, as a depends linearly on u, and b depends quadratially
on a, we expet that we an �nd a kernel Kε(s1, s2) suh that:

〈ρ, b(1, ·)〉 =
∫ 1

0

∫ 1

0

Kε(s1, s2)u(s1)u(s2)ds1ds2. (1.16)

Thanks to equation (1.15), we expet that (1.16) atually de�nes a positive de�nite kernel ating on

u, allowing us to use its oerivity to overwhelm various residues.

In Setion 2, we reall a set of tehnial well-posedness estimates for heat and Burgers systems.

In Setion 3, we show that formula (1.16) holds and we give an expliit onstrution of the ker-

nel Kε
. Moreover, we ompute formally its limit K0

as ε→ 0.
In Setion 4, we prove that the kernel K0

is oerive with respet to the H−5/4(0, 1) norm of the

ontrol u, by reognizing a Riesz potential and a frational laplaian.

In Setion 5, we use weakly singular integral operator estimates to bound the residues between Kε

and K0
and thus dedue that Kε

is also oerive, for ε small enough.

In Setion 6, we use these results to go bak to the ontrollability of Burgers.

In Appendix A, we give a short presentation of the theory of weakly singular integral operators

and a sketh of proof of the main estimation lemma we use.

2 Preliminary tehnial lemmas

In this setion, we reall a few useful lemmas and estimates, mostly onerning the heat equation and

Burgers equation on a line segment. Throughout this setion, ν is a positive visosity and T a positive

time. To lighten the omputations, we will use the notation . to denote inequalities that hold up to

a numerial onstant. We will not attempt to keep trak of these numerial onstants. We insist on

the fat that these onstants do not depend on any parameter (neither the time T , nor the visosity
ν, the ontrol u, or any other unknown).

2.1 Properties of the spae XT

We reall the de�nition given in the introdution and state without proof the following lassial lemmas

whih an be proved using either interpolation theory or Fourier transforms with respet to time and

spae.

De�nition 2. We de�ne the funtional spae:

XT = L2
(

(0, T ), H2(0, 1)
)

∩H1
(

(0, T ), L2(0, 1)
)

. (2.1)

We endow the spae XT with the saling invariant norm:

‖z‖XT
:= T−1/2 ‖z‖2 + T−1/2 ‖zxx‖2 + T 1/2 ‖zt‖2 . (2.2)

Lemma 1. XT →֒ C0([0, T ], H1(0, 1)). Moreover, for any funtion z ∈ XT ,

sup
t∈[0,T ]

|z(t, ·)|H1(0,1) . ‖z‖XT
. (2.3)

In partiular,

‖z‖∞ . ‖z‖XT
. (2.4)
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Lemma 2. For any z ∈ XT , the boundary traes of zx satisfy:

T−1/4 |zx(·, 0)|H1/4(0,T ) + T−1/4 |zx(·, 1)|H1/4(0,T ) . ‖z‖XT
. (2.5)

2.2 Smooth setting for the heat equation

We start by realling standard estimates in a smooth (strong) setting for one dimensional heat equa-

tions that will be useful in the sequel. We state all results for standard forward heat equations, but

the same results hold for bakwards heat equations with �nal time onditions.

Lemma 3. Let f ∈ L2((0, T )× (0, 1)) and z0 ∈ H1
0 (0, 1). We onsider the system:



















zt − νzxx = f in (0, T )× (0, 1),

z(t, 0) = 0 in (0, T ),

z(t, 1) = 0 in (0, T ),

z(0, x) = z0(x) in (0, 1).

(2.6)

There is a unique solution z ∈ XT to system (2.6). Moreover, it satis�es the estimate:

ν ‖zxx‖2 +
√
ν ‖zx‖2 + ‖zt‖2 . ‖f‖2 +

√
ν|z0x|2. (2.7)

Proof. The proof of the existene and uniqueness is standard. Let us reall how we an obtain

estimate (2.7). We multiply equation (2.6) by zxx and integrate by parts over x ∈ (0, 1). Thus,

d

dt

[

1

2

∫ 1

0

z2x

]

+ ν

∫ 1

0

z2xx = −
∫ 1

0

fzxx. (2.8)

For any T ′ < T , we an integrate (2.8) over t ∈ (0, T ′). Hene, we obtain:

1

2
|zx(T ′)|22 + ν

∫ T ′

0

∫ 1

0

z2xx = −
∫ T ′

0

∫ 1

0

fzxx +
1

2

∣

∣z0x
∣

∣

2

2
. (2.9)

From (2.9), we easily dedue that:

ν ‖zxx‖2 . ‖f‖L2 +
√
ν|z0x|2, (2.10)

√
ν ‖zx‖L∞(L2) . ‖f‖L2 +

√
ν|z0x|2. (2.11)

Eventually, we obtain estimate (2.7) from estimates (2.10) and (2.11) sine we an write zt as f +
νzxx.

Lemma 4. Let z0 ∈ H1
0 (0, 1) and onsider z ∈ XT the solution to system (2.6) with a null foring

term (f = 0). It satis�es:
‖z‖∞ ≤

∣

∣z0
∣

∣

∞ . (2.12)

Proof. Although (2.12) is not a diret onsequene of the ombination of (2.4) and (2.7) (whih would

yield a weaker onlusion), it an be obtained via a standard appliation of the maximum priniple,

whih an be applied in this strong setting.

2.3 Weaker settings for the heat equation

Let us move on to weaker settings for the heat equation. Moreover, we introdue inhomogeneous

boundary data as we will need them in the sequel.

De�nition 3. Let f ∈ (XT )
′
, v0, v1 ∈ H−1/4(0, T ) and z0 ∈ H−1(0, 1). We onsider:



















zt − νzxx = f in (0, T )× (0, 1),

z(t, 0) = v0(t) in (0, T ),

z(t, 1) = v1(t) in (0, T ),

z(0, x) = z0(x) in (0, 1).

(2.13)
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We say that z ∈ L2((0, T )× (0, 1)) is a weak solution to system (2.13) if, for all g ∈ L2((0, T )× (0, 1)),

〈z, g〉L2,L2 = 〈f, ϕ〉(XT )′,XT
+ 〈z0, ϕ(0, ·)〉H−1(0,1),H1

0
(0,1)

+ ν〈v0, ϕx(·, 0)〉H−1/4(0,T ),H1/4(0,T )

− ν〈v1, ϕx(·, 1)〉H−1/4(0,T ),H1/4(0,T ),

(2.14)

where ϕ ∈ XT is the solution to the dual system:



















ϕt + νϕxx = −g in (0, T )× (0, 1),

ϕ(t, 0) = 0 in (0, T ),

ϕ(t, 1) = 0 in (0, T ),

ϕ(T, x) = 0 in (0, 1).

(2.15)

Lemma 5. There exists a unique weak solution z ∈ L2((0, T )× (0, 1)) to system (2.13). Moreover:

‖z‖2 . T−1/2ν−1
(

‖f‖(XT )′ + |z0|H−1

)

+ T−1/4 (|v0|H−1/4 + |v1|H−1/4) . (2.16)

Proof. For any g ∈ L2((0, T )× (0, 1)), Lemma 3 asserts that system (2.15) admits a unique solution

ϕ ∈ XT suh that ‖ϕ‖XT . T−1/2ν−1‖g‖L2
. Moreover, thanks to estimates (2.3) and (2.5), the

right-hand side of equation (2.14) de�nes a ontinuous linear form on L2
. The Riesz representation

theorem therefore proves the existene of a unique z ∈ L2
satisfying estimate (2.16).

Lemma 6. Let f ∈ L2((0, T )× (0, 1)). We onsider the following heat system:



















zt − νzxx = fx in (0, 1)× (0, 1),

z(t, 0) = 0 in (0, 1),

z(t, 1) = 0 in (0, 1),

z(0, x) = 0 in (0, 1).

(2.17)

There is a unique solution z ∈ L2((0, T )× (0, 1)) to system (2.17). Moreover, it satis�es the estimate:

ν1/2 ‖z‖L∞(L2) + ν ‖zx‖L2 . ‖f‖L2 . (2.18)

Proof. For f ∈ L2
, it is easy to hek that fx ∈ X ′

T . Hene, we an apply Lemma 5 and system (2.17)

has a unique solution z ∈ L2
. In fat, this solution is even smoother. Estimate (2.18) is obtained as

usual by multiplying equation (2.17) by z and integration by parts.

2.4 Burgers and fored Burgers systems

We move on to Burgers-like systems. For the sake of ompleteness, we provide a short proof of the

existene of a solution to system (1.1) and a preise estimate for fored Burgers-like systems that will

be neessary in the sequel.

Lemma 7. Let w ∈ XT , g ∈ L2((0, T ), H1(0, 1)) and y0 ∈ H1
0 (0, 1). We onsider y ∈ XT a solution

to the following fored Burgers-like system:



















yt − νyxx = −yyx + (wy)x + gx in (0, T )× (0, 1),

y(t, 0) = 0 in (0, T ),

y(t, 1) = 0 in (0, T ),

y(0, x) = y0(x) in (0, 1).

(2.19)

Then,

ν ‖yxx‖2 +
√
ν ‖yx‖2 + ‖yt‖2 . ‖gx‖2 + eγ ‖wx‖L2(L∞)

(

ν−1/2 ‖g‖2 +
∣

∣y0
∣

∣

2

2

)

+ (1 +
√
γeγ) ‖w‖∞

(

ν−1 ‖g‖2 + ν−1/2
∣

∣y0
∣

∣

2

2

)

+
(

1 +
√
γe6γ

)

eγ ‖g‖L2(L∞)

(

ν−3/2 ‖g‖2 + ν−1
∣

∣y0
∣

∣

2

)

+
(

1 +
√
γe6γ

)

ν−1/2
∣

∣y0
∣

∣

2

4
+ ν1/2

∣

∣y0x
∣

∣

2
.

(2.20)

where we introdue γ = 1
ν ‖w‖2L2(L∞).
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Proof. L2
estimates for y and yx. We start by multiplying equation (2.19) by y, and integrate by

parts over (0, 1):

1

2

d

dt

∫ 1

0

y2 + ν

∫ 1

0

y2x = −
∫ 1

0

wyyx −
∫ 1

0

gyx

≤ 2

2ν

∫ 1

0

w2y2 +
ν

4

∫ 1

0

y2x +
2

2ν

∫ 1

0

g2 +
ν

4

∫ 1

0

y2x.

(2.21)

From (2.21), we dedue:

d

dt

∫ 1

0

y2 + ν

∫ 1

0

y2x ≤ 2

ν
|w(t, ·)|2∞

∫ 1

0

y2 +
2

ν

∫ 1

0

g2. (2.22)

We apply Grönwall's lemma to (2.22) to obtain:

‖y‖2L∞(L2) ≤ e2γ
(

2

ν
‖g‖22 +

∣

∣y0
∣

∣

2

2

)

. (2.23)

Plugging (2.23) into (2.22) yields:

ν ‖yx‖22 ≤
(

1 + 2γe2γ
)

(

2

ν
‖g‖22 +

∣

∣y0
∣

∣

2

2

)

. (2.24)

L2
estimate for yyx. We repeat a similar tehnique, multiplying this time equation (2.19) by y3.

Using the same approah yields:

d

dt

∫ 1

0

y4 + 6ν

∫ 1

0

y2y2x ≤ 12

ν
|w(t, ·)|2∞

∫ 1

0

y4 +
12

ν
|g(t, ·)|2∞

∫ 1

0

y2. (2.25)

We apply Grönwall's lemma to (2.25) to obtain:

‖y‖4L∞(L4) ≤ e12γ
(

12

ν
‖g‖2L2(L∞) ‖y‖

2
L∞(L2) +

∣

∣y0
∣

∣

4

4

)

. (2.26)

One again, plugging bak estimate (2.26) into (2.25) gives:

6ν ‖yyx‖22 ≤
(

1 + 12γe12γ
)

(

12

ν
‖g‖2L2(L∞) ‖y‖

2
L∞(L2) +

∣

∣y0
∣

∣

4

4

)

. (2.27)

Conlusion. To onlude the proof, we use Lemma 3, with a soure term f = gx+wxy+wyx − yyx.
Estimate (2.20) omes from the ombination of (2.7) with equations (2.23), (2.24) and (2.27).

Lemma 8. For any initial data y0 ∈ H1
0 (0, 1) and any ontrol u ∈ L2(0, T ), system (1.1) has a unique

solution y ∈ XT . Moreover:

‖yxx‖2 + ‖yt‖2 . |u|2 + |u|22 + |y0|24 + |y0x|2, (2.28)

‖y‖∞ ≤ |y0|∞ + |u|L1 . (2.29)

Proof. This type of existene result relies on standard a priori estimates and the use of a �xed point

theorem. Suh tehniques are desribed in [34℄. One an also use a semi-group method as in [38℄. The

quantitative estimate is obtained by applying Lemma 7 with w = 0 (hene γ = 0) and g(t, x) = xu(t).
Equation (2.20) yields (2.28). The seond estimate (2.29) is a onsequene of the maximum priniple,

whih an be applied in this strong setting.

3 From Burgers to a kernel integral operator

3.1 A general method for evaluating a projetion

As we mentionned in the introdution, we are going to onsider a projetion of the state b against some

given pro�le ρ(x) at the �nal time t = 1. Sine a depends linearly on u and b depends quadratially
on a, it is natural to look for this projetion as a quadrati integral operator ating on our ontrol u.
Indeed, let us prove the following result.
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Lemma 9. Let ρ ∈ L2(0, 1) and ε > 0. There exists a symmetri kernel Kε ∈ L∞((0, 1)2) suh that,

for any u ∈ L2(0, 1), the solution to system (1.8)-(1.9) satis�es:

∫ 1

0

b(1, x)ρ(x)dx =

∫∫

(0,1)2
Kε(s1, s2)u(s1)u(s2)ds1ds2. (3.1)

The key point of the proof is to onvert the pointwise in time projetion of b into an integrated

projetion over the time interval (0, 1). Indeed, we start with the proof of the following lemma.

Lemma 10. Let f ∈ L2((0, 1)2), ε > 0 and z ∈ X1 be the solution to:



















zt − εzxx = f in (0, 1)× (0, 1),

z(t, 0) = 0 in (0, 1),

z(t, 1) = 0 in (0, 1),

z(0, x) = 0 in (0, 1).

(3.2)

Take ρ ∈ L2(0, 1). The �nal time projetion of z against ρ satis�es:

∫ 1

0

z(1, x)ρ(x)dx =

∫∫

(0,1)2
Φ(1 − t, x)f(t, x)dxdt, (3.3)

where Φ ∈ X1 is the solution to:



















Φt − εΦxx = 0 in (0, 1)× (0, 1),

Φ(t, 0) = 0 in (0, 1),

Φ(t, 1) = 0 in (0, 1),

Φ(0, x) = ρ(x) in (0, 1).

(3.4)

Proof. Let us introdue Ψ ∈ X1, the solution to:



















Ψt − εΨxx = ρ in (0, 1)× (0, 1),

Ψ(t, 0) = 0 in (0, 1),

Ψ(t, 1) = 0 in (0, 1),

Ψ(0, x) = 0 in (0, 1).

(3.5)

Using this system, we an onvert the time puntual projetion of the state z against ρ into a projetion
of the soure term f onto the full square:

∫ 1

0

z(1, x)ρ(x)dx =
d

dT

∫ T

0

∫ 1

0

z(t, x) · ρ(x)dxdt
∣

∣

∣

∣

∣

T=1

=
d

dT

∫ T

0

∫ 1

0

z(t, x) · {Ψt − εΨxx}(T − t, x)dxdt

∣

∣

∣

∣

∣

T=1

=
d

dT

∫ T

0

∫ 1

0

{zt − εzxx}(t, x) ·Ψ(T − t, x)dxdt

∣

∣

∣

∣

∣

T=1

=
d

dT

∫ T

0

∫ 1

0

f(t, x) ·Ψ(T − t, x)dxdt

∣

∣

∣

∣

∣

T=1

=

∫ 1

0

∫ 1

0

f(t, x)Ψt(1− t, x)dxdt.

(3.6)

The integrations by parts performed above are valid beause of the null boundary and initial onditions

hosen in systems (3.2) and (3.5). Equation (3.3) is a diret onsequene of (3.6) sine Ψt = Φ.

Let us ome bak to the proof of Lemma 9. We apply Lemma 10 to the state b. Thus, from (1.9)

and (3.3) we dedue that:

∫ 1

0

b(1, x)ρ(x)dx =

∫ 1

0

∫ 1

0

Φ(1− t, x)[−aax](t, x)dxdt

=
1

2

∫ 1

0

∫ 1

0

Φx(1− t, x)a2(t, x)dxdt.

(3.7)
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In order to express our projetion diretly using u, we need to eliminate a from (3.7). This an easily

be done using an elementary solution of the heat system. Therefore, we introdue G the solution to:



















Gt − εGxx = 0 in (0, 1)× (0, 1),

G(t, 0) = 0 in (0, 1),

G(t, 1) = 0 in (0, 1),

G(0, x) = 1 in (0, 1).

(3.8)

Using the initial ondition a(t = 0, ·) ≡ 0 from system (1.8), we an expand a as:

a(t, x) =

∫ t

0

G(t− s, x)u(s)ds. (3.9)

Pluging (3.9) into (3.7) yields:

∫ 1

0

b(1, x)ρ(x)dx =
1

2

∫ 1

0

∫ 1

0

Φx(1− t)

(∫ t

0

G(t− s1)u(s1)ds1

)(∫ t

0

G(t− s2)u(s2)ds2

)

dt

=
1

2

∫ 1

0

∫ 1

0

u(s1)u(s2)

(∫ 1

s1∨s2

∫ 1

0

Φx(1− t)G(t− s1)G(t− s2)dt

)

ds1ds2.

(3.10)

Finally, equation (3.10) proves (3.1) with:

Kε(s1, s2) =
1

2

∫ 1

s1∨s2

∫ 1

0

Φx(1− t, x)G(t − s1, x)G(t − s2, x)dxdt. (3.11)

Thus, we have proved Lemma 9 and we have a very preise desription of the kernel that is involved.

This kernel depends on the projetion pro�le ρ(x) by means of Φ de�ned in (3.4). This kernel

also strongly depends on the visosity ε whih is involded in the omputation of both Φ and of the

elementary solution G.
Moreover, it is lear that K is a symmetri kernel and sine all terms are bounded thanks to the

maximum priniple, we know that K ∈ L∞
. In fat, K is even smoother as we will see later on.

3.2 Choie of a pro�le ρ

As we have seen in the introdution, a natural hoie in the low visosity setting would be ρ(x) = x− 1
2 .

We think that our proof ould be adapted to work with this pro�le. However, the omputations are

tough beause it does not satisfy null boundary onditions. Thus, we are going to make a hoie whih

is more intrinsi to the Burgers system.

For any �xed ontrol value ū ∈ R, we want to ompute the assoiated steady state (ā(x), b̄(x)) of
systems (1.8) and (1.9). Thus, we solve the following system:

{

−εāxx = ū in (0, 1),

−εb̄xx = −āāx in (0, 1),
(3.12)

with boundary onditions ā(0) = ā(1) = b̄(0) = b̄(1) = 0. Integrating (3.12) with respet to x yields

the following family of steady states:

ā(x) =
1

2ε
x(1 − x)ū and b̄(x) =

1

8ε3

(

x5

5
− x4

2
+
x3

3
− x

30

)

ū2. (3.13)

Of ourse, b̄ depends quadratially on ū. Thus equation (3.13) gives the idea of onsidering:

ρ(x) =
x5

5
− x4

2
+
x3

3
− x

30
. (3.14)

This hoie of ρ may seem strange beause is has been obtained using an in�nite visosity limit.

However, sine both ρ and ρxx satisfy null boundary onditions, the omputations of the di�erent

kernel residues turn out to be easier. In the sequel, we assume that ρ is de�ned by (3.14).
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3.3 Rough omputation of the asymptoti kernel

In this paragraph, we apply Lemma 9 to ompute the kernel assoiated to the hoie of ρ given

in (3.14). More spei�ally, we are interested in omputing a rough approximation of Kε
when ε→ 0.

This approximation will serve as a motivation for the following setions where we will need to estimate

all the residues that will be leaving aside for the moment. Sine formula (3.11) de�ning Kε
involves

both Φ and G, we need to hoose approximations of these quantities as ε→ 0. Looking at system (3.4)

de�ning Φ, we hoose to use:

Φx(t, x) ≈ ρx(x). (3.15)

Moreover, for G de�ned by (3.8), we will use the approximation G ≈ 1 inside (0, 1). Stopping here

would not yield anything useful. Indeed, sine

∫ 1

0 ρx = ρ(1) − ρ(0) = 0, we would obtain Kε = 0.
Hene, we need to hoose an approximation of G that is more aurate near the boundary, eg:

G(t, x) ≈ erf

(

x√
4εt

)

, (3.16)

whih we will use near x = 0. Note that equation (3.16) orresponds to the solution of a heat equation

on the real line with an initial data equal to −1 for x < 0 and +1 for x > 0. Thus, it satis�es the

boundary ondition G(t, 0) ≡ 0 and serves as a boundary layer orretion. We ompute the integrand

inside equation (3.11):

Aε(t, s1, s2) :=
1

2

∫ 1

0

Φx(1− t, x)G(t − s1, x)G(t− s2, x)dx

=
1

2

∫ 1

0

Φx(1− t, x) (G(t− s1, x)G(t − s2, x)− 1) dx sine

∫

Φx = 0

=

∫ 1
2

0

Φx(1− t, x) (G(t− s1, x)G(t− s2, x)− 1) dx by parity,

≈
∫ 1

2

0

ρx(x)

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx using (3.15), (3.16),

≈ 2
√
ε

∫ 1

4
√

ε

0

ρx
(

2
√
εx
)

(

erf

(

x
√

(t− s1)

)

erf

(

x
√

(t− s2)

)

− 1

)

dx

∼ −2
√
ερx(0)

∫ +∞

0

(

1− erf

(

x
√

(t− s1)

)

erf

(

x
√

(t− s2)

))

dx.

(3.17)

To arry on with the omputation, we need the following integral alulus lemma.

Lemma 11. Let α, β > 0. Then,

∫ +∞

0

(1− erf(αx)erf(βx)) dx =
1

αβ

√

α2 + β2

π
. (3.18)

Proof. We an �nd an expliit primitive for the integrand. Indeed, for any X > 0,

∫ X

0

(1− erf(αx)erf(βx)) dx =X (1− erf(αX)erf(βX))

− erf(αX) exp(−β2X2)

β
√
π

− erf(βX) exp(−α2X2)

α
√
π

+

√

α2 + β2

αβ
√
π

erf
(

√

α2 + β2X
)

.

(3.19)

Equation (3.19) an be heked by di�erentiation. Taking its limit as X → +∞ yields (3.18).

We return to the omputation of the asymptoti kernel as ε → 0. We note that ρx(0) = − 1
30 .
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Combined with (3.11), (3.17) and Lemma 11, we obtain:

Kε(s1, s2) =

∫ 1

s1∨s2

Aε(t, s1, s2)dt

≈
√
ε

15
√
π

∫ 1

s1∨s2

√

(t− s1) + (t− s2)dt

≈
√
ε

45
√
π
·
[

(2t− s1 − s2)
3
2

]1

s1∨s2

≈
√
ε

45
√
π
K0(s1, s2),

(3.20)

where we introdue the asymptoti kernel:

K0(s1, s2) = (2− s1 − s2)
3/2 − |s1 − s2|3/2 . (3.21)

At this stage, equation (3.20) is not rigorous. The meaning of the ≈ sign has to be made preise.

This is the goal of Setion 5 where we prove that this asymptoti formula does make sense. Indeed,

we estimate the kernel residues between Kε
and

√
εK0

. They turn out to be both small (with respet

to ε) and smooth (with respet to the spaes on whih they de�ne ontinuous quadrati forms).

4 Coerivity of the asymptoti kernel

In this setion, our goal is to prove the oerivity of the kernel K0(x, y). This is a symmetri real-

valued kernel de�ned on (0, 1) × (0, 1). Note that, sine no onfusion is possible, we will use (x, y)
instead of (s1, s2) for the variables of the kernel to lighten notations of this setion. We will prove the

following theorem.

Lemma 12. The integral operator assoiated to K0
is oerive in the spae H−5/4(0, 1). There exists

γ > 0 suh that, for any f ∈ L2(0, 1), the following inequality holds:

∫ 1

0

∫ 1

0

K0(x, y)f(x)f(y)dxdy ≥ γ ‖F‖2H−1/4(0,1) , (4.1)

where F is the primitive of f suh that F (0) = 0.

Thanks to the hange of variables (x, y) 7→ (1 − x, 1− y), the kernel K0
behaves exatly like:

N(x, y) = (x+ y)3/2 − |x− y|3/2 . (4.2)

In this setion, we will thus study the properties of N whose expression is easier to handle.

4.1 The kernel N is positive de�nite

This setion uses results and notions from [9℄. We will say that a matrix A is positive semide�nite

(psd) when 〈Ax|x〉 ≥ 0 for any x ∈ R
m
. We will say that A is positive de�nite if the inequality is

strit for any x 6= 0. We will say that A is onditionnaly negative semide�nite (nsd) when 〈Ax|x〉 ≤ 0
for any x suh that

∑

xi = 0. We will use similar de�nitions for operators.

Lemma 13. For any f ∈ L2(0, 1),

∫ 1

0

∫ 1

0

N(x, y)f(x)f(y)dxdy ≥ 0. (4.3)

Proof. All neessary arguments an be found in [9, Chapter 3℄. Indeed, the kernel −(x+y)3/2 is nsd.
as is proved in [9, Corollary 2.11℄. Moreover, the kernel |x − y|3/2 is also nsd. (see [9, Remark 1.10℄

and [9, Corollary 2.10℄). Hene, letting:

ψ(x, y) = − (x+ y)
3/2

+ |x− y|3/2 (4.4)

de�nes a nsd. kernel. Thus, sine:

N(x, y) = ψ(x, 0) + ψ(y, 0)− ψ(x, y)− ψ(0, 0), (4.5)

this kernel is psd. thanks to [9, Lemma 2.1℄. This proves inequality (4.3).
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Even though it is true that the kernels involved in the proof of Lemma 13 are strilty negative (or

positive), we annot adapt the proof to prove that N is de�nite. Indeed, Merer's theorem (whih

allows us to take the step from matries to ontinuous kernels) doesn't preserve strit inequalities.

Thus, we have to look for another proof.

4.2 Some insight and fats

Our main insight is that the kernel N is made up of two parts. The most singular one should explain

its behavior. Indeed, kernels whih an be expressed as a funtion r (|x− y|) have been extensively

studied. For example, [46℄ and [40℄ prove asymptoti formulas for the eigenvalues of the − |x− y|3/2
part of our kernel:

λn ∼ 3
√
2

4π2

(

1

n

)
5
2

. (4.6)

Moreover, some papers have also studied the eigenvetors of suh kernels. For example, in [37℄, one

an �nd asymptoti developments for eigenvetors of kernels of the form |x− y|−α
, where α ∈ (0, 1).

Combining the insight that the eigenvetors of N should asymptotially behave like osillating

sinuses and formula (4.6), we expet that it should be possible to prove Lemma 12 by means of suh

an asymptoti study. However, we have not been able to prove it using this method. Instead, we give

below a proof based on Riesz potentials.

4.3 Highlighting the singular part of N

The kernel N(x, y) is rather smooth. In order to prove its oerivity, we will need to isolate it's most

singular part. In the following lemma, we use integration by parts twie to show that studying the

behavior of N is equivalent to studying a more singular kernel. By hoosing adequatly the primitive,

we show that we an also anel boundary terms.

Lemma 14. Let f ∈ L2(0, 1) and F be the primitive of f suh that F (1) = 0. Then:

(Nf, f) =
3

4

∫ 1

0

∫ 1

0

(

(x+ y)
− 1

2 + |x− y|−
1
2

)

F (x)F (y)dxdy. (4.7)

Proof. Let f ∈ L2(0, 1) and F be the primitive of f suh that F (1) = 0. We start with:

−
∫ 1

0

∫ 1

0

|x− y|
3
2 f(x)f(y)dxdy

= −
∫ 1

0

f(x)

{∫ x

0

(x− y)
3
2 f(y)dy +

∫ 1

x

(y − x)
3
2 f(y)dy

}

dx

= F (0)

∫ 1

0

x
3
2 f(x)dx +

3

2

∫ 1

0

∫ 1

0

|x− y|
1
2 sg(y − x)f(x)F (y)dxdy

= F (0)

∫ 1

0

x
3
2 f(x)dx +

3

2

∫ 1

0

F (y)

{∫ y

0

(y − x)
1
2 f(x)dx −

∫ 1

y

(x− y)
1
2 f(x)dx

}

dy

= F (0)

∫ 1

0

(

x
3
2 f(x)− 3

2
x

1
2F (x)

)

dx+
3

4

∫ 1

0

∫ 1

0

|x− y|−
1
2 F (x)F (y)dxdy.

(4.8)

We ontinue with the other half of the kernel N(x, y):

∫ 1

0

∫ 1

0

(x+ y)
3
2 f(x)f(y)dxdy

= −F (0)
∫ 1

0

x
3
2 f(x)dx− 3

2

∫ 1

0

∫ 1

0

(x+ y)
1
2 f(x)F (y)dxdy

= F (0)

∫ 1

0

(

3

2
x

1
2F (x)− x

3
2 f(x)

)

dx+
3

4

∫ 1

0

∫ 1

0

(x+ y)−
1
2F (x)F (y)dxdy.

(4.9)

Summing the two previous equalities proves Lemma 14.
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4.4 Riesz potential and frational laplaian

In this setion, we fous on the most singular part of the kernel. We reognize a Riesz potential of

order

1
2 . Using the frational laplaian, we an ompute the quantity as a usual norm.

Lemma 15. There exists C > 0 suh that, for any h ∈ L2(0, 1),

∫ 1

0

∫ 1

0

|x− y|−
1
2 h(x)h(y)dxdy ≥ C ‖h‖2H−1/4(0,1) . (4.10)

Proof.

∫ 1

0

∫ 1

0

|x− y|−
1
2 h(x)h(y)dxdy =

∫

R

∫

R

|x− y|−
1
2 h(x)h(y)dxdy

=
(

(−∆)−1/4 h, h
)

=
(

(−∆)
−1/8

h, (−∆)
−1/8

h
)

=
∥

∥

∥(−∆)
−1/8

h
∥

∥

∥

2

L2

= ‖h‖2Ḣ−1/4

≥ ‖h‖2H−1/4

(4.11)

More information on suh tehniques an be found in [42℄ or posterior works.

4.5 Positivity of the smooth part

To onlude the proof of Lemma 12, we show that the smooth part of our kernel is of positive type.

We ould also rely on smoothness arguments to prove that its behavior doesn't modify the asymptoti

behavior of eigenvetors and eigenvalues of the singular part.

Lemma 16. For any h ∈ L2(0, 1),

∫ 1

0

∫ 1

0

(x+ y)
− 1

2 h(x)h(y)dxdy ≥ 0. (4.12)

Proof. We use de�nitions and theorems found in [9, Chapter 3℄. Thanks to [9, result 1.9, page 69℄,

the kernel given on (0, 1)2 by (x, y) 7→ x + y is onditionnaly negative semide�nite (nsd). Hene,

using [9, orollary 2.10, page 78℄, the kernel given by (x, y) 7→ √
x+ y is also nsd. Eventually, [9,

exerise 2.21, page 80℄ proves that the kernel (x, y) 7→ 1/
√
x+ y is positive semide�nite. This means

that, for any n > 0 and any c1, . . . cn ∈ R and any x1, . . . xn ∈ (0, 1),

n
∑

i=1

n
∑

j=1

cicj√
xi + xj

≥ 0. (4.13)

Using Merer's theorem (see [36℄), we dedue that, for any h ∈ L2(0, 1),

∫ 1

0

∫ 1

0

(x+ y)
− 1

2 h(x)h(y)dxdy ≥ 0. (4.14)

4.6 Conlusion of the proof

Now we an prove Lemma 12. Indeed, ombining Lemmas 14, 15 and 16 proves that there exists

C > 0 suh that, for any f ∈ L2(0, 1),

(Nf, f) ≥ C ‖F‖2H−1/4(0,1) , (4.15)

where F is the primitive of f suh that F (1) = 0. Thanks to the hange of variables already men-

tionned, the same property holds true for K0 with the symmetrial ondition F (0) = 0.
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5 Exat omputation of the kernel and estimation of residues

In this setion, we give a detailed and rigorous expansion of the main kernelKε
. Our goal is to be able

to estimate with preision the size and the smoothness of all the residues that build up the di�erene

between the asymptoti kernel

√
εK0

and the true kernel. As above, we write:

Kε(s1, s2) =

∫ 1

s1∨s2

A(t, s1, s2)dt, where (5.1)

A(t, s1, s2) =

∫ 1
2

0

Φx(1 − t, x)G(t− s1, x)G(t − s2, x)dx. (5.2)

In equations (5.1) and (5.2), it is impliit that A, Φx and G depend on ε. Moreover, in equation (5.2),

we use the fat that G and Φx are even to write the integral over x ∈
(

0, 12
)

. This breaks the symmetry

but will allow us to use a one-sided expansion of G, thereby fousing on its behavior near x = 0.

5.1 Smoothness of weakly singular integral operators

We know that the asymptoti kernel K0
is oerive with respet to the H−5/4

norm of the ontrol u.
Thus, in order for the full kernel to remain oerive for ε > 0, we need to prove that the residues an

be bounded with the same norm. In this paragraph, we give onditions on a kernel residue L that are

easy to hek and imply that:

∀u ∈ L2(0, 1), |〈Lu, u〉| . ‖U‖2H−1/4(0,1) , (5.3)

where U is the primitive of u suh that U(0) = 0. In the following paragraphs, we will hek that

these onditions are satis�ed by our residues. We start with the following lemma, whih allows us to

express 〈Lu, u〉 diretly as a funtion of U .

Lemma 17. Let Γ be the triangular domain {(x, y) ∈ (0, 1)× (0, 1), s.t. x ≤ y}. Let L ∈ W 2,1(Γ).
We see L as the restrition to Γ of a symmetri kernel on (0, 1)× (0, 1) that is smooth on eah triangle

but not neessarly aross the �rst diagonal. Assume that L(·, 1) ≡ 0. Let u ∈ L2(0, 1) and U be the

primitive of u suh that U(0) = 0. Then:

∫

Γ

L(x, y)u(x)u(y)dxdy =

∫

Γ

∂12L(x, y)U(x)U(y)dxdy +
1

2

∫ 1

0

(∂1L− ∂2L) (x, x)U
2(x)dx. (5.4)

In equation (5.4), it is worth to be noted that ∂1L and ∂2L are evaluated on the �rst diagonal and

must thus be omputed using points within Γ.

Proof. We use integration by parts and the boundary onditions U(0) = 0 and L(·, 1) = 0.

∫

Γ

L(x, y)u(x)u(y)dxdy =

∫ 1

0

u(x)

∫ 1

x

L(x, y)u(y)dydx

=

∫ 1

0

u(x)

(

[L(x, y)U(y)]1x −
∫ 1

x

∂2L(x, y)U(y)dy

)

dx

= −
∫ 1

0

L(x, x)U(x)u(x)dx −
∫ 1

0

U(y)

∫ y

0

∂2L(x, y)u(x)dx

=

∫ 1

0

d

dx
{L(x, x)} · U

2

2
(x)dx

−
∫ 1

0

U(y)

(

[U(x)∂2L(x, y)]
y
0 −

∫ y

0

∂12L(x, y)U(x)dx

)

dy

=

∫

Γ

∂12L(x, y)U(x)U(y)dxdy +
1

2

∫ 1

0

(∂1L− ∂2L) (x, x)U
2(x)dx.

(5.5)

Equation hain (5.5) onludes the proof of equation (5.4).

Equation (5.4) inludes a boundary term evaluated on the diagonal, whih looks like the L2
norm

of U . This would forbid us to prove any estimate like (5.3). However, all our kernel residues satisfy

the ondition ∂1L − ∂2L = 0 along the diagonal and this term thus vanishes. Hene, our task is to

hek that the new kernel ∂12L generates a bounded quadrati form on H−1/4(0, 1).
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Lemma 18. Let L be a ontinuous funtion de�ned on Ω = {(x, y) ∈ (0, 1)× (0, 1), s.t. x 6= y}.
Assume that there exists κ > 0 and

1
2 < δ ≤ 1, suh that, on Ω:

|L(x, y)| ≤ κ|x− y|− 1
2 , (5.6)

|L(x, y)− L(x′, y)| ≤ κ|x− x′|δ|x− y|− 1
2
−δ, for |x− x′| ≤ 1

2
|x− y|, (5.7)

|L(x, y)− L(x, y′)| ≤ κ|y − y′|δ|x− y|− 1
2
−δ, for |y − y′| ≤ 1

2
|x− y|. (5.8)

Then L de�nes a ontinuous quadrati form on H−1/4(0, 1). Moreover, there exists a onstant C(δ)
depending only on δ (and not on L) suh that, for any U ∈ L2(0, 1):

|〈LU,U〉| ≤ C(δ)κ|U |2H−1/4(0,1). (5.9)

This tehnial lemma is very important for our proof beause it gives a quantitative estimate,

through κ, of the ation of kernels against ontrols. This Lemma an be dedued from the works of

Torres [44℄ and Youss� [47℄. We give a proof skeleton in Appendix A. The starting point is to prove

that a kernel satisfying estimates (5.6), (5.7) and (5.8) de�nes a weakly singular integral operator,

whih is ontinuous from H−1/4
to H+1/4

. Indeed, suh kernels are smoother then standard Cálderon-

Zygmund operators and it is reasonable to expet that they exhibit some smoothing properties.

We end this setion with two useful formulas. Let a : (0, 1)3 → R be a funtion suh that

a(t, s1, s2) = a(t, s2, s1). We onsider the kernel generated by a:

L(s1, s2) =

∫ 1

s1∨s2

a(t, s1, s2)dt. (5.10)

Lemma 17 an be applied to suh kernels beause they satisfy the ondition L(·, 1) ≡ 0. We ompute:

∂1L(s, s)− ∂2L(s, s) = a(s, s, s), for s ∈ (0, 1), (5.11)

∂12L(s1, s2) = −∂s1a(s2, s1, s2) +
∫ T

s2

∂s1∂s2a(t, s1, s2)dt, for s1 < s2. (5.12)

Formulas (5.11) and (5.12) will be used extensively in the following setions. Moreover, as soon as

a(s, s, s) ≡ 0, we see that the boundary term ∂1L− ∂2L vanishes.

5.2 Asymptoti expansion of Kε

In this setion, we make our rough expansions more preise. Therefore we deompose G and Φ using

the same �rst order terms as for the heuristi, but this time we introdue and ompute the residues.

5.2.1 Expansion of G as ε→ 0

Reall that we only need to approximate G for x ∈ (0, 1/2). Keeping our approximation introdued

in (3.16), we expand G as:

G(t, x) = erf

(

x√
4εt

)

+H(t, x), (5.13)

where H ∈ C∞((0, 1)× (0, 1/2)) is the solution to:



















Ht − εHxx = 0 in (0, 1)× (0, 1/2),

H(t, 0) = 0 in (0, 1),

Hx(t, 1/2) = σ(εt) in (0, 1),

H(0, x) = 0 in (0, 1/2),

(5.14)

where the soure term σ omes from the boundary ondition Gx(t, 1/2) = 0 and balanes out the

trae of the erf() part:

σ(s) = − ∂

∂x

[

erf

(

x√
4s

)]∣

∣

∣

∣

x= 1
2

= − 1√
sπ

exp

(

− 1

16s

)

. (5.15)
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Lemma 19. Let 0 < γ < 1
16 . There exists C(γ) > 0 suh that:

‖Ht‖∞ + ‖Htx‖∞ + ‖Htt‖∞ + ‖Httx‖∞ ≤ C(γ)e−γ/ε. (5.16)

Proof. This lemma is due to the exponentially deaying fator within the soure term σ de�ned

by (5.15), whih allows as many di�erentiations with respet to x or t as needed to be done. Esti-

mate (5.16) ould in fat be derived for further derivatives. Let us give a sketh of proof.

First, note that H(3) := Httt is the solution to a similar system as (5.14) with the boundary

ondition H
(3)
x (t, 1/2) = ε3σ(3)(εt). We an onvert this boundary ondition into a soure term by

writing H(3)(t, x) = xε3σ(3)(εt) + H̃(3)
, where H̃(3)

is now the solution to a heat equation with

homogeneous mixed boundary onditions and a soure term −xε4σ(4)(εt). Applying the maximum

priniple yields an estimate of the form ‖H̃(3)‖∞ ≤ C(γ)e−γ/ε
. Sine εHttxx = H(3)

, we obtain

an L∞
estimate of the same form for Httxx. By integration with respet to time and spae, we

obtain (5.16).

5.2.2 Expansion of Φ as ε→ 0

Guided by our rough omputations, we deompose Φ ∈ X1, the solution to (3.4) as:

Φ(t, x) = ρ(x) + εφ(t, x). (5.17)

Thus, we introdue the partial di�erential equation satis�ed by φ ∈ X1:



















φt − εφxx = ρxx in (0, 1)× (0, 1),

φ(t, 0) = 0 in (0, 1),

φ(t, 1) = 0 in (0, 1),

φ(0, x) = 0 in (0, 1).

(5.18)

Lemma 20. The following estimates hold:

‖Φx‖∞ . 1, (5.19)

‖φx‖∞ . 1, (5.20)

‖Φtx‖∞ = ‖εφtx‖∞ . ε. (5.21)

Proof. Estimates (5.19), (5.20) and (5.21) an be proved using a Fourier series deomposition for

heat equations. As an example, let us prove (5.21). We introdue the basis en(x) =
√
2 sin(nπx).

Sine φt is the solution to a heat equation with initial data ρxx ∈ H1
0 , we have:

φt(t, x) =

+∞
∑

n=1

e−εn2π2t〈ρxx, en〉en(x). (5.22)

Thanks to the hoie of ρ in (3.14), we have ρxx(0) = ρxx(1) = 0. Thus,

〈ρxx, en〉 = − 1

n2π2
〈ρxxxx, en〉 =

12
√
2

n3π3
((−1)n − 1) = O

(

1

n3

)

. (5.23)

Combining equations (5.22) and (5.23) yields:

‖φtx‖∞ ≤
+∞
∑

n=1

nπ|〈ρxx, en〉| .
+∞
∑

n=1

1

n2
. (5.24)

Equation (5.24) onludes the proof of (5.21). A similar method an be applied to prove (5.19)

and (5.20).
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5.2.3 Five stages expansion of the full kernel

Using expansions (5.13) and (5.17), and the fat that

∫

Φx = 0, we break down the generator

A(t, s1, s2) into 6 smaller kernel generators, A1 through A6, de�ned by:

A1(t, s1, s2) =

∫ 1
2

0

ρx(0)

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx, (5.25)

A2(t, s1, s2) =

∫ 1
2

0

(ρx(x) − ρx(0))

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx, (5.26)

A3(t, s1, s2) =

∫ 1
2

0

εφx(1− t, x)

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx, (5.27)

A4(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s1, x)erf

(

x
√

4ε(t− s2)

)

dx, (5.28)

A5(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s2, x) · erf
(

x
√

4ε(t− s1)

)

dx, (5.29)

A6(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s1, x)H(t − s2, x)dx. (5.30)

It an be heked that A de�ned in (5.2) is indeed equal to the sum of A1 through A6. For eah

1 ≤ i ≤ 6, we onsider the assoiated kernel generated by Ai:

Ki(t, s1, s2) =

∫ T

s1∨s2

Ai(t, s1, s2)dt. (5.31)

A �rst remark is that, for eah 1 ≤ i ≤ 6, Ai(s, s, s) ≡ 0 on (0, 1). Thus, equation (5.11) tells us that

there will be no boundary term involving |u|H−1
.

5.2.4 Proof methodology

The six following paragraphs are dediated to estimates for K1 through K6. In order to organize the

omputations that will be arried out for eah of these six kernels, we introdue the notations:

Ti(s1, s2) =
∂Ai

∂s1
(t, s1, s2)|t=s2 , (5.32)

Qi(t, s1, s2) =
∂2Ai

∂s1∂s2
(t, s1, s2), (5.33)

Ri(s1, s2) =

∫ 1

s2

Qi(t, s1, s2)dt. (5.34)

Using formula (5.12), ∂12Ki = Ri − Ti. Therefore, thanks to Lemma 18 and Lemma 17, we need to

prove that eah Ti and eah Ri satis�es the onditions (5.6), (5.7) and (5.8). For a kernel L, we will
denote κ(L) the assoiated onstant in Lemma 18. In the following paragraphs, we investigate the

behavior of κ(∂12Ki) with respet to ε. We end this paragraph with a useful estimation lemma.

Lemma 21. For any k > 0 there exists ck > 0 suh that, for any λ > 0, for any ε > 0,

∫ +∞

0

xk exp

(

− x2

4ελ

)

dx ≤ ck (ελ)
k+1

2 . (5.35)

Proof. Use a hange of variables introduing x̃ = x/
√
4ελ.

In the following paragraphs, similarly as we use the . sign, we will use the ≈ sign to denote

equalities that hold up to a numerial onstant (independent on all variables) of whih we will not

keep trak.
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5.3 Handling the K1 kernel

The kernel K1 ontains the main oerive part of Kε
disovered in Setion 3. Starting from its

de�nition in (5.25), we deompose it using a saling on x:

A1(t, s1, s2) = ρx(0)

∫ 1
2

0

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx

=

√
ε

15

∫ 1

4
√

ε

0

(

1− erf
x√
α
erf

x√
β

)

dx

=

√
ε

15

∫ +∞

0

(

1− erf
x√
α
erf

x√
β

)

dx−
√
ε

15

∫ +∞

1

4
√

ε

(

1− erf
x√
α
erf

x√
β

)

dx.

(5.36)

The �rst integral gives rise to the main oerive part of the kernel and has already been omputed

exatly in Setion 3. The seond part is a residue and has to be taken are of. Let us name it Ã1:

Ã1(t, s1, s2) = −
√
ε

15

∫ +∞

1

4
√

ε

(

erf

(

x√
α

)

erf

(

x√
β

)

− 1

)

dx. (5.37)

Therefore, equation (5.36) yields:

K1(s1, s2) =

√
ε

45
√
π
K0(s1, s2) + K̃1(s1, s2). (5.38)

Lemma 22. There exist c > 0 and γ > 0 suh that, for any ε > 0,

κ(∂12K̃1) ≤ c · exp
(

−γ
ε

)

, (5.39)

where κ(∂12K̃1) is the onstant assoiated to the weakly singular integral operator K̃1 in Lemma 18.

Proof. Realling notations (5.32), (5.33) and (5.34), we ompute:

T̃1(s1, s2) =
(

∂s1Ã1

)

|t=s2 ≈ ε1/2∆−3/2

∫ +∞

1

4
√

ε

x exp

(

−x
2

∆

)

dx, (5.40)

Q̃1(t, s1, s2) = ∂s1∂s2Ã1(t, s1, s2) ≈ ε1/2(αβ)−3/2

∫ +∞

1

4
√

ε

x2 exp

(

−x2
(

1

α
+

1

β

))

dx, (5.41)

R̃1(s1, s2) =

∫ 1

s2

Q̃1(t, s1, s2) ≈ ε1/2
∫ 1

s2

(αβ)−3/2

∫ +∞

1

4
√

ε

x2 exp

(

−x2
(

1

α
+

1

β

))

dxdt, (5.42)

where we introdue ∆ = s2 − s1, that will also be used in the sequel. We laim that both T̃1 and

R̃1 are C∞
kernels on (0, 1) × (0, 1). Moreover, all their derivatives are bounded by e−γ/ε

for any

γ < 1/16, thanks to the exponential terms in (5.40) and (5.42). We omit the detailed omputations

in order to fous on the tougher kernels.

5.4 Handling the K2 kernel

Using the de�nition of ρ given in (3.14), we rewrite A2 de�ned in (5.26) as:

A2(t, s1, s2) =

∫ 1
2

0

(ρx(x)− ρx(0)) erf

(

x√
4εα

)

erf

(

x√
4εβ

)

dx

=

∫ 1
2

0

x2(x− 1)2erf

(

x√
4εα

)

erf

(

x√
4εβ

)

dx.

(5.43)

First part. Remembering that erf(+∞) = 1, we onsider the �rst order derivative:

T2(s1, s2) = (∂s1A2)|t=s2 ≈ ε−1/2∆−3/2

∫ 1
2

0

x3(x− 1)2 exp

(

− x2

4ε∆

)

dx. (5.44)
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Using Lemma 21 and di�erentiating gives:

|T2(s1, s2)| . ε3/2∆1/2,

|∂s1T2(s1, s2)| . ε3/2∆−1/2,

|∂s2T2(s1, s2)| . ε3/2∆−1/2.

(5.45)

Estimates (5.45) prove that κ(T2) . ε3/2. In fat, T2 is a smoother than the weakly singular integral

operators studied in Lemma 18, sine suh operators allow degeneray like ∆−1/2
along the diagonal.

Moreover, we proved that T2 is Lipshitz ontinuous, whereas Lemma 18 only requires Cp
with p > 1

2 .

Seond part. Now we onsider the seond order derivative. Let us ompute:

Q2(t, s1, s2) = ∂s1∂s2A2(t, s1, s2) ≈ ε−1 (αβ)−3/2
∫ 1

2

0

x4(x− 1)2 exp

(

−x
2

4ε

(

1

α
+

1

β

))

dx. (5.46)

Thanks to Lemma 21, we estimate the size of Q2:

|Q2(t, s1, s2)| . ε3/2 (αβ)
−3/2

(

1

α
+

1

β

)−5/2

=
ε3/2αβ

(α+ β)
5/2

. (5.47)

Writing α = ∆+ τ and β = τ , we an estimate:

|R2(s1, s2)| =
∣

∣

∣

∣

∫ 1

s2

Q2(t, s1, s2)dt

∣

∣

∣

∣

. ε3/2
∫ 1

0

τ(∆ + τ)

(∆ + 2τ)5/2
dτ . ε3/2∆−1/2. (5.48)

We should now move on to omputing ∂s1R2 and ∂s2R2, to establish the missing estimates on R2.

However, the omputations assoiated to R2 are very similar to the ones that we arry out for R3.

Sine R3 is a little harder, we skip the proof for R2 and refer the reader to the proof of R3, whih is

fully detailed in the next paragraph. Therefore, we laim that:

κ(∂12K2) . ε3/2. (5.49)

5.5 Handling the K3 kernel

In this setion, we onsider:

A3(t, s1, s2) = ε

∫ 1
2

0

φx(1− t, x)

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx. (5.27)

First part. Remembering that erf(+∞) = 1, we onsider the �rst order derivative:

T3(s1, s2) := (∂s1A3)|t=s2 ≈ ε1/2∆−3/2

∫ 1
2

0

φx(1− s2, x) · x exp
(

− x2

4ε∆

)

dx. (5.50)

Thanks to Lemma 20 and Lemma 21, we have:

|T3(s1, s2)| . ε1/2∆−3/2 ‖φx‖∞ ·
∫ 1

2

0

x exp

(

− x2

4ε∆

)

dx . ε3/2∆−1/2. (5.51)

Moreover,

|∂s1T3(s1, s2)| . ε1/2∆−5/2 ‖φx‖∞ ·
∫ 1

2

0

x exp

(

− x2

4ε∆

)

dx

+ ε1/2∆−3/2 ‖φx‖∞ ·
∫ 1

2

0

x3

4ε∆2
exp

(

− x2

4ε∆

)

dx

. ε3/2∆−3/2.

(5.52)

and

|∂s2T3(s1, s2)| . ε1/2∆−3/2 ‖φxt‖∞ ·
∫ 1

2

0

x exp

(

− x2

4ε∆

)

dx

+ ε1/2∆−5/2 ‖φx‖∞ ·
∫ 1

2

0

x exp

(

− x2

4ε∆

)

dx

+ ε1/2∆−3/2 ‖φx‖∞ ·
∫ 1

2

0

x3

4ε∆2
exp

(

− x2

4ε∆

)

dx

. ε3/2∆−3/2.

(5.53)
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Putting together estimates (5.51), (5.52) and (5.53) proves that κ(T3) . ε3/2.
Seond part. Let us move on to the seond order derivative part. We ompute:

Q3(t, s1, s2) = ∂s1∂s2A3 ≈ (αβ)−3/2

∫ 1
2

0

x2φx(1 − t, x) exp

(

−x
2

4ε

(

1

α
+

1

β

))

dx. (5.54)

Combining Lemma 21 and Lemma 20 yields:

|Q3(t, s1, s2)| .
ε3/2

(α+ β)3/2
. (5.55)

Writing α = ∆+ τ and β = τ , we an estimate:

|R3(s1, s2)| =
∣

∣

∣

∣

∫ 1

s2

Q3(t, s1, s2)dt

∣

∣

∣

∣

.

∫ 1

0

(

ε

∆+ 2τ

)3/2

dτ . ε3/2∆−1/2. (5.56)

Now we will prove similar estimates for the �rst order derivatives of R3. Di�erentiating equation (5.54)

with respet to s1 (or similarly α) yields:

∂s1Q3(t, s1, s2) ≈− 3

2
α−5/2β−3/2

∫ 1
2

0

x2φx(1 − t, x) exp

(

−x
2

4ε

(

1

α
+

1

β

))

dx

+ (αβ)−3/2 1

α2

∫ 1
2

0

x4

4ε
φx(1− t, x) exp

(

−x
2

4ε

(

1

α
+

1

β

))

dx.

(5.57)

Combining Lemma 21 and Lemma 20 gives:

|∂s1Q3(t, s1, s2)| . α−5/2β−3/2 ε3/2
(

1
α + 1

β

)3/2
+ α−7/2β−3/2 ε3/2

(

1
α + 1

β

)5/2
. ε3/2α−5/2. (5.58)

Integration with respet to t yields an estimate of ∂s1R3:

|∂s1R3(s1, s2)| .
∫ 1

s2

|∂s1Q3(t, s1, s2)| dt . ε3/2
∫ 1

s2

dt

α5/2
. ε3/2∆−3/2. (5.59)

From this, we dedue that:

|R3(s1, s2)−R3(s̃1, s2)| . ε3/2∆−3/2 |s1 − s̃1| . (5.60)

Eventually, we �nish with the smoothness of R3 with respet to s2. We ompute the di�erene for

s1 < s2 < s̃2 with s̃2 − s2 ≤ 1
2 (s2 − s1):

|R3(s1, s2)−R3(s1, s̃2)| =
∣

∣

∣

∣

∫ 1

s2

Q3(t, s1, s2)dt−
∫ 1

s̃2

Q3(t, s1, s̃2)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ s̃2

s2

Q3(t, s1, s2)dt−
∫ 1

s̃2

(Q3(t, s1, s̃2)−Q3(t, s1, s2)) dt

∣

∣

∣

∣

∣

≤
∫ s̃2

s2

ε3/2

∆3/2
dt+

∣

∣

∣

∣

∣

∫ 1

s̃2

∫ s̃2

s2

∂s2Q3(t, s1, s)dsdt

∣

∣

∣

∣

∣

≤ ε3/2

∆3/2
|s2 − s̃2|+

∫ s̃2

s2

∫ 1

s̃2

|∂s2Q3(t, s1, s)| dtds.

(5.61)

The �rst term is already in the orret form. We need to work on the seond term. Proeeding as

above, di�erentiating equation (5.54) with respet to s2 (or similarly β), then ombining Lemma 21

and Lemma 20 gives:

|∂s2Q3(t, s1, s)| . ε3/2
1

t− s

1

(t− s+ t− s1)
3/2

. (5.62)
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We ompute:

∫ s̃2

s2

∫ 1

s̃2

|∂s2Q3(t, s1, s)| dtds ≤ ε3/2
∫ s̃2

s2

∫ 1

s̃2

1

t− s

1

(t− s1)3/2
dtds

≤ ε3/2∆−3/2

∫ s̃2

s2

∫ 1

s̃2

dt

t− s
ds

≤ ε3/2∆−3/2

∫ s̃2

s2

|ln (s̃2 − s)| ds

≤ ε3/2∆−3/2 |s2 − s̃2| (1 + ln |s2 − s̃2|) .

(5.63)

This last estimate does not give Lipshitz smoothness, but it does provide Cp
smoothness for any

p < 1, whih is enough. Together, estimates (5.56), (5.60) and (5.63) prove that κ(R3) . ε3/2.

5.6 Handling the K4 kernel

In this setion, we onsider:

A4(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s1, x)erf

(

x
√

4ε(t− s2)

)

dx. (5.28)

First part. We onsider the �rst order derivative:

T4(s1, s2) = (∂s1A4)|t=s2

=

∫ 1
2

0

Φx(1− s2, x)Ht(s2 − s1, x)dx,
(5.64)

where we used the fat that erf(+∞) = 1. The following estimates are straight forward:

|T2(s1, s2)| ≤ ‖Φx‖∞ ‖Ht‖∞ , (5.65)

|T2(s1, s2)− T2(s̃1, s2)| ≤ |s1 − s̃1| · ‖Φx‖∞ ‖Htt‖∞ , (5.66)

|T2(s1, s2)− T2(s1, s̃2)| ≤ |s2 − s̃2| · ‖Φx‖∞ ‖Htt‖∞ (5.67)

+ |s2 − s̃2| · ‖Φtx‖∞ ‖Ht‖∞ . (5.68)

Seond part. We move on to the seond order derivative part. We ompute:

Q4(t, s1, s2) = ∂s1∂s2A4(t, s1, s2) ≈ ε−1/2β−3/2

∫ 1
2

0

xΦx(1− t, x)Ht(α, x) exp

(

− x2

4εβ

)

dx. (5.69)

Sine Ht(t, 0) ≡ 0, |Ht(t, x)| ≤ x ‖Htx‖∞. Using Lemma 21, we obtain:

|Q4(t, s1, s2)| . ε−1/2β−3/2 ‖Htx‖∞ ‖Φx‖∞
∫ 1

2

0

x2 exp

(

− x2

4εβ

)

dx

. ε ‖Htx‖∞ ‖Φx‖∞ .

(5.70)

By integration over t ∈ (s2, 1), we obtain:

|R4(s1, s2)| . ε ‖Htx‖∞ ‖Φx‖∞ . (5.71)

Now we establish the smoothness of Q4 with respet to s1. Di�erentiating equation (5.69) with respet
to s1 (or α), and applying the same tehniques yields the estimate:

|∂s1Q4(t, s1, s2)| . ε ‖Httx‖∞ ‖Φx‖∞ . (5.72)

This proves that:

|R4(s1, s2)−R4(s̃1, s2)| . ε ‖Httx‖∞ ‖Φx‖∞ · |s1 − s̃1|. (5.73)

Finally, we onsider the smoothness of Q4 with respet to s2. We know that:

|R4(s1, s2)−R4(s1, s̃2)| ≤
∫ s̃2

s2

|Q4(t, s1, s2)| dt+
∫ s̃2

s2

∫ 1

s̃2

|∂s2Q4(t, s1, s)| dtds. (5.74)
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This �rst part obviously gives rise to a Lipshitz estimate. As for the seond part, we ompute ∂s2Q4

by di�erentiating (5.69) with respet to β. We obtain

∂s2Q4(t, s1, s)(t, s1, s) ≈− 3

2
ε−1/2β−5/2

∫ 1
2

0

xΦx(t, x)Ht(α, x) exp

(

− x2

4εβ

)

dx

+ ε−1/2β−3/2 1

4εβ2

∫ 1
2

0

x3Φx(t, x)Ht(α, x) exp

(

− x2

4εβ

)

dx.

(5.75)

Similar estimates yield:

|∂s2Q4(t, s1, s)| . ε ‖Htx‖∞ ‖Φx‖∞ · 1

t− s
. (5.76)

Therefore:

∫ s̃2

s2

∫ 1

s̃2

|∂s2Q4(t, s1, s)| dtds . ε ‖Htx‖∞ ‖Φx‖∞ ·
∫ s̃2

s2

∫ 1

s̃2

dtds

t− s

. ε ‖Htx‖∞ ‖Φx‖∞ ·
∫ s̃2

s2

|ln(s̃2 − s)| ds

. ε ‖Htx‖∞ ‖Φx‖∞ · |s̃2 − s2| (1 + ln |s̃2 − s2|) .

(5.77)

Therefore, for any �xed p < 1, we have:

|R4(s1, s2)−R4(s1, s̃2)| . ε ‖Htx‖∞ ‖Φx‖∞ · |s̃2 − s2|p . (5.78)

Thanks to Lemma 19 and Lemma 20, this proves that, for any γ < 1
16 ,

κ(∂12K4) . exp
(

−γ
ε

)

. (5.79)

5.7 Handling the K5 kernel

Reall that A5 was de�ned by:

A5(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s2, x)erf

(

x
√

4ε(t− s1)

)

dx. (5.29)

First part. The �rst order derivative T5 is null. Indeed,

T5(s1, s2) = (∂s1A5)|t=s2

=
1

2
√
πε

∫ 1
2

0

Φx(1− s2, x)H(0, x) · x

(s2 − s1)
3
2

exp

(

− x2

4ε(s2 − s1)

)

dx = 0.
(5.80)

Seond part. We onsider the seond order derivative:

Q5(t, s1, s2) = ∂s2∂s1A5(t, s1, s2) ≈ ε−1/2α−3/2

∫ 1
2

0

xΦx(t, x)Ht(β, x) exp

(

− x2

4εα

)

dx. (5.81)

Sine Ht(t, 0) ≡ 0, |Ht(t, x)| ≤ x ‖Htx‖∞. Using Lemma 21, we obtain:

|Q5(t, s1, s2)| . ε−1/2α−3/2 ‖Htx‖∞ ‖Φx‖∞
∫ 1

2

0

x2 exp

(

− x2

4εα

)

dx

. ε ‖Htx‖∞ ‖Φx‖∞ .

(5.82)

By integration over t ∈ (s2, 1), we obtain:

|R5(s1, s2)| . ε ‖Htx‖∞ ‖Φx‖∞ . (5.83)

Di�erentiating (5.81) with respet to α and proeeding likewise yields:

|∂s1Q5(t, s1, s2)| . ε ‖Htx‖∞ ‖Φx‖∞ · 1
α
. (5.84)
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Thus,

|R5(s1, s2)−R5(s̃1, s2)| . ε ‖Htx‖∞ ‖Φx‖∞ ·∆−1 |s̃1 − s1| . (5.85)

Di�erentiation with respet to β is even easier and gives:

|∂s2Q5(t, s1, s2)| . ε ‖Httx‖∞ ‖Φx‖∞ , (5.86)

from whih we easily onlude that R5 is Lipshitz with respet to s2.
Thanks to Lemma 19 and Lemma 20, this proves that, for any γ < 1

16 ,

κ(∂12K5) . exp
(

−γ
ε

)

. (5.87)

5.8 Handling the K6 kernel

Reall that A6 was de�ned by:

A6(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s1, x)H(t− s2, x)dx. (5.30)

First part. The �rst order derivative T6 is null. Indeed:

T6(s1, s2) = (∂s1A6)|t=s2 =

∫ 1
2

0

Φx(0, x)Ht(s2 − s1, x)H(0, x)dx = 0. (5.88)

Seond part. We onsider the seond order derivative:

Q6(t, s1, s2) = ∂s2∂s1A6(t, s1, s2) =

∫ 1
2

0

Φx(1− s2, x)Ht(t− s1, x)Ht(t− s2, x)dx. (5.89)

For any t ∈ (0, 1), we estimate:

|Q6(t, s1, s2)| ≤ ‖Φx‖∞ ‖Ht‖2∞ ,

|Q6(t, s1, s2)−Q6(t, s̃1, s2)| ≤ |s1 − s̃1| · ‖Φx‖∞ ‖Htt‖∞ ‖Ht‖∞ ,

|Q6(t, s1, s2)−Q6(t, s1, s̃2)| ≤ |s2 − s̃2| · ‖Φx‖∞ ‖Ht‖∞ ‖Htt‖∞
+ |s2 − s̃2| · ‖Φtx‖∞ ‖Ht‖2∞ .

(5.90)

Hene, we an extend these estimates to:

R6(s1, s2) =

∫ 1

s2

Q6(t, s1, s2)dt (5.91)

The only non immediate extension is:

|R6(s1, s2)−R6(s1, s̃2)| ≤
∫ 1

s2

|Q6(t, s1, s2)−Q6(t, s1, s̃2)| dt+
∫ s̃2

s2

|Q6(t, s1, s̃2)| dt

≤ |s2 − s̃2| (‖Φx‖∞ ‖Ht‖∞ ‖Htt‖∞
+ ‖Φtx‖∞ ‖Ht‖2∞ + ‖Φx‖∞ ‖Ht‖2∞

)

(5.92)

Thanks to Lemma 19 and Lemma 20, this proves that, for any γ < 1
16 ,

κ(∂12K6) . exp
(

−γ
ε

)

. (5.93)

5.9 Conlusion of the expansion of Kε

Lemma 23. There exists ε1 > 0 and k1 > 0 suh that, for any 0 < ε ≤ ε1 and any u ∈ L2(0, 1),

〈Kεu, u〉 ≥ k1
√
ε|U |2H−1/4 . (5.94)

Proof. Thanks to the previous paragraphs, we have shown that Kε =
√
ε

45
√
π
K0 + R, where R =

K̃1 +K2 +K3 +K4 +K5 +K6 is suh that κ(∂12R) . ε3/2. From Lemma 18, we dedue that there

exists C0 suh that, for any u ∈ L2(0, 1), |〈Ru, u〉| ≤ C0ε
3/2|U |2

H−1/4 . Moreover, thanks to Lemma 12,

there exists c0 suh that 〈K0u, u〉 ≥ c0|U |2
H−1/4 . Hene, for any k1 < c0/(45

√
π), equation (5.94)

holds for ε small enough.

Equation (5.94) gives a very weak oerivity, both beause the norm involved is a very weak H−5/4

norm on the ontrol u, and beause the oerivity onstant k1
√
ε deays when ε → 0. However, this

is enough to overome the remaining higher order residues, as we prove in the following setion.
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6 Bak to the full Burgers non-linear system

In the �rst part of this work, we studied a seond order approximation of our initial Burgers' system.

Thanks to the areful study of an integral kernel, we proved that the projetion 〈ρ, b〉 of the state is
oerive with respet to the ontrol u, for a given norm. Now, we want to prove that the same fat

holds true for the full non-linear system, ie. for the projetion 〈ρ, y〉. In order to do this, we need to

provide estimates showing that the projetions of the higher order terms in the expansion of the state

are smaller than the oerive quantity obtained above. Therefore, we need to prove estimates of a, b
and the higher order residues involving the weak |u|H−5/4 norm.

6.1 Preliminary estimates on a and b

6.1.1 Estimating the �rst order term a

In order to ompute a (de�ned by system (1.8)), a natural idea is to introdue U the primitive of u suh
that U(0) = 0. Negleting the impat of the boundary Dirihlet onditions gives the approximation

a(t, x) ≈ U(t). To make this exat, we introdue ã whih is the solution to:



















ãt − εãxx = 0 in (0, 1)× (0, 1),

ã(t, 0) = −U(t) in (0, 1),

ã(t, 1) = −U(t) in (0, 1),

ã(0, x) = 0 in (0, 1).

(6.1)

Hene, a(t, x) = U(t) + ã(t, x), without any approximation. This deomposition is useful beause we

write a as the sum of a term whih does not depend on x (thus, ax = ãx) and a term whose size is

ontrolled by the desired quantity |U |H−1/4 . Indeed,

Lemma 24. The following estimates hold:

‖ã‖2 . |U |H−1/4 , (6.2)

‖a‖∞ + ‖ã‖∞ . |u|2 , (6.3)

ε ‖ax‖L2(L∞) . |u|2. (6.4)

Proof. The �rst inequality (6.2) is a diret appliation of estimate (2.16) from Lemma 5.

The seond inequality is a onsequene of the maximum priniple. Indeed, thanks to equation (6.1),

‖ã‖∞ is smaller than |U |∞. Sine a = U + ã, ‖a‖∞ is smaller than 2 |U |∞. Estimate (6.3) follows

beause |U |∞ ≤ |u|2.
The third inequality stems from Lemma 3. Sine a is even, ax(·, 1/2) ≡ 0. Thus:

‖ax‖2L2(L∞) =

∫ 1

0

(

sup
x∈(0,1)

|ax(t, x)|
)2

dt

=

∫ 1

0

(

sup
x∈(0,1)

∣

∣

∣

∣

∣

∫ x

1
2

axx(t, x
′)dx′

∣

∣

∣

∣

∣

)2

dt

≤
∫ 1

0

∫ 1

0

a2xx(t, x
′)dx′dt.

(6.5)

Combined with (2.7), this proves (6.4).

6.1.2 Estimating the seond order term b

Lemma 25. The following estimate holds:

ε1/2 ‖b‖L∞(L2) + ε ‖bx‖L2 . |u|L2 · |U |H−1/4 , (6.6)

ε3/2 ‖b‖∞ . |u|22 , (6.7)

ε3/2 ‖bx‖L2(L∞) . |u|22 . (6.8)
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Proof. For the �rst inequality, we want to apply Lemma 6. Hene, we want to write the soure

term in equation (1.9) as a spatial derivative. Writing −aax = −∂x(a2/2) would not lead to the

required estimates. In order for the weak H−1/4
norm to appear, we need to introdue ã. Indeed,

using the deomposition a(t, x) = U(t) + ã(t, x), we an write:

− aax = −aãx = − d

dx

[

aã− 1

2
ã2
]

. (6.9)

The term under the derivative an easily be estimated in L2
:

∥

∥

∥

∥

aã− 1

2
ã2
∥

∥

∥

∥

L2

≤ ‖ã‖L2 · (‖a‖∞ + ‖ã‖∞) . |u|L2 · |U |H−1/4 , (6.10)

where the last inequality omes from Lemma 24. Thus, we an apply Lemma 6 to prove (6.6).

For the seond and third inequalities, thanks to Lemma 3, ‖ax‖2 . ε−1/2|u|2. Moreover,

thanks to Lemma 24, ‖a‖∞ . |u|2. Thus, ‖aax‖2 . ε−1/2|u|22. We an apply Lemma 3 to show that

‖b‖X1
. ε−3/2 |u|22. Inequality (6.7) follows from the injetion X1 →֒ L∞

(see (2.4) from Lemma 1).

Moreover, sine

∫ 1

0
bx(t, x)dx = b(t, 1) − b(t, 0) = 0 for any t ∈ (0, 1), the mean value of bx(t, ·) is

0. Thus, |bx(t, ·)|∞ ≤ |bxx(t, ·)|2. Hene, ‖bx‖L2(L∞) ≤ ‖bxx‖2. This proves estimate (6.8).

6.2 Non-linear residue

Let us expand y as a+ b+ r, where a stands for the �rst order linear approximation, b stands for the
seond quadrati order and r is a (small) residue. Therefore, r is the solution to:



























rt − εrxx = −rrx − [(a+ b)r]x −
[

ab+
1

2
b2
]

x

in (0, 1)× (0, 1),

r(t, 0) = 0 in (0, 1),

r(t, 1) = 0 in (0, 1),

r(0, x) = 0 in (0, 1).

(6.11)

Lemma 26. System (6.11) admits a unique solution r ∈ X1. Moreover, under the assumption:

|u|2 ≤ ε3/2, (6.12)

the following estimate holds:

‖r‖2 + ‖rt‖2 . ε−3/2 |u|22 |U |H−1/4 (6.13)

Proof. The existene of r ∈ X1 an be dedued diretly from the equality r = y − a − b. To prove

the estimate, we will use Lemma 7 with a null initial data, w = −(a + b) and g = −ab − 1
2b

2
. To

apply estimate (2.20), we start by omputing the norms of w and g that we need. We start with

w = −(a+ b). Combining (6.3), (6.7) and (6.12) gives:

‖w‖∞ ≤ ‖a‖∞ + ‖b‖∞ . |u|2 + ε−3/2 |u|22 . |u|2 . (6.14)

In partiular, (6.14) and (6.12) yield:

γ =
1

ε
‖w‖2L2(L∞) ≤

1

ε
‖w‖2∞ ≤ 1

ε
|u|22 . 1. (6.15)

Finally, ombining (6.4) and (6.8):

‖wx‖L2(L∞) ≤ ‖ax‖L2(L∞) + ‖bx‖L2(L∞) . ε−1 |u|2 + ε−3/2 |u|22 . ε−1 |u|2 . (6.16)

We move on to g = −ab− 1
2b

2
. Combining (6.3), (6.6), (6.7) and (6.12) gives:

‖g‖2 ≤ (‖a‖∞ + ‖b‖∞) ‖b‖2
≤
(

|u|2 + ε−3/2 |u|22
)

ε−1/2 |u|2 |U |H−1/4

≤ ε−1/2 |u|22 |U |H−1/4 .

(6.17)
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Combining (6.3), (6.6), (6.7) and (6.12), we obtain:

‖g‖L2(L∞) ≤ (‖a‖∞ + ‖b‖∞) · ‖b‖L2(L∞)

≤ (‖a‖∞ + ‖b‖∞) · ‖bx‖2
. ε−1 |u|22 |U |H−1/4 .

(6.18)

Lastly, mixing (6.3), (6.4), (6.6), (6.7) and (6.12) gives:

‖gx‖2 ≤ ‖ax‖L2(L∞) ‖b‖L∞(L2) + ‖a‖∞ ‖bx‖2 + ‖b‖∞ ‖bx‖2
. ε−3/2 |u|22 |U |H−1/4 + ε−1 |u|22 |U |H−1/4 + ε−5/2 |u|32 |U |H−1/4

. ε−3/2 |u|22 |U |H−1/4 .

(6.19)

Eventually, plugging estimates (6.14)-(6.19) into the main estimation (2.20), yields:

‖rt‖2 . ε−3/2 |u|22 |U |H−1/4 . (6.20)

From (6.20) and the initial ondition r(0, ·) = 0, we onlude (6.13).

Lemma 27. Under the assumption (6.12), we have:

|〈ρ, r(1, ·)〉| . ε−3/2 |u|22 |U |2H−1/4 . (6.21)

Proof. This lemma is not a diret onsequene of Lemma 26. Indeed, estimate (6.13) only involves

|U |H−1/4 with an exponent of 1. To obtain estimate (6.21), we need to work a little more. Using

Lemma 10 and equation (6.11), we an ompute:

〈ρ, r(1, ·)〉 =
∫ 1

0

∫ 1

0

Φx

[

ab+
1

2
b2 + (a+ b)r +

1

2
r2
]

=

∫ 1

0

∫ 1

0

Φx(1− t, x)U(t)r(t, x)dxdt +

∫ 1

0

∫ 1

0

Φx

[

1

2
b2 + (ã+ b)r +

1

2
r2
]

.

(6.22)

We used the fat that a = U + ã and the fat that Φxab is an odd funtion, whose spae integral is

thus null. The seond term is easy to estimate, beause we know how to estimate ã, b and r in L2

using |U |H−1/4 . Thus, we know it will be smaller than |U |2
H−1/4 . The �rst term needs more are.

∫ 1

0

U(t)

∫ 1

0

Φx(1− t, x)r(t, x)dxdt = 〈U, v〉H−1,H1
0
, (6.23)

where we introdue v(t) =
∫ 1

0
Φx(t, x)r(t, x)dx for t ∈ (0, 1). Sine Φ(0, ·) ≡ 0 and r(0, ·) ≡ 0,

v(0) = v(1) = 0. Now we ompute its H1
0 norm:

∫ 1

0

vt(t)
2dt =

∫ 1

0

(∫ 1

0

Φtx(1− t, x)r(t, x) + Φx(1− t, x)rt(t, x)dx

)2

dt

≤ 2

∫ 1

0

∫ 1

0

Φ2
txr

2 +Φ2
xr

2
t

≤ 2
(

‖Φtx‖2∞ ‖r‖22 + ‖Φx‖2∞ ‖rt‖22
)

. ε2 ‖r‖22 + ‖rt‖22

. ‖rt‖22 ,

(6.24)

where we used estimates (5.19) and (5.21) to estimate Φ. Let us �nish the proof.

|〈ρ, r(1, ·)〉| ≤
∣

∣

∣〈U, v〉H−1,H1
0

∣

∣

∣+

∣

∣

∣

∣

∫ 1

0

∫ 1

0

Φx

(

1

2
b2 + (ã+ b)r +

1

2
r2
)∣

∣

∣

∣

using (6.22) and (6.23),

. |U |H−1 ‖rt‖2 + ‖Φx‖∞
(

‖b‖22 + ‖ã‖2 ‖r‖2 + ‖r‖22
)

using (6.24).

(6.25)

From (5.19), we know that ‖Φx‖∞ . 1. Moreover, |U |H−1 . |U |H−1/4 . Thanks to (6.2), (6.6), (6.13)

and (6.12), we onlude from (6.25) that |〈ρ, r(1, ·)〉| . ε−3/2 |u|22 |U |2H−1/4 . This onludes the proof

of Lemma 27.
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6.3 A �rst drifting result onerning reahability from zero

The null reahability problem onsists in omputing the set of states that an be reahed in time T ,
starting from y(0, x) ≡ 0 using a ontrol u. Of ourse, when dealing with visous equations like (1.1),

one may only hope to reah su�iently smooth states. Theorem 2 tells us that, if the time T is too

small, we an never reah a state y1(x) in time T if 〈ρ, y1〉 < 0, whatever the ontrol u (and the

smoothness of y1). In some sense, the state drifts towards the diretion +ρ, as a result of the ation

of the ontrol.

Theorem 2. There exist T2, k2 > 0 suh that, for any 0 < T < T2 and any u ∈ L2(0, T ) suh that

|u|L2(0,T ) ≤ 1, the solution y ∈ XT to system (1.1) starting from the null initial ondition y(0, x) ≡ 0
satis�es:

〈ρ, y(T, ·)〉 ≥ k2 |U |2H−1/4(0,T ) , (6.26)

where U , as above, is the primitive of u suh that U(0) = 0.

Proof. We are going to use the saling argument introdued in paragraph 1.4. Thus, from now on, we

reintrodue the tilda signs for funtions de�ned on the saled time interval (0, 1). From Lemma 23,

we know that, for ε < ε1, 〈Kεũ, ũ〉 ≥ k1
√
ε|Ũ |2

H−1/4 . From Lemma 27, we know that there exists c2

suh that, as soon as |ũ|2 ≤ ε3/2, |〈ρ, r(1, ·)〉| ≤ c2ε
3/2|Ũ |2

H−1/4 . Hene, if we onsider ỹ the solution

to (1.7), write ỹ = a + b + r, for any 0 < k2 < k1, there exists ε2 > 0 suh that, for ε < ε2,
〈ρ, ỹ(1, ·)〉 ≥ k2

√
ε|Ũ |2

H−1/4 . Realling that ũ(t) = ε2u(εt) and ỹ(t, x) = εy(εt, x), we obtain:

〈ρ, y(ε, ·)〉 =
〈

1

ε
ỹ(1, ·), ρ

〉

≥ k2ε
−1/2|Ũ |2H−1/4(0,1) ≥ k2|U |2H−1/4(0,ε), (6.27)

under the assumption:

|ũ|L2(0,1) ≤ ε3/2 ⇔ |u|L2(0,ε) ≤ 1. (6.28)

Theorem 2 follows from (6.27) and (6.28) with T2 = ε2. Equation (6.28) is obtained via a diret hange
of variable. To establish (6.27), one an ompute the weak H−1/4

norms using Fourier transforms.

6.4 Persistane of projetions in absene of ontrol

We start by remarking that, when no ontrol is used, the projetion of the state against any �xed

pro�le µ ∈ L2(0, 1) remains almost onstant in small time.

Lemma 28. Let T > 0, µ ∈ L2(0, 1) and y0 ∈ H1
0 (0, 1)∩H2(0, 1). Assume that |y0|H2 ≤ 1. Consider

y ∈ XT the solution to system (1.1) with initial data y0 and null ontrol (u = 0). Then,

〈µ, y(T, ·)〉 = 〈µ, y0〉+O
(

T 1/2|µ|2|y0|H2

)

. (6.29)

Proof. We deompose y = y0 + z. Hene, z is the solution to:



















zt − zxx + zzx = (y0z)x + y0xx − y0y0x in (0, T )× (0, 1),

z(t, 0) = 0 in (0, T ),

z(t, 1) = 0 in (0, T ),

z(0, x) = 0 in (0, 1).

(6.30)

Thus, we an apply Lemma 7 with w(t, x) = y0(x) and g(t, x) = y0x − 1
2 (y

0)2 to system (6.30).

Estimate (2.20) tells us that ‖zt‖2 . |y0|H2
. Here, we need the assumption that |y0|H2 ≤ C, where

C is any �xed onstant, in order to avoid propagating non-linear estimates (involving exponentials).

Sine z(0, x) ≡ 0, we an write:

|〈µ, z(T, ·)〉| =
∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ztµ

∣

∣

∣

∣

∣

≤ T 1/2 ‖zt‖2 |µ|2. (6.31)

The onlusion (6.29) follows from (6.31).
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6.5 Proof of Theorem 1

Let us �nish the proof of Theorem 1. We onsider an initial data of the form yδ = δρ, where δ > 0
an be piked as small as we need and ρ is de�ned in (3.14). Please note that many other initial data

annot be driven bak to zero in short time with small ontrols. However, to prove Theorem 1, it is

su�ient to exhibit a single sequene.

For T > 0, u ∈ L2(0, T ) and δ > 0, we onsider y ∈ XT , the solution to system (1.1) with initial

data yδ and ontrol u. To isolate the di�erent ontributions, we deompose y as ȳ + yu + z, where:



















ȳt − ȳxx + ȳȳx = 0 in (0, T )× (0, 1),

ȳ(t, 0) = 0 in (0, T ),

ȳ(t, 1) = 0 in (0, T ),

ȳ(0, x) = yδ in (0, 1),

(6.32)



















yut − yuxx + yuyux = u(t) in (0, T )× (0, 1),

yu(t, 0) = 0 in (0, T ),

yu(t, 1) = 0 in (0, T ),

yu(0, x) = 0 in (0, 1),

(6.33)



















zt − zxx + zzx = −[(ȳ + yu)z]x − [ȳyu]x in (0, T )× (0, 1),

z(t, 0) = 0 in (0, T ),

z(t, 1) = 0 in (0, T ),

z(0, x) = 0 in (0, 1).

(6.34)

Hene, ȳ aptures the free movement starting from the initial data yδ while yu orresponds to the

ation of the ontrol starting from a null initial data. Systems (6.32)-(6.34) allow us to deouple these

two ontributions. The term z is a small residue with homogeneous boundary and initial data.

First, let us apply Lemma 8 to system (6.32). Estimates (2.28) and (2.29) yield:

‖ȳxx‖2 + ‖ȳx‖2 + ‖ȳt‖2 . δ,

‖ȳ‖∞ ≤ |y0|∞ . δ.
(6.35)

Similarly, we apply Lemma 8 to system (6.33). If we assume that |u|2 ≤ 1 and T ≤ 1, we obtain:

‖yuxx‖2 + ‖yux‖2 + ‖yut ‖2 . |u|2 ,
‖yu‖∞ ≤ |u|2 .

(6.36)

Next, we look at system (6.34). We apply Lemma 7 with w = −(ȳ + yu), g = −ȳyu and a null initial

data. Combining (6.35) and (6.36) yields the neessary estimates:

‖g‖2 + ‖gx‖2 + ‖g‖L2(L∞) . δ |u|2 , (6.37)

‖w‖∞ + ‖w‖L2(L∞) ‖w‖L2(L∞) . δ + |u|2 . (6.38)

Hene, (6.38) yields γ . 1. Therefore, plugging (6.37) and (6.38) into (2.20) gives:

‖zxx‖2 + ‖zt‖2 . δ |u|2 . (6.39)

One again, we use the initial ondition z(0, ·) ≡ 0 and (6.39) to ompute:

|〈ρ, z(T, ·)〉| =
∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ztρ

∣

∣

∣

∣

∣

. T 1/2δ |u|2 . (6.40)

Now, assuming T ≤ T2, we an ombine Theorem 2 and Lemma 28 with (6.40) to obtain:

〈y(T, ·), ρ〉 ≥ δ|ρ|22 + k2 |U |2H−1/4 +O
(

T 1/2δ(1 + |u|2)
)

. (6.41)

From (6.41), we dedue that 〈ρ, y(T, ·)〉 > 0 as soon as T is small enough and under the assumption

|u|2 ≤ 1. Thus, we have proved Theorem 1 with η = 1.
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Conlusion and perspetives

We expet that the methodology followed in this paper an be used for a wide variety of non-linear

systems involving a single salar ontrol. Indeed, when studying small time loal ontrollability

for some formal system ẏ = F (y, u(t)), the �rst step is always to onsider the linearized system,

ȧ = ∂yF (0)a + ∂uF (0)u. When this system is ontrollable, �xed point or inverse mapping theorems

often allow us to dedue that the non-linear system is small time loally ontrollable. When the

linearized system is not ontrollable, we an deompose the state y as a + b, where the (linear)

omponent a is ontrollable and the seond omponent b is indiretly ontrolled through a quadrati

soure term involving a (and/or, sometimes, u).
What our proof demonstrates, is that it is possible, even for in�nite dimensional systems, to express

projetions of the seond order part b as kernels ating on the ontrol. The areful study of these

kernels an then lead ever to negative results (like it is the ase here, beause we prove a oerivity

lemma), or to positive results (if the kernel is found to have both positive and negative eigenvalues,

we an hope to prove that the system an be driven in the two opposite diretions).

It is worth to be noted that the oerivity used in this paper, although it involves a weak H−5/4

norm of the ontrol u, is in fat pretty strong. Indeed, it was obtained for any small u ∈ L2
. It would

have been su�ient to prove the oerivity of the kernel Kε
on the strit subspae:

Vε =
{

u ∈ L2(0, 1), a(t = 1, ·) ≡ 0, where a is the solution to system (1.8)

}

. (6.42)

For other systems, it may be easier (or neessary) to restrit the study of the integral operator Kε
to

the subspae Vε in order to obtain a onlusion.

As a perspetive, an example of suh an open problem is the small time ontrollability of the non-

linear Korteweg de Vries equation for ritial domains. Indeed, in [41℄, Rosier proved that the KdV

equation was small time loally ontrollable for non ritial domains using the linearized system. Then

in [21℄, Coron and Crépeau proved that, for the �rst ritial length, small time loal ontrollability

holds thanks to a third order expansion. In [15℄ and [16℄, Cerpa then Cerpa and Crépeau proved

that large time loal ontrollability holds for all ritial lengths. It remains an open question to know

whether small time loal ontrollability holds for the seond ritial length. Maybe our method ould

be adapted to this setting or inspire a new proof.

The author thanks Sergio Guerrero for having attrated his attention on this ontrol problem and

his advisor Jean-Mihel Coron for his support and ideas all along the elaboration of this proof.

A Weakly singular integral operators

This appendix is devoted to an explanation of Lemma 18. Although a full proof would exeed the

sope of this artile, we provide here a brief overview of a general method introdued by Torres in [44℄

to study the regularization properties of weakly singular integral operators. Our presentation is also

inspired by a posterior work of Youss�, who states a very losely related lemma in [47, Remark 6.a℄.

Let n ≥ 1. Singular integral operators on R
n
have been extensively studied sine the seminal works

of Calderón and Zygmund (see [14℄ and [13℄). These integral operators are de�ned by the singularity

of their kernel along the diagonal by an estimate of the form:

|K(x, y)| ≤ C |x− y|−n
. (A.1)

In estimate (A.1), the exponent −n is ritial. Indeed, the margins of suh kernels are almost in L1
lo

.

Here, we are interested in a lass of integral operators for whih the singularity along the diagonal is

weaker. Thus, we expet that they exhibit better smoothing properties. Throughout this setion, we

denote Ω = {(x, y) ∈ R
n × R

n, x 6= y}.
De�nition 4 (Weakly singular integral operator). Let 0 < s < 1 and 0 < δ ≤ 1. Consider a kernel K,

ontinuous on Ω, satisfying:

|K(x, y)| ≤ κ |x− y|−n+s
, (A.2)

|K(x′, y)−K(x, y)| ≤ κ |x′ − x|δ |x− y|−n+s−δ
, for |x′ − x| ≤ 1

2
|x− y| , (A.3)

|K(x, y′)−K(x, y)| ≤ κ |y′ − y|δ |x− y|−n+s−δ
, for |y′ − y| ≤ 1

2
|x− y| . (A.4)
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We introdue the assoiated integral operator TK , ontinuous from D (Rn) to D′ (Rn), by de�ning:

∀f ∈ D (Rn) , ∀x ∈ R
n, TK(f)(x) =

∫

K(x, y)f(y)dy. (A.5)

Under these assumptions, we write TK ∈ WSIO(s, δ).

De�nition 4 an be extended for s ≥ 1. Conditions (A.2), (A.3) and (A.4) must then be extended

to the derivatives ∂αx ∂
β
yK for α + β ≤ s. We restrit ourselves to the simpler setting 0 < s < 1 as it

is su�ient for our study. Note that we de�ne the operator TK from its kernel K (as this is the ase

for our appliations). Proeeding the other way around is possible but would require more are in the

sequel (namely, the so-alled weak boundedness property to ensure that (A.5) holds; see [47℄).

A.1 Atomi and moleular deompositions for Triebel-Lizorkin spaes

We reall the de�nitions of lassial funtional spaes involved in this appendix. Let ϕ ∈ S (Rn) be
suh that ϕ(ξ) = 0 for |ξ| ≥ 1 and ϕ(ξ) = 1 for |ξ| ≤ 1

2 . We introdue ψ(ξ) = ϕ(ξ/2)− ϕ(ξ). Hene,

ψ ∈ S (Rn) and is supported in the annulus { 1
2 ≤ |ξ| ≤ 2}. We will denote ∆̇j and Ṡj the onvolution

operators with symbols ψ(2−jξ) and ϕ(2−jξ).

De�nition 5 (Homogeneous Besov spae). For α ∈ R, 1 ≤ p, q ≤ ∞, the homogeneous Besov spae

Ḃα,q
p is de�ned by the �niteness of the norm (with standard modi�ation for q = ∞):

‖f‖Ḃα,q
p

=





∑

j∈Z

2αqj
∥

∥

∥∆̇jf
∥

∥

∥

q

p





1/q

. (A.6)

De�nition 6 (Homogeneous Triebel-Lizorkin spae). For α ∈ R, 1 ≤ p, q < ∞, the homogeneous

Triebel-Lizorkin spae Ḟα,q
p is de�ned by the �niteness of the norm:

‖f‖Ḟα,q
p

=

∥

∥

∥

∥

∥

∥

∥





∑

j∈Z

2αqj |∆̇jf |q




1/q
∥

∥

∥

∥

∥

∥

∥

p

. (A.7)

Frazier and Jawerth introdued atoms and moleules both in the ontext of Besov spaes ([26℄) and

Triebel-Lizorkin spaes ([27℄ and [28℄). They proved that the norms on these spaes are then translated

into sequential norms on the sequene of oe�ients of the deomposition. A linear operator will be

ontinuous between two Triebel-Lizorkin spaes if and only if it maps smooth atoms of the �rst to

smooth moleules of the seond. The following de�nitions are borrowed from [44℄. For simpliity, we

restrit them to the ase 1 ≤ p, q ≤ +∞.

De�nition 7 (Smooth atom). Let α ∈ R and Q be a dyadi ube in R
n
of side length ℓQ. A smooth

α-atom, assoiated with the ube Q is a funtion a ∈ D (Rn) satisfying:

supp(a) ⊂ 3Q, (A.8)

∫

xγa(x)dx = 0, ∀|γ| ≤ max{0, [−α]}, (A.9)

|∂γxa(x)| ≤ ℓ
−|γ|
Q , ∀|γ| ≤ max{0, [α]}+ 1. (A.10)

In ondition (A.8), 3Q denotes the ube with same enter as Q but a tripled side length. It is

worth to be noted that multiple normalization hoies are possible for ondition (A.10). We hoose

to only inlude the deay orresponding to the smoothness of the atom. This hoie only impats the

formula to ompute the size of a funtion from its deomposition on atoms. We have the following

representation theorem:

Lemma 29 (Theorem 5.11, [29℄). Let α ∈ R, 1 ≤ p, q < ∞. Let f ∈ Ḟα,q
p . There exists a sequene

of reals (sQ)Q∈Q indexed by the set Q of dyadi ubes of R
n
and a sequene of atoms (aQ)Q∈Q suh

that f =
∑

Q sQaQ. Moreover, there exists a onstant C independent on f suh that:

∥

∥

∥

∥

∥

∥

∥





∑

Q

ℓ−αq
Q |sQ|q|χQ(x)|q





1/q
∥

∥

∥

∥

∥

∥

∥

p

≤ C ‖f‖Ḟα,q
p

. (A.11)
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The reiproal inequality to (A.11) is true even for a wider lass of funtions, the lass of moleules.

De�nition 8 (Smooth moleule). Let α ∈ R, M > n and α− [α] < δ ≤ 1. Let Q be a dyadi ube in

R
n
of side length ℓQ and enter xQ. A (δ,M) smooth α-moleule assoiated with Q is a funtion m

satisfying:

|m(x)| ≤
(

1 + ℓ−1
Q |x− xQ|

)−max{M,M−α}
, (A.12)

∫

xγm(x)dx = 0, ∀|γ| ≤ [−α], (A.13)

|∂γxm(x)| ≤ ℓ
−|γ|
Q

(

1 + ℓ−1
Q |x− xQ|

)−M

, ∀|γ| ≤ [α], (A.14)

|∂γxm(x)− ∂γxm(x′)| ≤ ℓ
−|γ|−δ
Q |x− x′|δ sup

|z|≤|x−x′|

(

1 + ℓ−1
Q |z − (x− xQ)|

)−M

, ∀|γ| = [α]. (A.15)

In the de�nition of a moleule, onditions (A.14) and (A.15) are void by onvention if α < 0.
When α ≥ 0, ondition (A.14) implies (A.12). When α > 0, ondition (A.13) is void. We have:

Lemma 30 (Theorem 5.18, [29℄). Let α ∈ R, M > n and α − [α] < δ ≤ 1. Consider a sequene of

reals (sQ)Q∈Q indexed by the set Q of dyadi ubes of R
n
and a sequene of (δ,M) smooth α-moleules

(mQ)Q∈Q. Let f =
∑

Q sQmQ. There exists a onstant C independent on f suh that:

‖f‖Ḟα,q
p

≤ C

∥

∥

∥

∥

∥

∥

∥





∑

Q

ℓ−αq
Q |sQ|q|χQ(x)|q





1/q
∥

∥

∥

∥

∥

∥

∥

p

. (A.16)

A.2 Cirumventing the T (1) = 0 ondition

When dealing with singular integral operators, di�ulties arise when T (1) 6= 0. Most regularity results

involve some smoothness ondition on T (1) (see, for example the early paper [23℄). To irumvent

this di�ulty when handling weakly singular integral operators, we will write TK = T̃K + π where

T̃K satis�es the same regularity estimates as TK but is suh that T̃K(1) = 0 and π is de�ned as a

paraprodut, for whih we an get diret smoothing estimates in the appropriate spaes. For two

funtions f, g, we introdue the following paraprodut π, inspired by ideas of J.-M. Bony (see the

seminal work [10℄, the nie introdution to paraproduts [8℄ for a quik overview or [3, Setion 2.6.1℄

for a omplete detailed presentation):

πg(f) =
∑

j∈Z

∆̇j(g)Ṡj−2(f). (A.17)

Lemma 31 (Lemma 4, [47℄). Let 0 < s < δ ≤ 1 and TK ∈ WSIO(s, δ). Then, TK(1) ∈ Ḃs,∞
∞ .

Moreover, there exists C = C(s, δ) suh that: ‖TK(1)‖Ḃs,∞
∞

≤ Cκ(TK) where κ(TK) is the onstant

assoiated to TK in De�nition 4.

Lemma 32 (Remark 2, [47℄). Let 1 ≤ p, q <∞, t < 0 and s ∈ R. There exists C = C(p, q, t, s) suh
that, for any b ∈ Ḃs,∞

∞ , πb is ontinuous from Ḟ t,q
p to Ḟ t+s,q

p and the following estimate holds:

∀f ∈ Ḟ t,q
p , ‖πb(f)‖Ḟ t+s,q

p
≤ C ‖b‖Ḃs,∞

∞
‖f‖Ḟ t,q

p
. (A.18)

Lemma 33 (Lemma 2, [47℄). Let 0 < s < 1 and 0 < δ ≤ 1. Take b ∈ Ḃs,∞
∞ . Then, the operator πb ∈

WSIO(s, δ). Moreover, there exists a onstant C(s) independent of b suh that, κ(πb) ≤ C(s)‖b‖Ḃs,∞
∞

,

where κ(πb) is the onstant in De�nition 4 assoiated to the operator πb.

Combining these lemmas allows us to irumvent the T (1) = 0 ondition. Indeed:

Lemma 34. Let 0 < s < δ ≤ 1 and 1 ≤ p, q <∞. Let t ∈ R be suh that −s < t < 0. There exists a

onstant C suh that, for TK ∈ WSIO(s, δ), TK is ontinuous from Ḟ t,q
p into Ḟ t+s,q

p and we have:

∀f ∈ Ḟ t,q
p , ‖TK(f)‖Ḟ t+s,q

p
≤ Cκ(TK) ‖f‖Ḟ t,q

p
, (A.19)

where κ(TK) is the onstant assoiated to TK in De�nition 4.
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Proof. Let TK ∈ WSIO(s, δ). Thanks to Lemma 31, TK(1) ∈ Ḃs,∞
∞ and ‖TK(1)‖Ḃs,∞

∞
. κ(TK).

Thanks to Lemma 33, πTK(1) ∈ WSIO(s, δ) and κ(πTK(1)) . κ(TK). Hene, we an de�ne T̃K :=

TK − πTK(1) and T̃K ∈ WSIO(s, δ), with a onstant κ(T̃K) . κ(TK). Moreover, sine πb(1) = b for

any b, T̃K(1) = 0. Thanks to Lemma 32, proving the ontinuity of T̃K is su�ient to obtain (A.19).

Let aQ be a smooth t-atom. We onsider mQ = T̃K(aQ). The next step is to prove that mQ is

almost a (δ,M) smooth (t + s)-moleule, with M = n + s− δ > n. As noted above, sine t + s > 0,
we only need to hek (A.14) and (A.15). Indeed, lengthy omputations and the essential ondition

T̃K(1) = 0 provide the existene of a onstant D independent on the atom aQ suh that:

|mQ(x)| ≤ DℓsQ

(

1 + ℓ−1
Q |x− xQ|

)−M

, (A.20)

|mQ(x)−mQ(x
′)| ≤ DℓsQℓ

−δ
Q |x− x′|δ sup

|z|≤|x−x′|

(

1 + ℓ−1
Q |z − (x− xQ)|

)−M

. (A.21)

Hene m̃Q := D−1ℓ−s
Q mQ is a moleule. For examples of proof tehniques to prove (A.20) and (A.21),

we refer the reader to [44℄ and [47℄. To onlude the proof, we use Lemma 29 and 30. For f ∈ Ḟ t,q
p , we

write f(x) =
∑

Q sQaQ(x) and eah m̃Q = D−1ℓ−s
Q TK(aQ) is a moleule. Thus, thanks to Lemma 29

and Lemma 30,

‖TK(f)‖Ḟ t+s,q
p

=

∥

∥

∥

∥

∥

∥

∑

Q

(DℓsQsQ) ·mQ(x)

∥

∥

∥

∥

∥

∥

Ḟ t+s,q
p

.

∥

∥

∥

∥

∥

∥

∥





∑

Q

ℓ
−(t+s)q
Q DqℓsqQ |sQ|q|χQ(x)|q





1/q
∥

∥

∥

∥

∥

∥

∥

p

.

∥

∥

∥

∥

∥

∥

∥





∑

Q

ℓ−tq
Q |sQ|q|χQ(x)|q





1/q
∥

∥

∥

∥

∥

∥

∥

p

. ‖f‖Ḟ t,q
p
.

(A.22)

Equation (A.22) onludes the proof.

Triebel-Lizorkin spaes o�er a natural framework for atomi and moleular deompositions. Of

ourse, setting p = q = 2 in the results above also yields results for the more lassial homogeneous

Sobolev spaes Ḣα
. Thus, Lemma 34 tells us that operators of WSIO(s, δ) ontinuously map Ḣt

into

Ḣt+s
for −s < t < 0. In partiular, this is valid for s = 1/2 and t = −1/4.

A.3 Kernels de�ned on bounded domains

Most results involving singular integral operators onern kernels de�ned on the full spae R
n × R

n
.

Here, for �nite time ontrollability, we need to adapt these results to a setting where the kernels are

de�ned on squares, eg. [0, 1] × [0, 1]. Atoms and moleules are loalized funtions. Thus, it would

be possible to arry on the same proof as above for bounded domains, providing that the analogs of

the representation lemmas 29 and 30 exist for Triebel-Lizorkin spaes on bounded domains. In this

paragraph, we give another approah, whih onsists in proving that a kernel de�ned on a bounded

domain an be extended while satisfying the same estimates.

Lemma 35. Let n = 1, 0 < s < 1 and 0 < δ ≤ 1. Consider a kernel K, de�ned and ontinuous on

Ω1 =
{

(x, y) ∈ [0, 1]2, x 6= y
}

, satisfying:

|K(x, y)| ≤ κ |x− y|−1+s
, (A.23)

|K(x′, y)−K(x, y)| ≤ κ |x′ − x|δ |x− y|−1+s−δ
, for |x′ − x| ≤ 1

2
|x− y| , (A.24)

|K(x, y′)−K(x, y)| ≤ κ |y′ − y|δ |x− y|−1+s−δ
, for |y′ − y| ≤ 1

2
|x− y| . (A.25)

Then there exists a kernel K̄ on R× R, ontinuous on Ω, suh that:
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• K̄ is an extension of K: K̄|Ω1
= K,

• K̄ is a weakly singular integral operator of type (s, δ) on Ω,

• K̄ is assoiated a onstant κ(K̄) ≤ Cκ(K), where C is independent of K, s and δ.

Proof. We start by de�ning K̄(x, y) on the in�nite strip −1 < y − x < 1. For (x, y) ∈ Ω1, we set

K̄(x, y) = K(x, y). Outside of the initial square, we extend by ontinuity the values taken on the

sides of the square and we hoose an extension that is onstant along all diagonal lines. Therefore, we

de�ne K̄(x, y) as:

K(1 + x− y, 1) for 1 ≤ y, 0 < y − x < 1,

K(0, y − x) for x ≤ 0, 0 < y − x < 1,

K(1, 1 + y − x) for 1 ≤ x, 0 < x− y < 1,

K(x− y, 0) for y ≤ 0, 0 < x− y < 1.

(A.26)

Outside of the strip, we set:

K̄(x, y) = K(0, 1)|x− y|−1+s, for y − x ≥ 1,

K̄(x, y) = K(1, 0)|x− y|−1+s, for x− y ≥ 1.
(A.27)

This ompletes the de�nition of K̄ on Ω. By onstrution, it is easy to hek that K̄ is ontinuous

on Ω. By onstrution, K̄ also satis�es (A.23) on Ω1, on the whole strip −1 ≤ y − x ≤ 1 thanks

to (A.27) and on the half spaes y − x ≥ 1 and y − x ≤ −1 thanks to the deay hosen in (A.27).

The Hölder regularity estimates (A.24) and (A.25) are a little tougher. First, note that, by

symmetry, one only needs to prove, for example, (A.24) on the half plaeH = {(x, y) ∈ R×R, y−x >
0}. We write H = H̃ ∪ H1 ∪H− ∪H+, where:

H̃ = {(x, y) ∈ H, y − x > 1},
H1 = {(x, y) ∈ H, 0 ≤ x and y ≤ 1},
H+ = {(x, y) ∈ H, y − x ≤ 1 and 1 < y},
H− = {(x, y) ∈ H, y − x ≤ 1 and x < 0}.

(A.28)

Let (x, y) ∈ H and (x′, y) ∈ H with |x− x′| ≤ 1
2 |x− y|. If both points belong to the same subdomain,

then the Hölder regularity estimate in the x diretion for K̄ is a diret onsequene either of (A.27)

on H̃, of (A.26) on H± and of the hypothesis on K on H1. If the two points belong to di�erent

subdomains, we use a triangular inequality involving a point at the boundary separating the two

subdomains. As an example of suh a situation, if x < 0 < x′ and y < x + 1, then (x, y) ∈ H− and

(x′, y) ∈ H1. We have:

∣

∣K̄(x, y)− K̄(x′, y)
∣

∣ = |K(0, y − x) −K(x′, y)|
≤ |K(0, y − x) −K(0, y)|+ |K(0, y)−K(x′, y)|
≤ κ|x|δ|x− y|−1+s−δ + κ|x′|δ|x′ − y|−1+s−δ

≤ 5κ|x− x′|δ|x− y|−1+s−δ.

(A.29)

The last inequality omes from the fat that |x′|, |x| ≤ |x − x′| and |x′ − y|−1+s−δ ≤ 4|x − y|−1+s−δ

for |x− x′| ≤ 1
2 |x− y|. The details of the other situations are left to the reader.
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