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Stability of distributed delay systems via a robust approach*

Frédéric Gouaisbaut®®, Yassine Ariba®¢, Alexandre Seuret®?

Abstract— This paper is dedicated to the stability analysis
of a class of distributed delay systems with a non constant
kernel. By the use of appropriate orthogonal polynomials, this
kernel is expressed as the sum of a polynomial and an additive
bounded function. The resulting system is then modeled by an
interconnected system between a nominal finite dimensional
linear system and a infinite dimensional system. This last
system is considered as a structured uncertainty and embedded
into some well defined structured uncertainties. Appropriate
robust control tools, i.e. quadratic separation, are then used to
address the stability issue. Finally, numerical examples show
the effectiveness of the proposed method.

I. INTRODUCTION

Since a few decades, the emergence of well established
theory and potential applications led to a huge number
of papers dedicated to the stability analysis of time delay
systems [26]. Among them, few of them focused on the
class of distributed time delay systems, for which the delay
operator, via an integral action, has a cumulative effect over
the past values of the dynamics. For specific integral kernels,
including constant, rationals, « distribution function, stability
of such systems can be tackled by a direct method based on
pole location [3], [15], [19], [25]. For kernels which can
be interpreted as impulse responses of a linear system, the
system can be modeled as a linear pointwise delay system
and hence classical techniques on pole location can be used
(see [19]). Nevertheless, these techniques are often restricted
to the case of nominal systems without uncertainties [26] and
for a constant delay.

Another widely used technique for stability analysis relies on
Lyapunov Theory. The construction of Lyapunov Krasovskii
functionals is modified in order to take into account the
distributed nature of the delay. It results some Lyapunov
structure which depends on double and triple integral terms
[4], [5], [11], [13], [14], [28]. Different bounding techniques
are then employed to derive numerically efficient stability
tests. In general, the kernel is then restricted to be a constant
function over the delay interval. In order to avoid this strong
constraint, another possibility, described by Gu et al [10], is
to use a very general class of Lyapunov Krasovskii functional
(see for instance [21]) and a discretization scheme to obtain
numerically tractable stability conditions. This technique
designed for piecewise constant delay kernel leads to a
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reduction of conservatism at the expense of the numerical
burden. The case of general kernels have been studied
successfully by [27] which proposed the use of new integral
inequalities. These new bounding techniques which were
especially designed for distributed delay systems led to
new Lyapunov Krasovskii functional structures and efficient
results on simulations. Another approach widely used in
the literature stems from the robust analysis which use the
same driving forces namely the comparisons systems and
integral inequalities [18]. In [16], a combined full block
S procedure and Lyapunov analysis is performed to prove
the stability of a distributed delay system with a rational
kernel. More recently, using quadratic separation approach,
[7] has provided some LMI criteria for polynomial kernels.
In this paper, we aim at extending the procedure proposed
recently in [8] to the case of distributed delay systems and an
arbitrary continuous and known kernel. The basic idea is to
project this function upon a polynomial set whose a basis is
orthogonal like Legendre polynomials. Choosing adequate
extra states related to the projection of the kernel upon
Legendre polynomials, the original system can be modeled
as a classical time delay state submitted to an exogenous
bounded perturbation. Using classical procedure in robust
analysis, this last system can also be viewed as a linear
system connected to a set of operators composed of the
operators related to the distributed delayed dynamics. This
last part is then embedded into some relevant structured
uncertainties whose size is controlled by new inequalities
from Bessel inequalities [8].

The paper is organized as follows. Next section is devoted
to some preliminaries on the distributed delay system and
quadratic separation. Then section 3 formulates a way to
describe the distributed delay system as an interconnected
uncertain system. Section 4 gives the central results of the
paper. Section 5 presents some numerical simulations.
Notations: Throughout the paper, the following notations are
used. 1, and O, «, denote respectively the identity matrix of
size n and null matrix of size m x n. For two symmetric
matrices, A and B, A > (>) B means that A — B is (semi-)
positive definite. A7 denotes the transpose of A.

II. PRELIMINARIES
A. Definitions

We define by H the vector space of complex valued square
integrable functions on [—h, 0]. For any functions in #, we
define the hermitian inner product

(f.9) = / 1(0)g O)as. )



where f and g belong to #H. Basically, x;,x; € H,i # j
are said orthogonal if (z;,z;) = 0. A sequence of H,
{eo, €1, €2, ...,e, }, is an orthonormal sequence if (e;,e;) =
ki, where k;; is the kronecker notation. Based on these
definitions, we recall the Bessel inequality that will be
employed later in the paper.

Lemma 1 (Bessel inequality): Let {eg, e, ea,...,e,} be
an orthonormal sequence in #H. Then, for any f in H the
following inequality holds:

<f7f> 22|<f761>|2

An example of polynomial?%or the inner product (1) is
the well known Legendre polynomials whose definition and
properties are stated below.

Definition 1 (Legendre polynomials): The Legendre poly-
nomials considered over the interval [—h, 0] are defined by

i w+h\'
VkEN, Ly(u)= (-1 pf (h) :
1=0
with pf = (=1)/(})("]") where (}) = 7ty Some
properties are summarized below and will be useful in the
sequel.

Pl Orthogonality: V(k,[) € N2,

0
0, k#£1
/ Lk(u)Ll(u)du = { h k 7_él )
—h 2k+1° =
P2 Boundary conditions:
VkeN, L,0)=1, Li(—h)= (-1
P3 Recurrence on the derivative:
d 2(2k +1
I Lia) — L ()] = 222D 1
with
d d 2
diLO(’U/) = 0, @Ll(u) = ELO('LL)

Proofs of these properties are standard results and can be
found in [6].

B. Problem statement

Consider the distributed delay system given by:

0
Mﬂ:Aﬂﬂ+Aaﬁhﬂmxu+®da 3)

where = € R" is the instantaneous state vector and A, Ay €
R™ ™ are constant matrices. The function f is a scalar
continuous function, defined over the interval [—h,0], and
represents the kernel of the distributed delay. We aim at
assessing stability of the system (3) using robust analysis,
more especially using the quadratic separation approach
which has been already used for polynomial kernel in [8]
or pointwise delay system in [20].

Remark 1: We have considered that the kernel f is a
scalar function but this assumption can be easily extended to
the case of matrix kernel by considering several distributed
terms with adequate matrices A,4. This will not be presented
in this paper because of space limitation.

C. Stability analysis via quadratic separation

As a part of robust control theory, the quadratic separation
provides a fruitful framework to address stability of non-
linear and uncertain systems [20], [12]. Recent studies [1]
have shown that such a framework allows to propose an
original approach to deal with the stability analysis of time-
delay systems. The key idea is to reformulate the delay
system (3) as an uncertain feedback system as in Figure
1. In our case, the uncertainty stems from some operators
related to the delay dynamic. It has been shown that a
suitable interconnection modeling, based on relevant choices
of operators, may reduce the conservatism of the analysis [1].
The stability conditions presented in this paper are founded
on the theorem introduced below.

w—w=Vz 2

g

NI

w E(z—2) = Aw

Fig. 1: Feedback system.

Let consider the interconnection defined by Figure 1 where
& and A are two, real valued, possibly non-square matrices
and V is a linear operator which represent the system
uncertainty. This latter is assumed to belong to an uncertain
set W. In the present paper, we aim at embedding some
delay-dependent operators into the matrix V. For simplicity
of notations, we assume that £ is full column rank. Then,
we are interested in looking for conditions that assess the
stability of the interconnection.

Theorem 1 ([20]): The uncertain feedback system of Fig-
ure 1 is well-posed and stable if and only if there exists a
Hermitian matrix © = ©* satisfying both conditions

1

(€ —A]70[E -A] >0, (4)

171" 1
(LTe[i]<0 . wew.

As a result, the stability is evaluated through two matrix
inequalities (4) and (5) related respectively to the lower
and the upper bloc. Basically, inequality (5) is built from
definitions and informations on the system uncertainty. Then,
the other one (4) provides the stability condition to be tested.

III. MODELING THE DELAY SYSTEM AS A FEEDBACK
SYSTEM
A. Projection of the kernel

In light of the properties of Legendre polynomials, we
consider the polynomial approximation of the kernel f. For
a given integer r, it is trivial to write

f0) = Yi_oaiLi(9) + g-(9),
(6)

Vo € [—h, 0],



where
a; = 21+1f f(u)Lg(u)du, Vi=0,...,7
gr<9) f(e) - Zz 0 asz(e)' (7)

Then, the distributed delay system (3) can be reformulated
as

0
i(t) = +Adz a; it +Ad/ gr(0) z(t+6) db,
—h

®)

where we define a new state x;(t z(t+0)db.

f Li(
B. An extended system
The initial system (3) has been reformulated introducing

extra state variables x; whose dynamics are:

&i(t) = /Oh

() i (t + 0) db,

L;i(0)x(t) — Li(=h)x(t — h)
0 q
/h SLi(0) (e +0) db,

as L;—1(0) = L;11(0) and L;—1(—h) = L;y1(—h), sub-
tracting the (¢ — 1)-th to the (i + 1)-th equation, we have
0

isa () = i2(0) == [ [Lira(0) = Lica(9)] ot + 0)ds

—h
2(2e+1
- _ % 2 (2).
The last equality results from property P3 in Definition 1.
So the additional dynamics are expressed as

2(2i + 1)

Tip1(t) = &i—1(t) — W zi(t), 9
with the initialization given by:
0
dolt) = / (¢ +6) O = a(t) — (t — h)
—h

ia(f) = /0 (%9 +1)é(t + 0) b

—h
=zx(t)+z(t—h)— %xo(t).
Let introduce the extra state {(¢) and x4(t).
zo(t)
X t 0
¢(t) = :( ) . xg(t) = /_h gr(O)z(t + 0)do
z,(t)

The dynamics of the extended distributed delay system can
be easily described as follows:

@(t) =Ax(t) + AgrC(t) + Ay (t),

]-n 0n>< r+1)n
[12n 02nx](3r1)n} C(t) = T | (U ) @
0(r—l)n><n
—1,
+ 1, x(t — h),

0(r—1)n><n

with

Adr = [?OAd alAd [N arAd]
apl On On
U - )
L On ar_11y | Oy
-1 0 1 0
E = T, . )
| O -1 0 1
and o; = —2%. We obtain therefore a time delay system

whose stability will be studied via the quadratic separation
approach.

C. Uncertain feedback system

The methodology consists in expressing the delay system
(3) into an interconnected system as depicted in Figure 1. To
this end, we need to list all operators that are involved in the
dynamic of the system as well as uncertainties. First of all,
let define the following operators, for i = {0,1,2,...,7}

—>/ x(t +0) do,
(10
g : R — R,
0
—>/ x(t + 0) do.

The first operator is the operator that defines state variables
x4, 23 (t) = 6;[z](t). The second operator is associated to the
remainder of the projection of the kernel f, namely x,(t) =
dg[z](t). Since h is constant, the operators above can be
expressed in the Laplace domain as d;( f Li(0)e*? do

and d,(s) = ffhgr(ﬁ) 9 dp. Now, we gather all the
operators that describe (3) according to our modeling:

(t) (t)
¢(t) ¢(t)
z(t—h) | =V | z@#) |, (11)
¢(t) x(t)
4 (t) x(t)
—_——
w(t) z(t)
with § = [0, 1,...,6,]T and
Silln(r_f_g) 0 0 0
v 0 e 51 -0 0
o 0 0 o®1l, O
0 0 0 dg1n

Combining expressions (8) and (9), we can build the linear
equation (feedforward block in Figure 1) specifying all the
relationships between vectors z and w:

(1) a(t)
¢(t) ()
E| at) |=A| at—h) |, (12)
(1) ((t)
2(t) 24(t)



with

I 13n o3n><(r—1)n O3
E= O(r—l)nxn E O(r—l)n><3n
o 0 0 1 ’
3n 3nX(r=1)n 3n
0 0 0
A =
[ A Ad'r On 0n><(r+1)n Ad
1n On><(r+1)n _1n 0n><(r+1)n 0n
1n 1
U 0rn r n 0
O(rfl)nxn O(rfl)nxn x (1) mxn
1n
1n 03n><(r+1)n O3nxn O3n><(r+1)n O3nxn
1n
L On(r+1) 1n(r+1) On(r+1)><n _1n(r+1) 0n(r+1)><n J

IV. STABILITY CONDITION
A. Inequality constraints

The dynamic of our feedback system is described by a set
of operators (11). We want to state now a set of inequalities
that will be useful to build the constraint on V (5).

Lemma 2 ([1]): A quadratic constraint for the operator
s~ is given by the following inequality for any positive
definite matrix P,

| <o

1, 1" o =P 1,
5711, —-P 0 s,

Lemma 3 ([1]): A quadratic constraint for the operator
e~"* is given by the following inequality for any positive

definite matrix @,
1n : _Q 0 1n
e~ hs1, 0 Q@ e hs1,

The proof of the two above lemmas can be found in [20],
[1]. -

Lemma 4: [8] A quadratic constraint for the operator § is
given by the following inequality for any positive definite
matrix R,

B

1, 1,
ool 0oln
011, =| 0ln | < 0,
or1n 0r1n
with
—h’R; O 0 0
0 Ry O 0
== 0 0 3R; 0
0 0 0 (2r+1)Ry

Proof: Let apply the Bessel inequality (Lemma 1)
on the delay function e*? with the normalized Legendre

: 2i+17 .
polynomials 4/ =55 L;:

Z| IR < (e, )

Upperbounding (e*?, e*?) by h, we obtain:

r

> (2i+1)8;07 < h (e

=0

7639> S h2

)

The proof follows straightforwardly. [ ]

Lemma 5: A quadratic constraint for the operator d, is
given by the following inequality for any positive definite

matrix R,
1. 1" =ARy 0 1n
<
[dqln} [ 0 R2}{591n}_07

with A = h f lg (0|2 db.

Proof: Let apply the Cauchy-Schwartz inequality on
the function d4:

2

367 = 0)es? df| < ),

>~
L
By

which concludes the proof. [ ]

B. Main result

We now propose a theorem that provides a sufficient
stability condition for the distributed delay system system
(3). This stability condition is expressed as a LMI condition.

Theorem 2: For a given positive scalar h and a positive
integer 7, if there exist positive definite matrices P &
R™Mr+2)xn(r+2) "0 R, and Ry € R™*™, then the system
3) is asymptotlcally stable if the following LMI is satisfied:

(& —A]7e[€E -A]"

where matrices £, A and © are defined in (12) and (13).

Proof: In Section III-C, it has been shown that sys-
tem (3) could be expressed as in Figure 1 with equations
(11)-(12). Combining all the quadratic constraints stated in
Section IV-A, we build the matrix (the separator)

>0,

6)11 6)12
o= 13
|:®’{‘2 @22:| ( )
with
0 0 0 0
o — |0 -Q 0 0
= 10 0 -mR 0 '
0 0 0 — AR
-P 0O 00
0 00 00
©12 = 0 00 0 0}’
|0 00 00
0 0 0 0 0]
0 Q O 0 0
0 0 R 0 0
622* : )
0 0 0 (2r+1)R; 0
0 0 0 0 Ry




[ Theorems [ A ] nbr of var. |
[3] (“analytical”) | 1.498 —
[27] 1.03 3
Th2 (r=1) | 1.39 9
Th2 (r =2) | 1.491 13
Th2 (r =3) | 1.495 18

TABLE I: Maximal allowable delay h for system (14).

that fulfills condition (5). Hence, invoking Theorem 1, the
aforementioned system is stable if the first condition (4) is
also satisfied. |

Remark 2: Following [9] or [18], we can show that the
proposed result can also be interpreted as a Lyapunov-
Krasovskii functional of the form:

v [de] L]+ L roenin

0 0
+ / / x} (0)Ryz4(0)dbds
—hJs

0 /0
+ / / 2gT(t + 0)Roxy(t + 0)dbds
—hJs

It appears that this functional is related to the functional
used recently by [22] and [23], [24] to establish some
stability criteria using either Wirtinger inequalities or Bessel
inequalities.

V. NUMERICAL EXAMPLES
A. Example 1

Let consider a first scalar example:

0
i(t) = fx(t)Jr/e*esin(H)x(tJr@) o (14)
—h

Using a numerical method [2], [3], system (14) is asymp-
totically stable for all delays less than 1.498. Table I shows
results obtained with Theorem 2. As expected, better results
are obtained as the degree of the polynomial r increases.
Figure 2 shows the kernel function f(#) and the projection
polynomial p,(6) = > a;L;(0). The difference between the
two curves represents g,.(#) and it can be seen that for r = 2,
the approximation is good enough to get a small A.

B. Example 2

Let consider the following distributed delay system:

0
i(t) = —2a(t) + /(9 +3cosf)z(t+60)dd  (15)
—h

This example is interesting because it has two stability
pockets namely 4 in [0, 0.964] and in [1.372, 2.105] [3].
Table II shows results obtained with Theorem 2. Note that
even if the theorem from [27] provides a very good result
in estimating the first interval of stability, it is not able to
detect the second one.

ED ED
delay 6

(a)
—f£(®)
:

ET) 5
delay 6
(b)

Fig. 2: The delay kernel f and the projection polynomial p,
(forr=1and r =2).

[ Theorems [ 15t interval [ 27 jnterval [ nbr of var. ]
[3] (“analytical”) 0 — 0.964 [1.372 — 2.105] —
[27] 0 — 0.964 — 3
Th2 (r=1) [0 — 0.86] — 9
Th.2 (r = 2) 0 — 0.960 [1.42 — 1.99] 13
Th.2 (r = 3) 0 — 0.964 [1.375 — 2.097] 18

TABLE II: Allowable delay h for system (15).

C. Example 3
The system we are considering now is interesting in that
it is unstable if the delay h is zero.
0
z(t) = 0.2x(t) — /(1 —0.30)x(t + 0) df (16)
—h
In this case, although the dynamic matrix A (here a scalar) is
positive, the delayed dynamic may stabilize the system. [27]
shows that system (16) is stable for h in [0.195 — 1.442].
Invoking Theorem 2 with r = 1, a larger stability interval:
[0.195 — 1.658] is obtained. Hence, it is worthy to note that
both results are able to assess the stability of the distributed
delay system even when the delay-free system is unstable.

D. Example 4

This last example is extracted from [17]:

0
(1) = —2.10(t) — / FO)t+0)do, (7

—h



with an uncertain kernel f(0) = f(0) + A;(#) and f(0) =
-0 It is assumed that [|A¢(6)|| < 0.1 for all 6 € [—h,0].
In order to handle this uncertainty and apply our result, a

slight change on operator J, is required:

0
byls) = / (9(6) + A (0))e*” db),
—h

and we have the inequality
0
58 < h [ 10)F + 12, 0)F db.
—h

Hence, Theorem 2 can be applied, adapting the scalar \ in
(13). The stability condition in [17] states that (17) is stable
for a delay interval ~ up to 5.2. The result in this paper is
able to find out a larger delay interval (for which the system
remains stable): h = 7.8 for r =2 and h = 8 for r = 4.

VI. CONCLUSION

In this paper, we have provided a systematic procedure
for the stability analysis of distributed delay systems with
a general kernel using on a robust approach. The approach
is based on the approximation of the kernel by orthogonal
polynomials. The resulting system is then rewritten as a more
classical time delay system submitted to a perturbation whose
size can be estimated by integral inequalities issued from
Bessel inequalities. The resulting criterion is expressed in
terms of an LMI and give interesting results in simulations.
Future works include the conservatism reduction analysis and
the more tricky case of time-varying delay.
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