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I. INTRODUCTION

Since a few decades, the emergence of well established theory and potential applications led to a huge number of papers dedicated to the stability analysis of time delay systems [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF]. Among them, few of them focused on the class of distributed time delay systems, for which the delay operator, via an integral action, has a cumulative effect over the past values of the dynamics. For specific integral kernels, including constant, rationals, γ distribution function, stability of such systems can be tackled by a direct method based on pole location [START_REF] Breda | Trace-dde: a tool for robust analysis and characteristic equations for delay differential equations[END_REF], [START_REF] Morarescu | Stability crossing curves of shifted gamma-distributed delay systems[END_REF], [START_REF] Ozbay | Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics[END_REF], [START_REF] Sipahi | Stability of Traffic Flow Behavior with Distributed Delays Modeling the Memory Effects of the Drivers[END_REF]. For kernels which can be interpreted as impulse responses of a linear system, the system can be modeled as a linear pointwise delay system and hence classical techniques on pole location can be used (see [START_REF] Ozbay | Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics[END_REF]). Nevertheless, these techniques are often restricted to the case of nominal systems without uncertainties [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF] and for a constant delay. Another widely used technique for stability analysis relies on Lyapunov Theory. The construction of Lyapunov Krasovskii functionals is modified in order to take into account the distributed nature of the delay. It results some Lyapunov structure which depends on double and triple integral terms [START_REF] Chen | Delay-dependent robust stabilization for uncertain neutral systems with distributed delays[END_REF], [START_REF] Fridman | A descriptor system approach to H∞ control of linear time-delay systems[END_REF], [START_REF] Han | A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays[END_REF], [START_REF] Kolmanovskii | Control of systems with aftereffect[END_REF], [START_REF] Li | Stability analysis of neutral systems with distributed delays[END_REF], [START_REF] Xie | A robust H∞ control of distributed delay systems with application to combustion control[END_REF]. Different bounding techniques are then employed to derive numerically efficient stability tests. In general, the kernel is then restricted to be a constant function over the delay interval. In order to avoid this strong constraint, another possibility, described by Gu et al [START_REF] Gu | Discretized lyapunov functional for systems with distributed delay and piecewise constant coefficients[END_REF], is to use a very general class of Lyapunov Krasovskii functional (see for instance [START_REF] Santos | Robust stability conditions for systems with distributed delays[END_REF]) and a discretization scheme to obtain numerically tractable stability conditions. This technique designed for piecewise constant delay kernel leads to a gouaisbaut,ariba,seuret@laas.fr reduction of conservatism at the expense of the numerical burden. The case of general kernels have been studied successfully by [START_REF] Solomon | New stability conditions for systems with distributed delays[END_REF] which proposed the use of new integral inequalities. These new bounding techniques which were especially designed for distributed delay systems led to new Lyapunov Krasovskii functional structures and efficient results on simulations. Another approach widely used in the literature stems from the robust analysis which use the same driving forces namely the comparisons systems and integral inequalities [START_REF] Niculescu | Delay Effects on Stability. A Robust Control Approach[END_REF]. In [START_REF] Münz | Topics in Time-Delay Systems: Analysis, Algorithms, and Control[END_REF], a combined full block S procedure and Lyapunov analysis is performed to prove the stability of a distributed delay system with a rational kernel. More recently, using quadratic separation approach, [START_REF] Gouaisbaut | Delay range stability of a class of distributed time delay systems[END_REF] has provided some LMI criteria for polynomial kernels.

In this paper, we aim at extending the procedure proposed recently in [START_REF] Gouaisbaut | Bessel inequality for robust stability analysis of time-delay system[END_REF] to the case of distributed delay systems and an arbitrary continuous and known kernel. The basic idea is to project this function upon a polynomial set whose a basis is orthogonal like Legendre polynomials. Choosing adequate extra states related to the projection of the kernel upon Legendre polynomials, the original system can be modeled as a classical time delay state submitted to an exogenous bounded perturbation. Using classical procedure in robust analysis, this last system can also be viewed as a linear system connected to a set of operators composed of the operators related to the distributed delayed dynamics. This last part is then embedded into some relevant structured uncertainties whose size is controlled by new inequalities from Bessel inequalities [START_REF] Gouaisbaut | Bessel inequality for robust stability analysis of time-delay system[END_REF].

The paper is organized as follows. Next section is devoted to some preliminaries on the distributed delay system and quadratic separation. Then section 3 formulates a way to describe the distributed delay system as an interconnected uncertain system. Section 4 gives the central results of the paper. Section 5 presents some numerical simulations. Notations: Throughout the paper, the following notations are used. 1 n and 0 m×n denote respectively the identity matrix of size n and null matrix of size m × n. For two symmetric matrices, A and B, A > (≥) B means that A -B is (semi-) positive definite. A T denotes the transpose of A.

II. PRELIMINARIES

A. Definitions

We define by H the vector space of complex valued square integrable functions on [-h, 0]. For any functions in H, we define the hermitian inner product

f, g = 0 -h f (θ)g * (θ)dθ, (1) 
where f and g belong to H. Basically, x i , x j ∈ H, i = j are said orthogonal if x i , x j = 0. A sequence of H, {e 0 , e 1 , e 2 , ..., e n }, is an orthonormal sequence if e i , e j = κ ij , where κ ij is the kronecker notation. Based on these definitions, we recall the Bessel inequality that will be employed later in the paper. Lemma 1 (Bessel inequality): Let {e 0 , e 1 , e 2 , ..., e n } be an orthonormal sequence in H. Then, for any f in H the following inequality holds:

f, f ≥ n i=0 | f, e i | 2
An example of polynomials for the inner product (1) is the well known Legendre polynomials whose definition and properties are stated below.

Definition 1 (Legendre polynomials): The Legendre polynomials considered over the interval [-h, 0] are defined by

∀k ∈ N, L k (u) = (-1) k k l=0 p k l u + h h l . with p k l = (-1) l k l k+1 l
where

k l = k! l!(k-l)!
. Some properties are summarized below and will be useful in the sequel.

P1 Orthogonality:

∀(k, l) ∈ N 2 , 0 -h L k (u)L l (u)du = 0, k = l h 2k+1 , k = l (2) 
P2 Boundary conditions:

∀k ∈ N, L k (0) = 1, L k (-h) = (-1) k .

P3

Recurrence on the derivative:

d du L k+1 (u) -L k-1 (u) = 2(2k + 1) h L k (u) with d du L 0 (u) = 0, d du L 1 (u) = 2 h L 0 (u).
Proofs of these properties are standard results and can be found in [START_REF] Gautschi | Orthogonal Polynomials, Computation and Approximation[END_REF].

B. Problem statement

Consider the distributed delay system given by:

ẋ(t) = Ax(t) + A d 0 -h f (θ) x(t + θ) dθ, (3) 
where x ∈ R n is the instantaneous state vector and A, A d ∈ R n×n are constant matrices. The function f is a scalar continuous function, defined over the interval [-h, 0], and represents the kernel of the distributed delay. We aim at assessing stability of the system (3) using robust analysis, more especially using the quadratic separation approach which has been already used for polynomial kernel in [START_REF] Gouaisbaut | Bessel inequality for robust stability analysis of time-delay system[END_REF] or pointwise delay system in [START_REF] Peaucelle | Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation[END_REF].

Remark 1: We have considered that the kernel f is a scalar function but this assumption can be easily extended to the case of matrix kernel by considering several distributed terms with adequate matrices A d . This will not be presented in this paper because of space limitation.

C. Stability analysis via quadratic separation

As a part of robust control theory, the quadratic separation provides a fruitful framework to address stability of nonlinear and uncertain systems [START_REF] Peaucelle | Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation[END_REF], [START_REF] Iwasaki | Well-posedness of feedback systems: insights into exact robustnessanalysis and approximate computations[END_REF]. Recent studies [START_REF] Ariba | Robust stability of time-varying delay systems: The quadratic separation approach[END_REF] have shown that such a framework allows to propose an original approach to deal with the stability analysis of timedelay systems. The key idea is to reformulate the delay system (3) as an uncertain feedback system as in Figure 1. In our case, the uncertainty stems from some operators related to the delay dynamic. It has been shown that a suitable interconnection modeling, based on relevant choices of operators, may reduce the conservatism of the analysis [START_REF] Ariba | Robust stability of time-varying delay systems: The quadratic separation approach[END_REF]. The stability conditions presented in this paper are founded on the theorem introduced below. Let consider the interconnection defined by Figure 1 where E and A are two, real valued, possibly non-square matrices and ∇ is a linear operator which represent the system uncertainty. This latter is assumed to belong to an uncertain set ∇ ∇. In the present paper, we aim at embedding some delay-dependent operators into the matrix ∇. For simplicity of notations, we assume that E is full column rank. Then, we are interested in looking for conditions that assess the stability of the interconnection.

Theorem 1 ( [START_REF] Peaucelle | Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation[END_REF]): The uncertain feedback system of Figure 1 is well-posed and stable if and only if there exists a Hermitian matrix Θ = Θ * satisfying both conditions

E -A ⊥ * Θ E -A ⊥ > 0, (4) 
1 ∇ * Θ 1 ∇ ≤ 0 , ∀∇ ∈ ∇ ∇ . (5) 
As a result, the stability is evaluated through two matrix inequalities (4) and ( 5) related respectively to the lower and the upper bloc. Basically, inequality ( 5) is built from definitions and informations on the system uncertainty. Then, the other one (4) provides the stability condition to be tested.

III. MODELING THE DELAY SYSTEM AS A FEEDBACK SYSTEM

A. Projection of the kernel

In light of the properties of Legendre polynomials, we consider the polynomial approximation of the kernel f . For a given integer r, it is trivial to write

∀θ ∈ [-h, 0], f (θ) = r i=0 a i L i (θ) + g r (θ), (6) 
where

a i = 2i+1 h 0 -h f (u)L k (u)du, ∀i = 0, . . . , r g r (θ) = f (θ) - r i=0 a i L i (θ).
(7) Then, the distributed delay system (3) can be reformulated as

ẋ(t) = Ax(t) + A d r i=0 a i x i (t) + A d 0 -h g r (θ) x(t + θ) dθ, (8) 
where we define a new state

x i (t) = 0 -h L i (θ) x(t + θ) dθ.
B. An extended system

The initial system (3) has been reformulated introducing extra state variables x i whose dynamics are: h), subtracting the (i -1)-th to the (i + 1)-th equation, we have

ẋi (t) = 0 -h L i (θ) ẋ(t + θ) dθ, =L i (0)x(t) -L i (-h)x(t -h) - 0 -h d dθ L i (θ) x(t + θ) dθ, as L i-1 (0) = L i+1 (0) and L i-1 (-h) = L i+1 (-
ẋi+1 (t) -ẋi-1 (t) = - 0 -h Li+1 (θ) -Li-1 (θ) x(t + θ)dθ, = - 2(2i + 1) h x i (t).
The last equality results from property P3 in Definition 1.

So the additional dynamics are expressed as

ẋi+1 (t) = ẋi-1 (t) - 2(2i + 1) h x i (t), (9) 
with the initialization given by:

ẋ0 (t) = 0 -h ẋ(t + θ) dθ = x(t) -x(t -h) ẋ1 (t) = 0 -h ( 2 h θ + 1) ẋ(t + θ) dθ = x(t) + x(t -h) - 2 h x 0 (t).
Let introduce the extra state ζ(t) and x g (t).

ζ(t) =      x 0 (t) x 1 (t) . . . x r (t)      , x g (t) = 0 -h g r (θ)x(t + θ)dθ
The dynamics of the extended distributed delay system can be easily described as follows:

ẋ(t) =Ax(t) + Ādr ζ(t) + A d x g (t)
,

1 2n 0 2n×(r-1)n E ζ(t) =   1 n 0 n×(r+1)n 1 n 0 (r-1)n×n U   ζ(t) +   -1 n 1 n 0 (r-1)n×n   x(t -h), with Ādr = a 0 A d a 1 A d . . . a r A d , U =    α 0 1 n . . . 0 n 0 n . . . . . . 0 n α r-1 1 n 0 n    , E =    -1 0 1 0 . . . . . . . . . 0 -1 0 1    ,
and α i = -2 2i+1 h . We obtain therefore a time delay system whose stability will be studied via the quadratic separation approach.

C. Uncertain feedback system

The methodology consists in expressing the delay system (3) into an interconnected system as depicted in Figure 1. To this end, we need to list all operators that are involved in the dynamic of the system as well as uncertainties. First of all, let define the following operators, for i = {0, 1, 2, . . . , r}

δ i : R → R, x(t) → 0 -h L i (θ) x(t + θ) dθ, δ g : R → R, x(t) → 0 -h g(θ) x(t + θ) dθ. (10) 
The first operator is the operator that defines state variables

x i , x i (t) = δ i [x](t).
The second operator is associated to the remainder of the projection of the kernel f , namely x g (t) = δ g [x](t). Since h is constant, the operators above can be expressed in the Laplace domain as δ i (s) = 0 -h L i (θ)e sθ dθ and δ g (s) = 0 -h g r (θ)e sθ dθ. Now, we gather all the operators that describe (3) according to our modeling:

      x(t) ζ(t) x(t -h) ζ(t) x g (t)       w(t) = ∇       ẋ(t) ζ(t) x(t) x(t) x(t)       z(t) , (11) 
with δ = [δ 0 , δ 1 , . . . , δ r ] T and

∇ =     s -1 1 n(r+2) 0 0 0 0 e -sh 1 n 0 0 0 0 δ ⊗ 1 n 0 0 0 0 δ g 1 n     .
Combining expressions ( 8) and ( 9), we can build the linear equation (feedforward block in Figure 1) specifying all the relationships between vectors z and w:

E       ẋ(t) ζ(t) x(t) x(t) x(t)       = A       x(t) ζ(t) x(t -h) ζ(t) x g (t)       , (12) 
with

E =     1 3n 0 3n×(r-1)n 0 3n 0 (r-1)n×n E 0 (r-1)n×3n 0 3n 0 3n×(r-1)n 1 3n 0 0 0     , A =          A Ādr 0n 0 n×(r+1)n A d 1n 0 n×(r+1)n -1n 0 n×(r+1)n 0n 1n 0 (r-1)n×n U 1n 0 (r-1)n×n 0 rn×(r+1)n 0rn×n 1n 1n 1n 0 3n×(r+1)n 03n×n 0 3n×(r+1)n 03n×n 0 n(r+1) 1 n(r+1) 0 n(r+1)×n -1 n(r+1) 0 n(r+1)×n         
.

IV. STABILITY CONDITION A. Inequality constraints

The dynamic of our feedback system is described by a set of operators [START_REF] Han | A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays[END_REF]. We want to state now a set of inequalities that will be useful to build the constraint on ∇ (5).

Lemma 2 ([1]):

A quadratic constraint for the operator s -1 is given by the following inequality for any positive definite matrix P ,

1 n s -1 1 n * 0 -P -P 0 1 n s -1 1 n ≤ 0.

Lemma 3 ([1]):

A quadratic constraint for the operator e -hs is given by the following inequality for any positive definite matrix Q,

1 n e -hs 1 n * -Q 0 0 Q 1 n e -hs 1 n ≤ 0.
The proof of the two above lemmas can be found in [START_REF] Peaucelle | Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation[END_REF], [START_REF] Ariba | Robust stability of time-varying delay systems: The quadratic separation approach[END_REF]. Lemma 4: [START_REF] Gouaisbaut | Bessel inequality for robust stability analysis of time-delay system[END_REF] A quadratic constraint for the operator δ is given by the following inequality for any positive definite matrix R 1 ,

       1 n δ 0 1 n δ 1 1 n . . . δ r 1 n        * Ξ        1 n δ 0 1 n δ 1 1 n . . . δ r 1 n        ≤ 0, with Ξ =        -h 2 R 1 0 0 . . . 0 0 R 1 0 . . . 0 0 0 3R 1 0 . . . . . . . . . 0 0 0 (2r + 1)R 1       
Proof: Let apply the Bessel inequality (Lemma 1) on the delay function e sθ with the normalized Legendre polynomials 2i+1 h L i :

r i=0 | e sθ , 2i + 1 h L i | 2 ≤ e sθ , e sθ
Upperbounding e sθ , e sθ by h, we obtain:

r i=0 (2i + 1)δ i δ * i ≤ h e sθ , e sθ ≤ h 2 ,
The proof follows straightforwardly.

Lemma 5: A quadratic constraint for the operator δ g is given by the following inequality for any positive definite matrix R 2 ,

1 n δ g 1 n * -λR 2 0 0 R 2 1 n δ g 1 n ≤ 0, with λ = h 0 -h |g r (θ| 2 dθ.
Proof: Let apply the Cauchy-Schwartz inequality on the function δ g :

δ g δ * g = 0 -h g r (θ)e sθ dθ 2 ≤ λ,
which concludes the proof.

B. Main result

We now propose a theorem that provides a sufficient stability condition for the distributed delay system system (3). This stability condition is expressed as a LMI condition.

Theorem 2: For a given positive scalar h and a positive integer r, if there exist positive definite matrices P ∈ R n(r+2)×n(r+2) , Q, R 1 and R 2 ∈ R n×n , then the system (3) is asymptotically stable if the following LMI is satisfied:

E -A ⊥ * Θ E -A ⊥ > 0,
where matrices E, A and Θ are defined in [START_REF] Iwasaki | Well-posedness of feedback systems: insights into exact robustnessanalysis and approximate computations[END_REF] and [START_REF] Kolmanovskii | Control of systems with aftereffect[END_REF].

Proof: In Section III-C, it has been shown that system (3) could be expressed as in Figure 1 with equations ( 11)- [START_REF] Iwasaki | Well-posedness of feedback systems: insights into exact robustnessanalysis and approximate computations[END_REF]. Combining all the quadratic constraints stated in Section IV-A, we build the matrix (the separator)

Θ = Θ 11 Θ 12 Θ T 12 Θ 22 , (13) 
with [START_REF] Li | Stability analysis of neutral systems with distributed delays[END_REF].

Θ 11 =     0 0 0 0 0 -Q 0 0 0 0 -h 2 R 1 0 0 0 0 -λR 2     , Θ 12 =     -P 0 0 . . . 0 0 0 0 0 . . . 0 0 0 0 0 . . . 0 0 0 0 0 . . . 0 0     , Θ 22 =          0 0 0 . . . 0 0 0 Q 0 . . . 0 0 0 0 R 1 0 0 . . . . . . . . . . . . 0 0 0 (2r + 1)R 1 0 0 0 0 . . . 0 R 2        
that fulfills condition [START_REF] Fridman | A descriptor system approach to H∞ control of linear time-delay systems[END_REF]. Hence, invoking Theorem 1, the aforementioned system is stable if the first condition ( 4) is also satisfied. Remark 2: Following [START_REF] Gouaisbaut | Delay-dependent robust stability of time delay systems[END_REF] or [START_REF] Niculescu | Delay Effects on Stability. A Robust Control Approach[END_REF], we can show that the proposed result can also be interpreted as a Lyapunov-Krasovskii functional of the form:

V = x(t) ζ(t) T P x(t) ζ(t) + 0 -h x T t (θ)Qx t (θ)dθ + 0 -h 0 s x T t (θ)R 1 x t (θ)dθds + 0 -h 0 s x g T (t + θ)R 2 x g (t + θ)dθds
It appears that this functional is related to the functional used recently by [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF] and [START_REF] Seuret | Complete quadratic lyapunov functionals using bessel-legendre inequality[END_REF], [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time delay systems[END_REF] to establish some stability criteria using either Wirtinger inequalities or Bessel inequalities.

V. NUMERICAL EXAMPLES

A. Example 1

Let consider a first scalar example:

ẋ(t) = -x(t) + 0 -h e -θ sin(θ)x(t + θ) dθ (14) 
Using a numerical method [START_REF] Breda | Pseudospectral differencing methods for characteristic roots of delay differential equations[END_REF], [START_REF] Breda | Trace-dde: a tool for robust analysis and characteristic equations for delay differential equations[END_REF], system ( 14) is asymptotically stable for all delays less than 1.498. Table I shows results obtained with Theorem 2. As expected, better results are obtained as the degree of the polynomial r increases.

Figure 2 shows the kernel function f (θ) and the projection polynomial p r (θ) = r 0 a i L i (θ). The difference between the two curves represents g r (θ) and it can be seen that for r = 2, the approximation is good enough to get a small λ.

B. Example 2

Let consider the following distributed delay system:

ẋ(t) = -2x(t) + 0 -h (θ + 3 cos θ)x(t + θ) dθ (15) 
This example is interesting because it has two stability pockets namely h in [0 , 0.964] and in [1.372 , 2.105] [START_REF] Breda | Trace-dde: a tool for robust analysis and characteristic equations for delay differential equations[END_REF].

Table II shows results obtained with Theorem 2. Note that even if the theorem from [START_REF] Solomon | New stability conditions for systems with distributed delays[END_REF] provides a very good result in estimating the first interval of stability, it is not able to detect the second one. [START_REF] Morarescu | Stability crossing curves of shifted gamma-distributed delay systems[END_REF].

C. Example 3

The system we are considering now is interesting in that it is unstable if the delay h is zero.

ẋ(t) = 0.2x(t) - 0 -h (1 -0.3θ)x(t + θ) dθ (16) 
In this case, although the dynamic matrix A (here a scalar) is positive, the delayed dynamic may stabilize the system. [START_REF] Solomon | New stability conditions for systems with distributed delays[END_REF] shows that system ( 16) is stable for h in [0.195 -1.442].

Invoking Theorem 2 with r = 1, a larger stability interval: [0.195 -1.658] is obtained. Hence, it is worthy to note that both results are able to assess the stability of the distributed delay system even when the delay-free system is unstable.

D. Example 4

This last example is extracted from [START_REF] Münz | Robust stability of distributed delay systems[END_REF]:

ẋ(t) = -2.1x(t) - 0 -h f (θ)x(t + θ) dθ, (17) 
with an uncertain kernel f (θ) = f (θ) + ∆ f (θ) and f (θ) = -0.6θ 1+θ 2 . It is assumed that ∆ f (θ) ≤ 0.1 for all θ ∈ [-h, 0]. In order to handle this uncertainty and apply our result, a slight change on operator δ g is required: Hence, Theorem 2 can be applied, adapting the scalar λ in [START_REF] Kolmanovskii | Control of systems with aftereffect[END_REF]. The stability condition in [START_REF] Münz | Robust stability of distributed delay systems[END_REF] states that ( 17) is stable for a delay interval h up to 5.2. The result in this paper is able to find out a larger delay interval (for which the system remains stable): h = 7.8 for r = 2 and h = 8 for r = 4.

δ g (s) =

VI. CONCLUSION

In this paper, we have provided a systematic procedure for the stability analysis of distributed delay systems with a general kernel using on a robust approach. The approach is based on the approximation of the kernel by orthogonal polynomials. The resulting system is then rewritten as a more classical time delay system submitted to a perturbation whose size can be estimated by integral inequalities issued from Bessel inequalities. The resulting criterion is expressed in terms of an LMI and give interesting results in simulations. Future works include the conservatism reduction analysis and the more tricky case of time-varying delay.
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 1 Fig. 1: Feedback system.
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 2 Fig. 2: The delay kernel f and the projection polynomial p r (for r = 1 and r = 2).

  ) + ∆ f (θ) e sθ dθ, and we have the inequalityδ * g δ g ≤ h 0 -h |g(θ)| 2 + |∆ f (θ)| 2 dθ.

TABLE I :

 I Maximal allowable delay h for system

TABLE II :

 II Allowable delay h for system