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Abstract

We propose a fast Computer-Generated Hologram
(CGH) computation method based on a hybrid point-
source/wave-field approach. Whereas previously pro-
posed methods tried to reduce the computational
complexity of the point-source or the wave-field ap-
proaches independently, our method uses the two
approaches together and therefore takes advantages
from both of them. The algorithm consists of three
steps. First, the 3D scene is sliced into several depth
layers parallel to the hologram plane. Then, for each
layer, we compute the complex wave scattered by this
layer either using a wave-field or a point-source ap-
proach according to a threshold criterion on the num-
ber of points within the layer. Finally, we sum up the
complex waves scattered by all the depth layers in
order to obtain the final CGH. Experimental results
reveal that this combination of approaches does not
produce any visible artifact and outperforms both the
point-source and wave-field approaches.
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1 Introduction

Holography is often considered as the most promising
3D visualization technology, since it can provide the
most authentic and natural three-dimensional illusion
to the naked eye. Indeed, it provides complete human
depth cues without the need for special viewing de-
vices and without causing eye-strain [1]. Over the
past decades, several methods have been proposed
to generate holograms by computer calculation. Us-
ing these methods, it is possible to obtain Computer-
Generated Holograms (CGH) of synthetic or existing
scenes by simulating the propagation of light scat-
tered by the scene towards the hologram plane. CGH
computation techniques usually sample 3D scenes by
a set of primitives and calculate light propagation as
the sum of complex light waves scattered by each of
the primitives. Commonly used primitives include
points (point-source approach) and planar segments
(wave-field approach).

The point-source approach samples 3D scenes by a
collection of self-luminous points, and calculates com-
plex wave scattered by each of the points using the
monochromatic spherical light wave equation. This
approach is very flexible and does not impose any
restriction on the scene geometry. However, its com-
plexity is very high since it requires one calculation
per point of the scene per pixel of the hologram.
Moreover, to produce shapes that appear solid and
continuous, the scene needs to be sampled at very
high densities, making the CGH computation pro-
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hibitively slow. In order to reduce the computational
complexity, several methods have been proposed, in-
cluding geometric symmetry [2], look-up tables [3, 4],
interframe and interline redundancy reduction [5, 6],
difference and recurrence formulas [7, 8], image holo-
grams [9, 10], wave-front recording planes [11, 12, 13],
using GPU hardware [14, 15], and special purpose
hardware [16, 17].

The wave-field approach samples 3D scenes by a
collection of self-luminous planar segments, and com-
putes complex wave scattered by each of the seg-
ments using the angular spectrum of plane waves [18].
The computation of the angular spectrum of plane
waves involves the use of the Fast Fourier Trans-
form (FFT) algorithm twice, and is therefore more
time-consuming than the computation of the spher-
ical light wave scattered by a single point. How-
ever, complex waves scattered by scene points lo-
cated within a single planar segment are calculated all
at once using the angular spectrum of plane waves.
Therefore, this approach is more efficient than the
point-source approach when objects in a scene con-
sist of large planar segments containing many points.
However, when the scene geometry contains complex
shapes, a large number of small planar segments con-
taining only one or a few points are needed to sample
it, making the wave-field approach less efficient than
the point-source approach. In order to reduce the
computation burden, several methods have been pro-
posed, including the use of analytic expression of the
angular spectrum [19, 20, 21, 22, 23], and color space
conversion [24, 25].

In this paper, we propose a fast CGH computa-
tion method based on a hybrid point-source/wave-
field approach. Whereas previously proposed meth-
ods tried to reduce the computational complexity of
the point-source or the wave-field approaches inde-
pendently, our method uses the two approaches to-
gether and therefore takes advantages from both of
them. Section 2 gives a detailed description of our
method, Section 3 gives experimental results, and
Section 4 concludes this paper.
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Figure 1: Scene geometry and coordinate system used
by the proposed method

2 Proposed method

2.1 Overview

Figure 1 shows the scene geometry and coordinate
system used by the proposed method. The coordinate
system is defined by (x, y, z) so that the hologram
lies on the (x, y, 0) plane. The 3D scene is treated
as a set of Nz depth layers parallel to the hologram
plane and located between zmin and zmax. The holo-
gram is sampled on a regular 2D grid of resolution
Nx × Ny with a sampling pitch p. Figure 2 shows
the overall block-diagram of the proposed method,
which consists of three steps. First, the 3D scene is
sliced into Nz depth layers parallel to the hologram
plane. Then, for each layer d, if the number of points
Nd within the layer exceeds a maximum value Nd,max

(selection criterion which will be determined in sec-
tion 2.4), we compute the complex wave scattered by
this layer using a wave-field approach. Otherwise, if
Nd is smaller than Nd,max, the method calculates the
complex wave scattered by this layer using a point-
source approach. Finally, the method sums up the
complex waves scattered by all the depth layers in
order to obtain the final CGH. Afterwards, the scene
image can be reconstructed from the computed CGH
pattern.

2.2 Wave-field approach

When the number of points Nd within layer d ex-
ceeds Nd,max, the complex wave Uw

d scattered by this
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Figure 2: Block-diagram of the proposed method

layer towards the hologram plane is computed using a
wave-field approach. To this end, we use the angular
spectrum of plane waves [18], which is given by

Uw
d (x, y) = F−1

{

F
{

Ad(x, y)e
jφd(x,y)

}

× e−j2π
√

λ−2
−u2

−v2zd

}

, (1)

where Ad(x, y) and φd(x, y) are the amplitude and
phase of the (x, y) point in layer d; λ is the wavelength
of light, u and v are the spatial frequencies, zd is the
depth of layer d, and F and F−1 are respectively
the forward and inverse Fourier Transform. These
transforms can be computed using the Fast Fourier
Transform algorithm (FFT). In order to render a dif-
fusive scene, the phase φd(x, y) is set to a random
value. Finally, the complex wave Uw scattered by all
the layers whose number of points Nd exceeds Nd,max

in the hologram plane is given by

Uw(x, y) =

Nz
∑

d=0
Nd>Nd,max

Uw
d (x, y). (2)

In order to avoid one FFT per layer and therefore
to speed-up the computation, the algorithm sums up
the complex waves scattered by each layer directly
in the frequency domain, and then inverse Fourier
transforms the result to get Uw, as proposed in [19]:

Ûw
d (u, v) = F

{

Ad(x, y)e
jφd(x,y)

}

e−j2π
√

λ−2
−u2

−v2zd ,

Uw(x, y) = F−1















Nz
∑

d=0
Nd>Nd,max

Ûw
d (u, v)















. (3)

2.3 Point-source approach

When the number of points within layer d ∈ {0..Nz}
is smaller than Nd,max, the complex wave scattered
by this layer towards the hologram plane is computed
using a point-source approach. The complex wave
scattered by a point source i located within layer d is
given by the angular spectrum of plane waves [18] as

U
p
d,i(x, y) = Aie

jφiF−1
{

e−j2π
√

λ−2
−u2

−v2zd

}

⊗ δ(x− xi, y − yi), (4)

where Ai and φi are the amplitude and phase of the
point, xi and yi its coordinates within the layer, and
⊗ is the convolution operator. In order to avoid in-
terference between the points, the phase φi is set to
a random value.

Convolving a function with a Dirac delta shifts it
around the delta impulse. Therefore, if we know the
inverse Fourier transform term in Eq. (4) before-
hand, Up

d,i can be computed simply by scaling this
term with the point’s amplitude and phase factor,
followed by a shifting operation. In order to speed
up the computation, we use a pre-calculated LUT, as
proposed in [4]. The LUT T (x, y, z) is pre-computed
as

T (x, y, z) = F−1
{

e−j2π
√

λ−2
−u2

−v2zd

}

h(x, y, z).

(5)
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h being an envelope function used to restrict the re-
gion of contribution of a given point source, equal
to one within the region of contribution of the point
and zero elsewhere. This function limits the spatial
frequencies of the complex wave to avoid aliasing in
the CGH.

According to the Nyquist Sampling Theorem, the
maximum spatial frequency fmax which can be rep-
resented with a sampling pitch p is given by fmax =
(2p)−1. The grating equation [18] gives the relation
between the maximum spatial frequency fmax and
the maximum diffraction angle θ as sin(θ) = λfmax.
Therefore, the region of contribution of a point source
at depth z is given by its maximum radius Rmax by

Rmax = z tan(θ) = z tan

(

arcsin

(

λ

2p

))

, (6)

as shown in Figure 3. The envelope function h can
thus be defined as

h(x, y, z) =

{

1 if
√

x2 + y2 < Rmax

0 otherwise.
(7)

In order to limit its number of pixels, the LUT is
pre-computed only within the circumscribing square
of the region of contribution defined by the envelope
function h. Therefore, the number of pixels NT,d of
the LUT for depth zd is given by

NT,d =

(

2Rmax

p

)2

NT,d =

[

2zd
p

tan

(

arcsin

(

λ

2p

))]2

. (8)
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Figure 3: Region of contribution of a given point
source

Then, the complex wave U
p
d scattered by layer d

in the hologram plane can be obtained by simply ad-
dressing this pre-calculated LUT, as

U
p
d (x, y) =

Nd
∑

i=1

Aie
jφiT (x− xi, y − yi, zd). (9)

Finally, the complex wave scattered by all the layers
whose number of points Nd is smaller than Nd,max in
the hologram plane is given by

Up =

Nz
∑

d=0
Nd<Nd,max

U
p
d (x, y). (10)

2.4 Determination of the selection cri-

terion

The first step to implement the proposed method is
to determine the value of Nd,max. We call tp the time
needed to compute the complex wave scattered by a
layer at depth zd with Nd luminous points using the
point-source approach presented in Section 2.3, and
tw the time needed to compute it using the wave-
field approach presented in Section 2.2. Since the
wave-field approach involves one complex multiplica-
tion per pixel and a Fourier transform, tw is linearly
dependent on the number of pixels of the hologram
Npix = Nx×Ny. The point-source approach involves
one complex multiplication per pixel of the LUT per
point within the layer, so tp is dependent on the num-
ber of pixels NT,d of the LUT for depth zd and on the
number of points Nd within the layer. tw and tp are
experimentally found to be expressed by
{

tw(Npix) = kNpix

tp(Nd, NT,d) =
[

a (bNT,d + c)
1

2 + dNT,d + e
]

Nd.

(11)

We find the numerical values for the coefficients a,
b, c, d, e and k in Eq. (11) using the Gnuplot imple-
mentation of the nonlinear least-squares Levenberg-
Marquardt algorithm [26]:
{

a = 1, 11.10−5 b = 0, 59 c = 1, 0
d = 2, 59.10−8 e = 4, 78.10−4 k = 5, 54.10−7

(12)
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In order to maximize the efficiency of our method,
Nd,max must be set such that

tp(Nd,max, NT,d) = tw(Npix) (13)

⇔Nd,max =
kNpix

[

a (bNT,d + c)
1

2 + dNT,d + e
] . (14)

3 Experimental results and dis-

cussion

The proposed method was implemented in
C++/CUDA on a PC system employing an In-
tel Core i7-4930K CPU operating at 3.40 GHz, a
main memory of 16 GB and an operating system of
Microsoft Windows 8 as well as three GPUs NVIDIA
GeForce GTX 780Ti.

For the experiments, we used the Middlebury’s
views and disparity maps datasets [27] as test scenes
(Figures 4a and 4b). From each view and disparity
map pair, a 3D point cloud is extracted, where each
point is given an amplitude proportional to its corre-
sponding pixel value in the view image and a random
phase. Since each disparity map is encoded as an 8-
bits gray level image, the extracted 3D point cloud
is naturally sliced as a set of Nz = 255 depth lay-
ers parallel to the CGH plane1. The total number of
points Nscene within the point cloud is given by the
number of pixels of the disparity map minus the num-
ber of unknown disparity pixels. The 3D point cloud
is considered to be located between zmin = −d and
zmax = d in front of the CGH plane, where 2d = 2cm
is the depth extent of the scene. Finally, the CGH to
be computed has a resolution of 4096 × 4096 with a
sampling pitch p = 8, 1µm.

We compare our method with GPU implementa-
tions of two other methods: (1) the wave-field method
proposed in [28], which computes complex wave scat-
tered by each layer using a wave-field approach, and
(2) the point-source method proposed in [4], which
computes complex wave scattered by each layer using

1The 8-bits pixels in the disparity maps can have 256 dif-
ferent values, but in this dataset, the 0 value is used to encode
an unknown disparity. Points with unknown disparity are not
extracted from the disparity maps.

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Intensity view and (b) disparity map of
the test scene ”Moebius” from Middlebury’s dataset.
Figure (c) shows in blue the scene points whose com-
plex waves are computed by our method using the
wave-field approach and in yellow the scene points
whose complex waves are computed using the point-
source approach. On the second line, scene images
numerically reconstructed from the CGH patterns
generated by (d) the wave-field method, (e) the point-
source method, and (f) our method.

a point-source approach. We adapted both methods
to produce colorful complex modulation CGH. Figure
4 shows the scene images numerically reconstructed
from the CGH patterns of the scene ”Moebius” gener-
ated by the wave-field method (Figure 4d), the point-
source method (Figure 4e), and our method (Figure
4f). Figure 4c shows in blue the scene points whose
complex wave is computed by our method using the
wave-field approach and in yellow the scene points
whose complex wave is computed using the point-
source approach. As seen in Figure 4, our method
does not produce any visible artifact, even at the
boundaries between these two categories of points.

In order to evaluate the objective quality of the re-
constructed images compared to the original view im-
age, we used the Peak Signal-to-Noise Ratio (PSNR).
The PSNR of the reconstructed images of the scene
”Moebius” were found to be 21, 20dB, 21, 19dB, and
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Figure 5: (a) CGH computation time for a syn-
thetic 3D scene using the wave-field method (in blue),
the point-source method (in red), and our method
(in green) depending on the number of scene points
N . (b) CGH computation time reduction using our
method depending on the number of scene points N .

21, 20dB for the wave-field method, the point-source
method and our method, respectively. These results
show that our method does not reduce the quality the
reconstructed scene images compared to the conven-
tional point-source and wave-field methods. It must
be noted that unlike the original view image, the nu-
merically reconstructed images have a low depth of
field due to the reconstruction technique used. As a
consequence, the PSNR of the reconstructed images
are found to be below 30dB. Additionally, we com-
pared the CGH pattern generated by our method to
those generated by the wave-field and point-source
methods using the PSNR. The PSNR of the CGH
pattern generated by our method was found to be
40, 59dB and 42, 88dB, compared to the wave-field
and point-source methods, respectively.

In Figure 5a, we compared the CGH computation
time of the wave-field method (in blue), the point-
source method (in red), and our method (in green)
depending on the number of scene points N using
views and depth maps pairs of a single synthetic 3D
scene with different resolutions. As shown on Fig-
ure 5a, while the computation time of the point-
source method increases linearly with the number
of scene points, the computation time of the wave-
field method does not depend on it. Therefore, while

the point-source method is faster than the wave-field
method for scenes with few points, the wave-field
method is still more efficient than the point-source
method for scenes with a large number of points. By
combining these two approaches, our method takes
advantages from both of them and is therefore always
the most efficient.

Figure 5b shows the reduction of the CGH com-
putation time using our method depending on the
number of scene points N . As seen in Figure 5b,
our method allows the CGH computation time to
be reduced by a percentage that increases quickly
until N passes a threshold Nt, and then decreases
slowly. This threshold corresponds to the number of
scene points for which the computation time of the
point-source method reaches the computation time
of the wave-field method. The value of Nt depends
on the number of hologram pixels Npix = Nx × Ny,
on the number of depth layers Nz, and on the dis-
tance between the scene and the CGH plane. As
shown on Figure 5b, the CGH computation time is
reduced by 68% using our method when the num-
ber of scene points is equal to Nt. Moreover, our
method outperforms both the point-source and wave-
field methods even when the number of scene points
is higher than Nt. In addition to the results shown
here, we have conducted many tests on both real and
synthetic scenes with different number of hologram
pixels and depth layers. A reduction of over 65%
of the computation time has been reached for each
test scene when the number of scene points is equal
to Nt. These experimental results confirm the per-
formance superiority of our method over the conven-
tional point-source and wave-field methods in terms
of computation time.

4 Conclusion

In this paper, we proposed a fast Computer-
Generated Hologram (CGH) computation method
based on a hybrid point-source/wave-field approach.
The algorithm consists of three steps. First, the 3D
scene is sliced into several depth layers parallel to the
hologram plane. Then, for each layer, if the number
of points within the layer exceeds a determined max-
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imum value, we compute the complex wave scattered
by this layer using a wave-field approach. Otherwise,
we compute the complex wave scattered by this layer
using a point-source approach. Finally, we sum up
the complex waves scattered by all the depth lay-
ers in order to obtain the final CGH. Experimental
results reveal that the CGH computation time has
been reduced up to 68% compared to the conven-
tional point-source and wave-field methods without
producing any visible artifact. This confirms the per-
formance superiority of our method over the conven-
tional point-source and wave-field methods in terms
of computation time.

Our method does not take into account occlusions
between objects in the scene, so in future study we
plan to improve this method in order to handle scene
occlusions properly.
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