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Abstract

Angle resolved magneto-Raman scattering has been performed on spin-polarized two dimensional

electron gas embedded in Cd1−xMnxTe quantum wells to explore the intrinsic damping of propa-

gating spin waves modes with in plane momentum q. The damping rate η follows a quadratic law

η = η0+η2q
2 due to losses in the spin-current driven by the magnetization in qualitative agreement

with Phys.Rev.B 78, 020404(R) 2009. As a consequence, the propagation length of a spin wave in

a conducting system has an intrinsic maximum of importance for spin-wave based spintronics.
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Avoiding dissipation of spin currents in the context of spin-based electronics, has become

an important challenge today. Indeed, in devices using spin-polarized currents1, the spin of

carriers is displaced together with their charge. This results in Joule dissipation. Pure spin

currents (PSC), without net charge current have been recently proposed in non-magnetic

materials with spin-orbit interaction2. However, they suffer from an intrinsic damping, the

so-called spin Coulomb drag (SCD)34, which results from the friction between carriers with

anti-parallel spins. The SCD is very efficient in semiconductors where PSCs involve longi-

tudinal (with respect to the spin-quantization axis) spin degrees of freedom. An alternative

would be to make use of transverse spin degrees of freedom, naturally good candidate for

pure spin information transport. For example, spin waves in ferromagnets, may be the

means to transmit and modify a logical information5. They are also the elemental com-

ponents of transverse PSCs. In this frame, understanding the intrinsic limitations of spin

waves propagation is crucial. Recently, the attention to this topic has been drawn in Ref.6,

where it was found that a spin wave of momentum q in a spin-polarized conducting system

had an intrinsic damping proportional to q2.

We have performed angle resolved electronic resonant Raman scattering (ERRS) experi-

ments on a two-dimensional conducting spin-polarized system to evidence, for the first time,

the q2 intrinsic damping of propagating spin waves modes. We also completed the theory of

Ref.6 by exact dynamics considerations. The damping rate we found experimentally varies

as q2 as predicted in Ref.6, but additional corrections were necessary to match quantitatively

the data without fitting parameters.

We studied high mobility two dimensional electron gases (2DEG) embedded in

Cd1−xMnxTe/Cd0.8Mg0.2Te quantum wells7. Such systems have been recently introduced

as a test-bed system for spin-excitations of the spin polarized 2DEG (SP2DEG)89. Indeed,

the s-d exchange coupling of conduction electron with localized electrons of the Mn atoms

provide a giant Zeeman energy10 to the 2DEG :

Z(B,T ) = x̄N0αehSz(B, T )i− |ge|μBB, (1)

where N0 is the cation sites density, αe is the exchange coupling between the conduc-

tion electron of the well and the localized electrons on Mn impurities (N0αe=-0.22 eV)10.

hSz(B, T )i is the thermal average spin of a single Mn atom given by the modified Brillouin

function, x̄ is the effective Mn concentration (for low x, x̄ ' x), ge is the normal electron
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g-factor and μB is the Bohr magneton (μB > 0). In order to keep alloy disorder low and

high electron mobility (μ ~105cm2Vs), x remained below 1% and the electron sheet density

n2D ranged in between 1.5 and 4× 1011cm−2. Depending on the Mn nominal concentration
xN0 and n2D, the maximum spin polarization degree ζ = (n↑ − n↓) /n2D can reach 80% for a

magnetic field B below 4T, such that, when B is applied parallel to the quantum well plane,

the Landau orbital quantization is kept negligible. Therefore, such SP2DEG are "artificial"

conducting paramagnet having the spin-polarization degree of a conducting ferromagnet.

Morover, semiconductor quantum wells exhibit well defined optical resonances which allow

ERRS measurements to be performed11. ERRS is a powerful tool to access wavevector

resolution of the spin excitations spectrum8. Over the last decades, general knowledge on

electron gases low-energy excitations has been considerably improved by ERRS study of

high mobility unpolarized 2DEG12. We claim that, the SP2DEG system investigated here

is able to provide general knowledge on spin waves in spin-polarized conducting systems, in

particular to the subject here : the q2 damping.

We start with the theoretical description of the intrinsic damping and consider the Hamil-

tonian of the above spin polarized 2DEG :

ĤSP2DEG = ĤKin + ĤZeeman + ĤCoulomb (2)

where ĤKin + ĤZeeman =
P

k,σ (Ek + σZ) c+k,σck,σ, Ek =
~2k2
2m∗ is the kinetic energy of the

single electron state |kσi with in plane wavevector k and spin σ = ±1
2
. Z is the Zeeman

energy given by Eq.(1). c(+)kσ are creation-anihilation operators. Spin waves are transverse

precession modes of the magnetization described by the operators Ŝ+,q =
RR
Ŝ+ (r) e

−iq·rd2r,

space Fourier-transform of the transverse spin-density Ŝ+ (r) . As Ŝ+,q =
P

k c
+
k−q,↑ck,↓,a

magnetization can also be seen as a coherent superposition of individual spin-flip electron-

hole pairs : c+k−q,↑ck,↓ |0i. In presence, of a perturbing rotating magnetic field b+ (r, t) =

b+qωe
iq·r−iωt, the equation of motion for the magnetization m+qω =

D
Ŝ+,q

E
ω
with ω and q

Fourier components writes exactly:

ωm+qω = ω0m+qω + q· hĵ+,qiω +M0geμBb+qω (3)

In Eq.(3), Z = ~ω0 and M0 =
D
Ŝz,q=0

E
0
is the equilibrium 2DEG magnetization.

The first term in the rhs of Eq.(3) arises from
h
Ŝ+,q, ĤZeeman + ĤCoulomb

i
. The second
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term in the rhs of Eq.(3) is the discussed effect and is the commutator
h
Ŝ+,q, ĤKin

i
=P

k (Ek − Ek−q) c
+
k−q,↑ck,↓, written in terms of ĵ+,q =

~
m∗

P
k

¡
k−q

2

¢
c+k−q,↑ck,↓, the Fourier

transform of the transverse spin-current density. Hence, if q 6= 0, the kinetic Hamiltonian
couples the magnetization to the spin current. One is left with exploring the dynamics of

the spin-current. Despite its collective character, this quantity is not conserved by Coulomb,

neither it is by the kinetic part because of the spread of velocities of individual pairs. This

makes its dynamics governed by individual dynamics of c+k−q,↑ck,↓. The latter experiences

scattering due to disorder, but also scattering due to Coulomb which couples the single

electron-hole pair c+k−q,↑ck,↓ with multiple electron-hole pairs having the same total spin

(+1). The spin Coulomb drag theory3 describes to leading order the efficiency of multi-pair

scattering. Amongst scatterings, indivividual pairs are sensitive to a local magnetic field,

addition of the external one and the Coulomb exchange-correlation field due to other indi-

vidual pairs. The latter field brings the new theoretical contribution of this work, which was

not taken into account in Ref.6. The spin-current equation of motion writes then (to first

order in b+qω):

hĵ+,qiω = −qσ̃⊥
µ
1

2
geμBb+qω − Um+qω

¶
(4)

where σ̃⊥ = − hhĵ+,q;ĵ−,−qiiωω−ω0 is the spin conductivity linking hĵ+,qiω to the gradient of the
magnetic field6, which is enhanced by the local exchange-correlation field −Um+qω. U is the
transverse local field factor. In the local spin-density approximation, U= − 2

M0

∂Exc
∂M0

, where

Exc is the exchange-correlation part of the ground state energy9. This local field factor is

also responsible for the Zeeman energy enhancement13 : Z∗ = ~ω∗0 = Z −UM0. Hence, it is

clear from Eqs(3) and (4) that any loss in the spin-current (imaginary contribution in σ̃⊥)

introduces a damping of the magnetization precession, proportional to q2. The resulting

Gilbert damping α is given by :

α =
~ω20
2M0

lim
ω→0

Imχ+
ω

(5)

= − q2~
4M0

∙
σ⊥ + σ0⊥ω0 −

2M0

~
U

µ
σ0⊥ + 2

σ⊥
ω0

¶¸
(6)

=
q2~

2m∗ |ζ|
ω∗0
ω0

3τ

(ω∗0τ)
2 + 1

"
ω∗0
ω0
−
(ω∗0τ)

2 + 1
3

(ω∗0τ)
2 + 1

#
(7)
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where χ+ =
m+qω

geμBb+qω
is the spin-susceptibility, σ⊥ = Im σ̃⊥ (0) and σ0⊥ = limω→0

Im σ̃⊥(ω)
ω

.

Compared to Ref.6, the second, third and fourth terms in Eq.(6) are the new contributions

introduced here. Obviously the last two are due to the Coulomb local field, while the second

term is due to dynamical properties of the spin conductivity. Further considerations on

σ̃⊥ show that disorder and Coulomb scattering give additive imaginary contributions in

the spin current - spin current reponse6 hhĵ+,q; ĵ−,−qiiω. Therefore, the scattering time τ
introduced in Eq.(7) is given by 1

τ
= 1

τdis
+ 1

τee
, 1
τdis

and 1
τee
are respectivley, the disorder and

transverse-spin Coulomb drag scattering rates.

Evidence of this universal q2 behavior has been performed in the high mobility SP2DEG

described above. Since, the well defined spin waves modes has been successfully observed

in these quantum wells8, this material is a perfect candidate to investigate the damping.

The sketch on Fig.1 depicts the experimental geometry : the external magnetic field (B)

is applied in the z direction parallel to the quantum well plane and the average angle θ of

the incoming and back-scattered light wavevectors with respect to the normal direction can

be tuned to make the in plane Raman transferred wavevector q = 4π
λ
cos β

2
sin θ vary in the

range 0 < q < 16μm−1, β ' 5◦ and λ is the incoming light wavelength.

When the polarizations of the incoming and scattered photons are crossed, the Raman

spectrum is determined by the transverse spin-susceptibility spectrum Imχ+ (q, ω). This

is always true when out of resonance. In resonance, however, it remains valid if q is small

compared to wavevectors of electrons involved in optical processes (typically greater than

the Fermi wavevector kF ) and when the intermediate state lifetime is shorter than the one of

the excitation considered. The former condition is immediatley fulfilled as q remains much

smaller than typical kF˜150μm−1.

In Fig.1(a), we have plotted typical crossed polarized Raman spectra obtained for in-

creasing q and fixed external magnetic field at superfluid He bath temperature (T∼ 2. K).
These spectra present a clear dispersive Raman line associated to the spin flip wave (SFW)

excitation of the SP2DEG13. In Fig.1(b), we show the resonant behavior of the Raman

peak when tuning the laser wavelength across the optical resonance. This shows how the

resonance width is 20 times larger than the SFW line in the Raman spectra. Hence, we can

consider that Raman spectra give access to Imχ+ (q, ω) and extract from these data both
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FIG. 1: (color online) (a) Typical crossed polarized Raman spectra obtained on sample A at B=2T

and for different values of q. The single Raman line is the SFW. A sketch of the scattering geometry

shows the angles definition. Incoming photon is polarized parallel to B (π), while the scattered

one is polarized perpendicular to B (σ). (b) Spectra obtained by shifting the Laser wavelength.

Amplitude variations of the Raman line reveal the optical resonance width.

the SFW energy (~ωSFW ) and the line width η q-dependance. As shown in Fig.2(a) the

former is well reproduced by the formula9 below :

~ωSFW = Z − 1

|ζ|
Z

Z∗ − Z

~2

2m∗ q
2 (8)

when m∗ = 0.105me is the CdTe conduction electron effective mass. This provides another

confirmation for the identification of the Raman line. Following previous assessments, we

have extracted the linewidth of the Raman line after background subtraction and deconvo-

lution with the spectrometer response (Voigt profile of apparent FWHM 62μeV) to get the

damping rate of magnetization modes. The deconvoluted linewidth η of the Raman line is

plotted in Fig.2(b) as a function of q2 for the same conditions as the dispersions plotted

in Fig.2(a). It shows that, in the explored range of wave vectors (q ¿ kF ), the linewidth

q-dependence is very well reproduced by a parabolic function :

η = η0 + η2q
2 (9)

In Eq.(9), η0 gives the homogenous mode (q = 0) damping and η2 is inferred to be linked

to the q2 damping of Eq.(5) : η2 = 2~ω0α/q2. Indeed, η2 has obviously a strong magnetic
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FIG. 2: (color online) Typical SFW energy (a) and linewidth (b) q-dependence obtained on sample

B (x = 0.87%, rs = 2.4) for B=0.37, 0.63 and 0.8 T. In agreement with Eqs.(8) and (9) the data

follow a parabolic behavior.(c) Linewidth q-dependence obtained on CdTe sample H

field dependence. We may ask if the presence of Mn impurities can be the cause of η2

? It is already known that Mn spin fluctuations damp the homogeneous mode14. But, in

our samples, the typical Mn average distance d̄ ∼ 0.4nm is far smaller than the minimum

magnetization wavelength probed in the Raman experiment (qd̄¿ 1). Hence, Mn damping

is expected to be constant in the explored range of q and not present in η2. We confirmed

by carrying the same measurements on a CdTe quantum well (without Mn). Fig.2(c) shows

that the same q2 law has been found and that η2 has the same order of magnitude. Without

Mn, the Zeeman energy is much lower and requires higher fields, this reduces the range of

explored spin-polarization. Consequently, we claim that the Mn damping is, here, present

in η0 and that η2 originates from the general behavior described above. Let us compare the

experimental η2 with the theoretical one.

Fig.3 shows the behavior of the q2-damping η2 with the polarization or equivalently

with the Zeeman pulsation ω0. η2 determined on all the studied samples is compared with

the calculations of Eqs.(7)-(9) and Ref.6. The accuracy of the measurments is not able to

separate variations of η2 with the electron density within the small range explored here

(rs = 5nm/
√
πn2D ∈ [1.7, 2.4]). But within the experimental error, all the CdMnTe data

follows the same power-law even if the Mn concentration varies like 1:5. This confirms
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FIG. 3: (color online) q2-damping and spin polarization. (a) η2 is plotted as a function of ω0.

Symbols are data obtained on samples with various Mn (x) and electron (rs) concentrations.

Concentrations are measured as in Ref.[13]. Lines are calculated η2 : using Eq.(7) with rs = 2

and τdis = 2ps (full line), using Ref.6 with rs = 2 and τdis = 1ps (dotted line). The insert shows

variations of Eq.(7) with rs (upper curve is lower rs) and variations of Ref.6 with τdis(flatter curve

is lower τdis). (b) Check of the power-law behavior : η2n = η2/
~2
2m∗ is plotted as a function of the

spin polarization ζ in a log10 frame. Lines corresponds to calculated η2n from (a). All data curves

are parallel to to y = −2x.

that the observed phenomenom is not due to the presence of Mn impurities. CdTe data

need additional treatment because of mass renormalization due to high magnetic fields.

This is out of the scope. We will concentrate on the average behavior of CdMnTe data.

First, the behavior for ω0 → 0 is impossible to explore below 1.0Trad/s (0.65meV) as

such pulsations are beyond the rejection of the spectrometer. But in the range of explored

pulsations, as shown in Fig.3(a) the average curve is very well reproduced by Eqs.(7)-(9)

when taking a disorder scattering time τdis ∼ 2ps. For such a time scale, densities and

experimental conditions, the spin-Coulomb drag coefficient 1
τee
is always smaller than 15ns−1

and has negligible impact on measurments. However, enhancement of both the Zeeman

energy (Z∗ > Z) and the transverse field due to the Coulomb local exchange field are clearly

needed to make the theory of Ref.6 match the experiment. Insert of Fig.3(a) shows how, even

when varying the disorder time τdis, Eq.(20) of Ref.6 does not reproduce the data. These
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conclusions are clearer when plotting η2n = η2/
~2
2m∗ as a function of the spin polarization ζ

in a log-log frame as shown in Fig.3(b). Indeed, when ω0 > 1Trad/s and for rs ∼ 2, the
Zeeman enhancement ω∗0/ω0 ∼ 2, so (ω∗0τdis)

2 À 1 and η2n becomes :

lim
ω∗0τdisÀ1

η2n '
1

ζ2
1

EF

~
τ
3

∙
ω∗0
ω0
− 1
¸

(10)

Comparing Eq.(10) and Fig.3(b), the 1/ζ2 behavior is fulfilled by the data even for the

lowest measurable frequencies in agreement with η2n calculated by Eq.(7). On the contrary,

the 1/ζ2 behavior requests higher frequencies to appear in Eq.(20) of Ref.6. This confirms

that spin-current dynamics is determined by individual pair dynamics for which the relevant

precession pulsation is ω∗0 and not ω0. Moreover, the individual spin-flip scattering time has

been probed by ERRS in the same conditions13 from q = 0 spectra. At q = 0, the energies

of individual pairs are degenerate to Z∗ and presents a well defined peak in Raman spectra.

Processing the linewidth of this peak with the same procedure gives a time in between 1.2ps

and 1.8ps in very good agrement with the present determination of τdis.

In conclusion, we have demonstrated both experimental and theoretically that, in con-

ducting systems, transverse propagating spin waves with momentum q 6= 0 carry a spin-

current, which despite its collective character is governed by single particle dynamics, where

both disorder and spin-Coulomb drag play a role. Both mechanisms induce losses in the

spin-current which damp the magnetization mode with a rate proportional to q2. The form

of this damping is intrisically linked to the kinetic motion of the spin carriers. Consequently,

in the context of magnonics5 performed in 2D or 3D ferromagnetic metals, the propagation

length lprop of a spin wave in a conducting system has to be optimized : assuming a group

velocity vg = βq and a damping rate similar to Eq.(9), then lprop reaches its maximum

β~/√η0η2 for qmax =
p
η0/η2.
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