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Giant Collective Spin-Orbit Field in a Quantum Well: Fine Structure of Spin

Plasmons
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3Department of Physics, University of York, York YO10 5DD, United Kingdom

We employ inelastic light scattering with magnetic fields to study intersubband spin plasmons
in a quantum well. We demonstrate the existence of a giant collective spin-orbit (SO) field that
splits the spin-plasmon spectrum into a triplet. The effect is remarkable as each individual electron
would be expected to precess in its own momentum dependent SO field, leading to D’yakonov-
Perel’ dephasing. Instead, many-body effects lead to a striking organization of the SO fields at the
collective level. The macroscopic spin moment is quantized by a uniform collective SO field, 5 times
higher than the individual SO field. We provide a momentum-space cartography of this field.

PACS numbers: 71.70.Ej 72.25.Rb 73.21.-b 78.30.-j

Spin-orbit (SO) coupling arises from relativity: the
spin of an electron moving at a velocity v, in a static
electric field E, sees a magnetic field BSO = − 1

c2
v×E (c

is the speed of light) [1]. This magnetic field splits the en-
ergy levels of atoms, giving rise to their fine structure [2].
For an ensemble of itinerant electrons in solids, such a
simple quantizing effect cannot be expected, because of
the distribution of velocities: Momentum-dependent SO
fields cause each individual electronic spin to precess with
its own axis, which destroys spin coherence (D’yakonov-
Perel’ [DP] decoherence [3]). This sets practical limita-
tions on many proposed applications in emerging quan-
tum technologies such as spintronics [4–8].

However, this DP picture is appropriate only for situa-
tions where the macroscopic spin is carried by individual
electrons, which is often the case [5, 8–11]. Here, we
demonstrate that Coulomb interaction, playing a central
role in collective spin excitations, can drastically modify
this picture, and give rise to macroscopic quantum ob-
jects. We will focus on intersubband spin plasmons in
doped semiconductor quantum wells, which, as we shall
see, are ideal to study the interplay of SO coupling and
Coulomb interactions.

In a III-V quantum well, internal SO fields arise from
the lack of an inversion center of the crystalline unit cell,
and from an asymmetric confining potential [12], referred
to as Dresselhaus [13] and Rashba [14] fields, respectively.
Hence, a conduction electron with momentum k, moving
in the plane of a [001]-oriented quantum well, experiences
a SO magnetic field

BSO(k) =
2α

gµB

(

ky
−kx

)

+
2β

gµB

(

kx
−ky

)

(1)

(to lowest order in k), for coordinate systems with x̂ ‖
[100] and ŷ ‖ [010]. Here, α and β are the Rashba and
linear Dresselhaus coupling constants [12], respectively,
g is the electron g-factor, and µB the Bohr magneton.
BSO produces an intrinsic k-dependent spin splitting [9,
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FIG. 1. Fine structure model of ISB spin plasmons. (a)
Three-fold splitting, induced by SO coupling, of the ISB spin
plasmon modes. ∆E denotes the difference of the mode ener-
gies with and without SO coupling, calculated for the studied
GaAs quantum well, and q is the magnitude of the plasmon
momentum (here q ‖ [110]). The splitting δ between the
transverse m± modes is almost linear in q. (b) For a fixed
q = 8.0 µm−1, calculated modulation of the splitting δ with
the in-plane orientation of q, labeled by the angle ϕ to [110].
(c) Sketch of the proposed interpretation of the transverse
ISB spin plasmons m±, as the precession of antiparallel µ col-
lective magnetic moments about Bcoll

SO at zero external field
(left), and about the superposition Bcoll

SO +Bext when an ex-
ternal magnetic field Bext is applied (right).

10] and a k-dependent spin orientation [6, 15] of single-
electron conduction states.

In such a system, electrons can exhibit collective spin
dynamics when excited from the first to the second sub-
band of the quantum well. These so-called intersubband
(ISB) spin plasmons, which arise from Coulomb interac-
tions, are energetically well separated from the contin-
uum of ISB single-particle excitations [16, 17]. In the
absence of a transferred momentum q and external mag-
netic field Bext, time reversal symmetry, together with
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the [001]-axis symmetry of the quantum well, average out
the k-dependent BSO. Hence, no macroscopic SO force
is acting on the electron gas, and the spin plasmons are
degenerate. However, when transferring an in-plane mo-
mentum q to the electron gas, the translation symmetry
is broken and BSO(k) does not average out anymore.
In this situation, it has been predicted [18, 19] that

despite the spread of BSO(k), a collective SO magnetic
field Bcoll

SO (q) emerges, splitting the spin plasmon branch
into three modes [Fig. 1(a)]: one longitudinal oscilla-
tion mode (m‖) and two transverse precession modes
(m+ and m−). In the present work we focus on these
transverse modes, whose frequencies are shifted in op-
posite directions by SO coupling. We propose that due
to Coulomb interaction, these modes behave as macro-

scopic quantum objects, characterized by a collective spin
magnetic moment M, and thus subject to an interaction
energy W (q) = −M ·Bcoll

SO (q). Within this framework,
the downward (upward) energy shift of the m+ (m−)
mode is explained by its projected magnetic moment be-
ing parallel (antiparallel) to the quantizing field Bcoll

SO (q)
[Fig. 1(c), left]. Then, in the presence of an external
magnetic field, we expect both fields to superpose [5, 11]
[Fig. 1(c), right] and the interaction energy to become

W (q) = −M ·
(

Bcoll
SO (q)+Bext

)

. (2)

We will demonstrate that this fine structure model cor-
rectly captures the physics of the ISB spin plasmons.
We carry out inelastic light scattering (ILS) measure-

ments in a [001]–oriented, asymmetrically modulation-
doped GaAs/AlGaAs quantum well. The elec-
tron density is 2.3× 1011 cm−2, and the mobility
2× 107 cm2 V−1 s−1 at the working temperature T ≃
2 K (superfluid Helium) [20]. ILS [16, 21] is a power-
ful tool to study spin excitations at a given transferred
momentum q (Fig. 2(a), inset) [20]. Standard selection
rules [16] allow us to address the various types of inter-
subband excitations individually. As shown in the spec-
tra of Fig. 2(a) (top), the charge plasmon is observed only
when the incident and scattered photon have parallel po-
larizations (polarized spectra), while the spin plasmon
appears when they have orthogonal polarizations (depo-
larized spectra). The single-particle excitations contin-
uum appears in both configurations (here as a shoulder
of the charge plasmon peak). From now on we focus on
the spin plasmon peak, obtained in the depolarized ge-
ometry where only the transverse modes, m+ and m−

are probed. Typical spectra, taken in the absence of an
external magnetic field, are presented in Fig. 2(a) (bot-
tom). These are obtained for a momentum of fixed mag-
nitude q = 8.0 µm−1, but various in-plane orientations,
labeled by the angle ϕ between q and the [110] direc-
tion of the quantum well. The spectra exhibit a single,
quasi-Lorentzian peak, of full width at half-maximum
(FWHM) w; when plotting w for various ϕ [Fig. 2(c)], w
is modulated quasi-sinusoidally with a period π. This
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FIG. 2. Anisotropic splitting of the ISB spin plasmon modes.
(a) Top panel: Inelastic light scattering spectrum of the ISB
excitations, in polarized (black) and depolarized (red) geom-
etry. Bottom panel: Depolarized spectra obtained at fixed
q = 8.0 µm−1, by varying the in-plane angle ϕmeasured from
[110] (vertical offset for clarity). The single, quasi-Lorentzian
peak observed is the sum of two Lorentzians (red dashed lines
for the ϕ = 90◦ spectrum) of same amplitude and linewidth,
corresponding to the transverse spin plasmons modes m+ and
m− split by an amount δ. Inset: scattering geometry showing
angle definitions; ki and ks are the incoming and scattered
light wavevectors. (b-d) Variation of the linewidth w with ϕ

for q = 10.2, 8.0 and 5.4 µm−1 respectively. Lines: theory
(see text).

modulation is characteristic of the two-fold symmetry
of the SO splitting [Fig. 1(b)], with a maximum along
[110] (ϕ = 0◦) and a minimum along

[

110
]

(ϕ = 90◦).
Furthermore, as seen in Fig. 2(b)-(d), the amplitude of
the modulation decreases with decreasing q, in agreement
with Fig. 1(a). Both characteristics confirm the SO ori-
gin of the modulation. This suggests that the observed
Raman line is the sum of two Lorentzian peaks corre-
sponding to the transverse spin plasmon modes m+ and
m−, split by δ (Fig. 2(a), red dashed lines). By inde-
pendently determining the FWHM of the latter peaks,
we will extract the splitting δ(q) by deconvolution, and
demonstrate the consistency of our model.
We determine the collective SO field Bcoll

SO (q) by ap-
plying an external magnetic field Bext. Since Bcoll

SO (q)
is expected [19] to lie in the plane of the quantum well
for our [001]-oriented sample, Bext will be applied in the
well plane (quasi-Voigt geometry). If the spin plasmon
moment M is of quantum nature, its energy levels will
be quantized by the total field Btot = Bcoll

SO (q)+Bext.
Following Eq. (2), the splitting δ will then be given by

δ = 2µBtot = 2µ
√

(Bext +Bcoll
SO ·u)2 + (Bcoll

SO × u)2,

(3)
where µ is the quantized value of the spin plasmon mag-
netic moment and u is a unit vector parallel to the di-
rection of Bext.
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FIG. 3. Variation of the composite linewidth w with the external magnetic field Bext. (a) w(Bext) plots obtained in the
configuration Bext ‖ q for a fixed q = 8.0 µm−1 and various in-plane angles ϕ (measured from [110]). (b) Corresponding
w(Bext) plots obtained for Bext ⊥ q. Lines are guides for the eyes. Each w(Bext) plot is symmetric about a certain value of
the external field (marked by a dotted circle) which cancels the corresponding component of the collective SO field Bcoll

SO (q).
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FIG. 4. SO collective field and magnetic moment. (a) Com-
ponents of the collective SO field parallel (Bcoll

SO,‖, filled cir-

cles) and perpendicular (Bcoll
SO,⊥, open circles) to q for q =

8.0 µm−1, as extracted from the data of Fig. 3, and compared
with theory (lines). (b) Spin plasmon magnetic moment µ,
experimental (squares) and theoretical (line). (c) Minimum
(open diamonds) and maximum (filled diamonds) SO field
∣

∣Bcoll
SO

∣

∣ versus q, compared to theoretical values (lines). (d)
Spin plasmon magnetic moment averaged over ϕ, experimen-
tal (squares) and theoretical (line), as a function of q. (e)
Variation of the SO splitting δ with external magnetic field
Bext ‖ q, for q = 8.0 µm−1 (symbols, same as Fig. 3). The
experimental data are very well reproduced by Eq. (3) (lines).

For a given q, we record a series of spectra at varying
Bext, with Bext applied successively along two crossed
directions: Bext ⊥ q and Bext ‖ q. Figures 3(a) and
3(b), respectively, present the composite linewidth w as a
function of Bext for these two configurations. The various
plots are obtained for fixed q = 8.0 µm−1, and a set of 8
angles ϕ, spaced by 22.5◦ within a period π. Each plot
exhibits a clear minimum for a certain value of Bext, and
is symmetric with respect to that minimum.

According to Eq. (3), each minimum corresponds to
the situation where Bext exactly cancels the component
of Bcoll

SO (q) parallel to it, Bext = −Bcoll
SO ·u. Using this

criterion, we extract the component Bcoll
SO,‖ of the collec-

tive SO field parallel to q from the plots of Fig. 3(a), and
the perpendicular component Bcoll

SO,⊥ from the plots of

Fig. 3(b). Figure 4(a) presents the values for Bcoll
SO,‖ (filled

circles) and Bcoll
SO,⊥ (open circles). We find that Bcoll

SO,‖ is

antisymmetric about the
[

110
]

direction (ϕ = 90◦), and
Bcoll

SO,⊥ is symmetric.

To push the analysis further, we need experimental
access to the SO splitting δ. This can be done by de-
termining the linewidth of the m± modes [see Fig. 2(a)].
The latter is inferred from the zero external field and zero
momentum value of the FWMH w of the composite peak
(not shown), since in that case we expect the splitting δ
to vanish [see Fig. 1(a)] and both peaks to lie perfectly
on top of each other. This yields 0.124± 0.005 meV.

This linewidth value can be compared to theory. ISB
spin plasmons are expected to be immune against DP dis-
sipation [18, 19]. Thus, owing to the very high mobility of
the sample and the low working temperature, we expect
the linewidth to be dominated by an intrinsic many-body
effect, the spin Coulomb drag [22–24] (SCD). The SCD is
caused by a friction of Coulomb origin between carriers
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of opposite spin moving with different momentum. The
ISB spin plasmon, where spin densities oscillate out-of-
phase along the growth axis, provides an optimal scenario
for the SCD [23]. A calculation of the corresponding
linewidth within a local-density approximation yields an
SCD linewidth of the order of a fraction of an meV, con-
firming that the dominant dissipation source is the SCD.
As the latter is mainly due to the out-of-plane spin den-
sity oscillation, its q dependence, for qmuch smaller than
the Fermi momentum, is weak and only to second order.
Hence, we deconvolute all the w(Bext) curves using the
experimentally determined 0.124 meV.

Figure 4(e) presents δ(Bext) (symbols as in Fig. 3),
obtained by deconvolution of the data of Fig. 3(a).
Using Eq. (3), we can now evaluate the collective
magnetic moment of the spin plasmons as µ =
δ (Bext = 0) /

(

2
∣

∣Bcoll
SO

∣

∣

)

. This ratio is plotted in Fig. 4(b)
(squares), for the various ϕ probed. It appears con-
stant with ϕ within the experimental error. We deduce
µ = 28.8± 0.7 µeVT−1 = (0.50± 0.01)µB.

The consistency of our interpretation of the data with
the model of Eq. (3) is demonstrated in Fig. 4(e), which
compares the experimental data points for δ (Bext) with

the relation δ (Bext) = 2µ
√

(Bext +Bcoll
SO,‖)

2 +Bcoll
SO,⊥

2

(lines), using the previously determined values of Bcoll
SO,‖,

Bcoll
SO,⊥ and µ. An excellent agreement is found, without

introducing any fitting parameters.

We further validate our model by checking the q-
dependence of µ. We repeat the same experimental pro-
cedure for other values of q. Figure 4(c) presents the val-
ues of the minimum (ϕ = 90◦, open diamonds) and max-
imum (ϕ = 0◦, filled diamonds) modulus of Bcoll

SO . They
appear proportional to q. Figure 4(d) shows the angular
average of the magnetic moment µ (squares). Interest-
ingly, µ turns out to be practically constant with q. This
demonstrates that all of the SO effects are contained in
Bcoll

SO (q), and that µ is indeed the largest quantized pro-
jection of the intrinsic ISB spin plasmon magnetic mo-
ment M onto the field direction. This point is confirmed

by noting that µ ≈ 2 |g|µB

2
, that is, µ is very close to twice

the magnetic moment of a single electron (when consider-
ing the g-factor of bulk GaAs, g = −0.445). This is con-
sistent with the fact that an ISB spin plasmon involves
transitions between two spin 1/2 states, i.e. excitations
of spin magnitude 1. Our results thus show that the ISB
plasmon maintains the spin magnitude of a single ele-
mentary excitation, while the many-body effects are ab-
sorbed in the collective magnetic field Bcoll

SO (q). Hence,
the quantized projection of the plasmon magnetic mo-
ment can either be ±µ [m± modes, see Fig. 1(c)] or 0
[m‖ mode, whose energy is unaltered by SO coupling].

To summarize the experimental part: we validated our
fine structure model by demonstrating the internal con-
sistency of measurements—with and without magnetic
field—with Eqs. (2) and (3). We emphasize again that

this did not involve any adjustable parameters.
All elements are now in place to see how the collective

SO magnetic field Bcoll
SO emerges from the k-dependent

single-particle magnetic fields BSO(k) given by Eq. (1).
The ISB spin plasmon is a superposition of single-particle
transitions from momentum k in the first subband to
k+q in the empty second subband. Thus, each electron-
hole pair experiences a crystal magnetic field difference
∆BSO(k,q) = BSO,2(k+ q)−BSO,1(k), given by

gµB

2
∆BSO(k,q) = α2

(

qy
−qx

)

+ β2

(

qx
−qy

)

+ (α2 − α1)

(

ky
−kx

)

+ (β2 − β1)

(

kx
−ky

)

, (4)

where the subscript n = 1, 2 refers to the subband
index. With α1 = 3.5 meV Å, α2 = 2.8 meV Å,
β1 = 0.22 meV Å, and β2 = 0.79 meV Å, we are able
to reproduce the experimental data in Fig. 2(b)–(d)
and Fig. 4(a)–(e) in a quantitatively accurate way (see
lines), using a linear-response formalism based on time-
dependent density-functional theory.
∆BSO(k,q) contains a k-independent part, which is

thus the same for all electron-hole pairs, and a k-
dependent part. The latter could have a disorganizing
effect, causing DP dephasing. This is indeed what oc-
curs for single-particle spin dynamics [5, 8–11]. But here,
the k-dependence turns out to be exactly canceled by an
additional, dynamical Coulombic contribution [19], ex-
plaining how a uniform Bcoll

SO (q) can emerge.
In a simple scenario, one could expect Bcoll

SO (q) to be
aligned with the k-independent part of ∆BSO(k,q), with
a slightly enhanced magnitude. But what is found is
that Bcoll

SO (q) = 2×5.25
gµB

(

αqy + βqx,−αqx − βqy
)

(within

3%), with α = (α1 + α2) /2 and β = (β1 + β2) /2.
That is, many-body effects tilt the k-independent part
of ∆BSO(k,q), align it with the average single-particle
SO field difference, and amplify it by about a factor five.
Such a magnification effect due to dynamical many-

body interactions is quite remarkable. At first glance,
one would expect Coulomb-induced enhancements to be
roughly of order rs (Wigner-Seitz radius), which is ≃ 1.3
for the studied sample. On the other hand, recent exper-
iments [25, 26] suggest that the interplay of Coulomb and
SO interactions could manifest in a mutual boost, leading
to significant enhancement of electronic spin splittings es-
pecially in low-dimensional systems [27].
In conclusion, we have shown that many-body effects

can produce significant departure from the single-particle
picture of SO effects in periodic solids. In an ISB spin
plasmon, despite the spread of electronic velocities, a
well-organized spin dynamics emerges at the collective
level. The electrons coherently precess about a giant
SO field, which gives rise to a fine structure of the spin-
plasmon spectrum. This effect, which might also play
a role in other helical liquids [27, 28], reveals novel op-
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portunities for magnetization control with collective SO
fields.
F.B and F.P. thank S. Majrab for technical support

and B. Jusserand for fruitful discussion. F.P. acknowl-
edges funding from C’NANO IDF 2009 (SPINWAVE-
DYN) and ANR 2007 (GOSPININFO). F.B. is supported
by a Fondation CFM-JP Aguilar grant. I.D’A. acknowl-
edges support from EPSRC Grant No. EP/F016719/1
and I.D’A. and F.P. acknowledge support from Royal
Society Grant No. IJP 2008/R1 JP0870232. C.A.U. is
supported by DOE Grant No. DE-FG02-05ER46213.

∗ Corresponding author: florent.baboux@insp.upmc.fr
† Present address: Centro Atómico Bariloche, Bariloche,
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EXPERIMENT

The studied sample is an asymmetrically modulation-
doped GaAs/Al0.3Ga0.7As quantum well, grown along
the [001] direction by molecular beam epitaxy. The
200 Å-thick well was doped with two Si delta lay-
ers, separated from the well by spacer thicknesses of
350 and 400 Å respectively. The electron density is
2.3× 1011 cm−2, and the mobility 2× 107 cm2 V−1 s−1

at the working temperature T ≃ 2 K (superfluid Helium),
as determined from Hall measurements.

The inelastic light scattering setup, depicted in
Fig. 2(a) of the Letter, is in the backscattering geom-
etry. The average angle θ of the incoming and backscat-
tered light with respect to the normal direction can be
changed to transfer a Raman momentum q of amplitude
q = 4π

γ
cos β

2
sin θ, with γ ≃ 3◦ and λ ≃ 770 nm the

exciting wavelength.

Measurements are performed in an pumped-Helium
optical cryostat embedding a superconducting coil. The
scattered light is dispersed by a Dilor XY triple Raman
spectrometer in additive mode.

To deconvolute the linewidth w of the composite Ra-
man peak observed (Fig. 2(a) of the Letter), we fit the
sum of two identical Lorentzian peaks of linewidth Γ sep-
arated by δ, with a single Lorentzian, yielding a linewidth
w. We then numerically invert the w(δ) plot to obtain
the δ(w) function.

CALCULATION OF INTERSUBBAND SPIN

PLASMON DISPERSIONS

The formal framework for calculating intersubband
spin plasmon dispersions in quantum wells, in the pres-
ence of spin-orbit coupling, is based on time-dependent
density-functional theory within the effective-mass ap-
proximation, as described in detail in Refs. [1, 2]. We
have here extended this formalism to account for exter-
nal in-plane magnetic fields. The calculation proceeds
in two steps. First, the two-component spinor subband

envelope functions ψj(k, z) are calculated via
∑

β=↑,↓

[

ĥδαβ + vxc
αβ

+
gµB

2
[~σ · (Bext +BSO(k))]αβ

]

ψjβ = εjψjα,

(1)

where ĥ is the single-particle kinetic energy operator plus
quantum well confining potential and Hartree potential,
vxc
αβ

is the spin-dependent exchange-correlation (xc) po-
tential in local-density approximation, and ~σ is the vector
of Pauli matrices. The parameters of our modulation-
doped GaAs quantum well are taken as input.
The second step is to calculate the intersubband spin

plasmon dispersions using linear-response theory. For-
mally, the plasmon excitation energies are obtained from
the poles of the response function

Π =
Π0

1−Π0FHxc
, (2)

where Π0 is the noninteracting response function, built
from the solutions of Eq. (1), which determines the single-
particle excitation spectrum. Π0 and Π are represented
as 4× 4 matrices, describing the charge-density response
and three components of the magnetization response.
The formation of collective plasmon excitations is a con-
sequence of dynamical many-body effects (Hartree and
xc), accounted for via FHxc. The spin plasmons arise
solely from the xc part of FHxc, which is treated in an
adiabatic local-density approximation [1, 2].
Based on the given quantum well parameters, the

Rashba and Dresselhaus constants for the nth subband,
αn and βn, can be calculated using k ·p theory[3, 4].
For the Dresselhaus parameter for bulk GaAs we in-
stead use a recent result from an ab-initio GW calcu-
lation [5], γGW

GaAs = 6.4 eV Å
3
, which is about 4 times

smaller than the k ·p value. We thus obtain αkp
1 =

0.84 meV Å, αkp
2 = 0.66 meV Å and βGW

1 = 0.93 meV Å,
βGW
2 = 3.3 meV Å. However, to reproduce the exper-

imental data in Figs. 2(b)–(d) and 4 of the Letter, we
found it necessary to rescale the values of the Rashba
and Dresselhaus constants by 4.2 and 0.24, respectively,
i.e., to use α1,2 = 4.2αkp

1,2 and β1,2 = 0.24βGW
1,2 . We em-

phasize that these are the only fitting parameters of our

theory. Note that

√

α2 + β
2
≃ 1.4 ×

√

αkp
2
+ βGW

2
.

Thus, the enhancement factor from single-particle to col-
lective spin-orbit magnetic field, which is found of 5.25



2

with the fitted values for α and β, would be close to 7.3
with the predicted ones.

CALCULATION OF THE SPIN COULOMB

DRAG LINEWIDTH

The spin Coulomb drag linewidth ΓSCD is calculated
within the framework of time-dependent spin-current
density-functional theory, with dissipative effects (SCD
and viscosity) included from first principles, see Ref. [6].
The SCD enters the formulation as one of the contri-
butions to the exchange-correlation kernel. This con-
tribution is calculated within a three-dimensional local-
density approximation, which accounts for inhomogene-
ity in the growth direction.
Improving over Ref. [6], we now accurately model

the first-subband envelope function using a density-
functional scheme, with the parameters of the experimen-
tal quantum well (doping density, quantum well width,
doping-layer position) as input. As the SCD linewidth
may be very sensitive to the envelope function shape,
the uncertainty of these input parameters is important.
For the sample considered, reasonable uncertainties over
the experimental parameters produce a SCD linewidth
variation of about 15%. We have also derived the finite-
q correction to ΓSCD, which is only second order in q.
In contrast with Ref. [6], we have included in the cur-
rent calculations the dissipative effects stemming from
the viscosity term of the exchange-correlation kernel. In
principle, this contribution might be substantial as the
quantum well is strongly asymmetric, but it turns out to
be one order of magnitude smaller than the SCD contri-
bution. This confirms the latter to be the largest source
of intrinsic dissipation for an ISB spin plasmon.
For the studied sample we find ΓSCD ≃ 0.4 meV, which

overestimates the linewidth. We find a quantitatively
similar overestimate when calculating the spin plasmon
linewidth of the experimental results in Ref. [7]. In
the case of charge plasmons in quantum wells it was
argued [8] that the three-dimensional local-density ap-
proximation does not account properly for the subband
quantization, which acts as a bottleneck for energy-
momentum dissipation from the collective to the in-plane
degrees of freedom. Hence, it is not surprising that our
theoretical estimate for ΓSCD lies above the experimental
linewidth while still providing the correct order of mag-
nitude.

There are no adjustable parameters in the theory.
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