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This paper presents the theoretical keystone for a decentralization of Model-Based Diagnosis by proving the equivalence between decentralized and centralized residual generation. The proof is based on structural analysis and graphtheoretical concepts. The second contribution of the paper is the design of a decentralized fault-focused residual generation scheme advantageously implementing a strategy of fault isolation on request. Algorithms are tested on the Attitude Determination and Control System of a Low Earth Orbit satellite.

I. INTRODUCTION

M ODEL based diagnosis (MBD) detects and isolates faults based on a model of the system that can be developed either during the design phase or by a reverse engineering process.

Although interest in MBD is now well-established, there is a wide gap between the "state of art" and the "state of practice". This is often due to the extremely conservative nature of technology decisions and operations, as for example in the space domain. The main difficulty arises from the tradeoffs between costs, benefits and risks associated with on-board MBD [START_REF] Kurien | Costs and benefits of model-based diagnosis[END_REF]. Increasing the applicability of MBD requires the development and adaptation of algorithms and architectures while keeping in mind the constraints and needs specific to the application field.

A way to ease the integration of MBD into real systems is to approach them as a set of several subsystems. As a consequence, while some subsystems follow conventional diagnosis methods, others may evolve and integrate new MBD techniques. Another important aspect is that industry is not open to sharing complete information about their systems, even more so if the development involves several firms. Decentralized solutions allow proper separation of the industrial knowledge, provided that inputs and outputs are clearly defined. Finally, a decentralized diagnosis architecture offers what is termed here a fault isolation on request capability while maintaining the same isolability power as centralized diagnosis.

The first contribution of the paper is to provide the formal proof of the equivalence of decentralized and centralized E. Chanthery L. Travé-Massuyès and S. Indra, are with CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France E. Chanthery is with Univ de Toulouse, INSA de Toulouse, LAAS, F-31400 Toulouse, France L. Travé-Massuyès and S. Indra are with Univ de Toulouse, LAAS, F-31400 Toulouse, France residual generation using the structural analysis approach [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF]. The entire theoretical proof, which was sketched out in our previous work [START_REF] Indra | A decentralized FDI scheme for spacecraft: Bridging the gap between model based FDI research & practice[END_REF], [START_REF]A decentralized fault detection and isolation scheme for spacecraft: bridging the gap between model-based fault detection and isolation research and practice[END_REF], is provided. The structural model of a system is an abstraction of its behavioral model: only the structure of the constraints, i.e. the existence of links between variables, is considered, and not the constraints themselves [START_REF] Cassar | A structural approach for the design of failure detection and identification systems[END_REF].

The second contribution of the paper is the design, in a decentralized architecture, of a fault-focused residual generation scheme thanks to the notion of Minimal Test Equation Support [START_REF] Krysander | An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[END_REF]. We present a revision of the algorithm that was proposed in [START_REF] Indra | A decentralized FDI scheme for spacecraft: Bridging the gap between model based FDI research & practice[END_REF], [START_REF]A decentralized fault detection and isolation scheme for spacecraft: bridging the gap between model-based fault detection and isolation research and practice[END_REF] and provide details based on the equivalence proof that were omitted in previous papers. The algorithms are tested on the Attitude Determination and Control System (ADCS) of a spacecraft.

This paper goes beyond the work of the two previous papers [START_REF] Indra | A decentralized FDI scheme for spacecraft: Bridging the gap between model based FDI research & practice[END_REF] and [START_REF]A decentralized fault detection and isolation scheme for spacecraft: bridging the gap between model-based fault detection and isolation research and practice[END_REF] as it consolidates the theoretical foundations of the equivalence property and presents more realistic experiments to validate the proposed decentralized approach. It provides a comprehensive framework for decentralized model-based diagnosis using the analytical redundancy approach.

The paper is organized in the following way. Section II clarifies the notion of decentralization and motivates the work with respect to related work. Section III presents the background theory and prerequisites about structural analysis. The decentralized diagnosis problem is presented in Section IV. Section V demonstrates the equivalence of centralized and decentralized residual generation. Then Section VI examines the fault-focused residual generation problem. Section VII illustrates the theory by comparing the different residual generation algorithms on the ADCS case study. The paper is concluded in Section VIII.

II. DECENTRALIZED DIAGNOSIS: RELATED WORK AND

MOTIVATIONS

This section first positions the decentralized diagnosis approach as compared to centralized and distributed approaches. It then discusses related work to motivate the contributions.

A. Motivations for decentralized diagnosis architectures

Three main categories of diagnosis architectures exist in the literature: centralized, decentralized and distributed (cf. Figure 1).

Definition 1 (Centralized diagnosis architecture): A centralized diagnosis architecture is composed of local agents without processing capabilities, typically sensors, that send data to a centralized diagnoser which computes the (global) diagnosis.

Most of the decentralized diagnosis methods deal with discrete event systems [START_REF] Pencolé | A formal framework for the decentralized diagnosis of large scale discrete event systems and its application to telecommunication networks[END_REF], [START_REF] Cordier | Exploiting independence in a decentralised and incremental approach of diagnosis[END_REF], [START_REF] Wang | Diagnosis of discrete event systems using decentralized architectures[END_REF]. The decentralized diagnosis scheme of [START_REF] Pencolé | A formal framework for the decentralized diagnosis of large scale discrete event systems and its application to telecommunication networks[END_REF] is based on the "divide and conquer" principle and does not require computing a global model. We have the same motivations for continuous systems. [START_REF] Cordier | Exploiting independence in a decentralised and incremental approach of diagnosis[END_REF] uses a decentralized approach to deal with the size of the model and to get a tractable representation of diagnoses. With the same idea, [START_REF] Wang | Diagnosis of discrete event systems using decentralized architectures[END_REF] proposes a hierarchical framework that capitalizes on local diagnoses. These ideas are also used in our approach with the notion of isolation on request. If local diagnosis is not sufficient, hierarchical diagnosers come into play to refine the diagnosis. Only in this case is hierarchical processing required, hence saving significant CPU time for on-line applications.

Decentralized diagnosis methods have been proposed only recently for continuous or hybrid systems. [START_REF] Console | A framework for decentralized qualitative model based diagnosis[END_REF] presents a decentralized architecture for systems modeled in a qualitative framework. The architecture is quite similar to ours. However, diagnosis reasoning there relies on the logical model-based diagnosis theory whereas our approach adopts an analytical redundancy framework [START_REF] Travé-Massuyès | Bridging control and artificial intelligence theories for diagnosis: A survey[END_REF]. Addressing the fault tolerant control problem in a networked framework, [START_REF] Sauter | Decentralized and autonomous design for FDI/FTC of networked control systems[END_REF] analyses fault detectability and fault isolability conditions for centralized, distributed and decentralized systems within a structural analysis framework. Nevertheless, the considered systems are linear. Our paper extends these results to nonlinear systems.

B. Structure of the decentralized diagnosis

In the proposed architecture, local diagnosers rely on models of their subsystems to arrive at diagnosis. Ambiguities might arise as faults propagate between subsystems. A supervisor at the higher level serves to resolve ambiguities and to provide diagnosis at a higher resolution than that possible with purely local information. The architecture is hierarchically scalable as can be seen in Figure 2. The decentralization levels are defined by the communication possibilities between diagnosers. Diagnosers of a level i communicate with their supervisory diagnoser of level i+1 and the diagnosers at the level i -1 below them in the hierarchy. We aim to expose as little information as possible about the subsystems.
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III. BACKGROUND THEORY AND PREREQUISITES

Our approach to diagnosis relies on residual generators designed from the structural redundancies of the system under the following assumptions: 1) The system is component-based: a fault f i corresponds to a component c i and f i = 0 if and only if c i is not faulty; 2) Faults do not introduce "genuine" new equations and do not change the model structure; 3) The set of observable variables is known and fixed, i.e. no additional measurements become available once the diagnosis is initiated.

A. Structural approach to analytical redundancy

Analytical redundancy makes use of a model of the system to augment the number of tests that can be implemented [START_REF] Chow | Analytical redundancy and the design of robust failure detection systems[END_REF]. These tests take the form of Analytical Redundancy Relations (ARRs) derived from the model and the knowledge of which variables are measured. The structural approach to deriving ARRs can be viewed as one of finding complete matchings on the bipartite graph of the system's model structural abstraction [START_REF] Cassar | A structural approach for the design of failure detection and identification systems[END_REF]. Even though the graph paradigm may not be the most efficient from a computational point of view [START_REF] Krysander | An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[END_REF], it provides a well-grounded theoretical framework to study properties.

1) Residual generators: Residual generators are derived based on ARRs [START_REF] Armengol | Minimal structurally overdetermined sets for residual generation: A comparison of alternative approaches[END_REF] which are relations that involve only the measured variables of the system and their derivatives. A residual generator takes as input the values of the measured variables and, in an ideal case, gives a non-zero output only in case the system behavior is inconsistent with the model. Most of this development follows that in [START_REF] Krysander | An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[END_REF], [START_REF] Krysander | A structural algorithm for finding testable sub-models and multiple fault isolability analysis[END_REF] and [START_REF] Travé-Massuyès | Diagnosability analysis based on component-supported analytical redundancy relations[END_REF].

Let the system description consist of a set of n equations involving a set of variables partitioned into a set Z of n Z known (or measured) variables and a set X of n X unknown (or unmeasured) variables. We refer to the vector of known variables as z and the vector of unknown variables as x.

Definition 4 (Model): A model, denoted M (z, x) or M for short, is any set of equations relating z and x. The equations r i (z, x) ⊆ M (z, x), i = 1, . . . , n, are assumed to be differential or algebraic in z and x.

The following model M is used to illustrate the concepts. It is composed of six equations r 1 to r 6 relating the unknown variables X = {x 1 , x 2 , x 3 , x 4 , x 5 } and the known variables Z = {u, v, w, y}.

r 1 : ẋ1 = -x 2 1 + x 3 + u r 2 : ẋ2 = x 2 4 r 3 : x 1 = 3x 3 2 + v r 4 : y = x 5 r 5 : ẍ3 = x 2 4 + x 5 r 6 : x 3 = w -x 5                M (1)
Definition 5 (Consistency): A model M (z, x) is said to be consistent with a given trajectory of z, or concisely, consistent with z, if there exists a trajectory of x such that the equations M (z, x) are fulfilled.

Definition 6 (ARR for M (z, x)): Let M (z, x) be a model, then an equation r(z, ż, z, . . .) = 0 is an ARR for M (z, x) if, for each z consistent with M (z, x), the equation is fulfilled.

ARRs can be used to check if the measured variables z are consistent with the model and as the basis of residual generators as defined below.

Definition 7 (Residual Generator for M (z, x)): A system taking a subset of the variables z as input, and generating a scalar signal r as output, is a residual generator for the model M (z, x) if, for all z consistent with M (z, x), it holds that lim t→∞ r(t) = 0.

2) Structural modeling and ARR generation: The structure of the system can be abstracted as a representation of which variables are involved in the equations that make up the model of the system. This abstraction leads to a bipartite graph G(M ∪ X ∪ Z, A), or equivalently to G(M ∪ X, A), where A ⊆ A and A is a set of edges such that a(i, j) ∈ A iff variable x i is involved in relation r j . As shown in Figure 3, the bipartite graph (on the right) may be equivalently represented as a biadjacency matrix (on the left). Known variables u, v, y and w are not represented. The structural abstraction allows us to identify structural redundancies in the form of Structural ARRs (SARRs) [START_REF] Travé-Massuyès | Diagnosability analysis based on component-supported analytical redundancy relations[END_REF], known as causal interpretations of Minimal Structurally Overdeterminated sets (MSO set) [START_REF] Krysander | An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[END_REF] or Possible Conflicts [START_REF] Pulido | Possible conflicts: a compilation technique for consistency-based diagnosis[END_REF], independently of the linear or nonlinear nature of the systems. However one must keep in mind that results obtained with such a structural representation are a best case scenario. Causality considerations and the presence of algebraic and differential loops determine which structural redundancies can be used for the design of residual generators.

It can be shown [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF] that ARRs can be derived from so-called complete matchings between X and M on the bipartite graph G(M ∪ X, A).

Definition 8 (Matching): A matching between X and M is a subset of A such that no vertex in X ∪ M is incident with more than one edge of the matching. A matching is complete if it covers every vertex of X.

A complete matching between X and M is denoted by M(X, M ), or M when there is no ambiguity. M(X, M ) provides a way to identify the paths to calculate the unknown variables from the measured variables.

Figure 4 illustrates a complete matching for M indicated by circled entries in the biadjacency matrix (left) or bold edges in the corresponding bipartite graph (right). For instance, the unknown variable x 3 is matched to the relation r 1 . Relation r 6 is redundant because it is not involved in the complete matching. This means that r 6 is not needed to calculate the unknown variables and that it can be used to check for consistency.

The substitution of unknown variables into a redundant equation allows one to obtain an ARR, as can be seen in the bottom part of Figure 4 that shows the substitution path. The substitution path gives the ordered dependences between relations and variables. The structural redundancy of M is one, hence one redundant relation is available to derive an ARR.

B. Graph theory background

We now introduce the notions of graph theory needed to prove the equivalence of decentralized and centralized residual generation.

Definition 9 (M -(un)saturated vertex):

Given a mat- ching M in a bipartite graph G(M ∪ X, A), a vertex v is said to be M -(un)saturated if there is an (no) edge of M incident with v.
Definition 10 (M-alternating path): Given a matching M in a bipartite graph G(M ∪ X, A), an M-alternating path is a path in G(M ∪ X, A) whose edges are alternately members and non members of M.

Definition 11 (Path length): The length of a path composed of edges and vertices in a matching M is the number of vertices in the path.

Definition 12 (Substitution path): A substitution path is an M-alternating path of odd length that begins with a vertex in M .

For the matching of Figure 4, vertices r 1 , r 2 , x 1 , x 2 are M -saturated while vertex r 6 is M -unsaturated. The path x 1 , r 3 , x 2 is an M-alternating path. The path r 1 , x 1 , r 3 is a substitution path whereas x 1 , r 3 , x 2 is not. Property 1: The substitution of a variable x i in a relation r j involves exactly one edge (x i , r k ) in the matching, and one edge (r j , x i ) outside the matching. The path (r j , x i , r k ) is said to be a minimal M-alternating path.

Proof: Assume that a variable x i in a relation r j can be substituted using a relation r k . This implies that the edge (r j , x i ) is not part of the matching, and that r k is matched to x i .

In the example, x 1 in r 1 can be substituted using r 3 . (x 1 , r 1 ) is not in the matching, (x 1 , r 3 ) is in the matching. The path (r 1 , x 1 , r 3 ) is a minimal M-alternating path.

The necessary and sufficient conditions for the existence of a complete matching on a bipartite graph are provided by Hall's Theorem [START_REF] Bondy | Graph Theory with Applications[END_REF].

Theorem 1 (Hall's Theorem): Consider a bipartite graph G(M ∪ X, A), where |X| ≤ |M |. Then G has a complete matching M saturating every vertex of X if and only if |S| ≤ |N (S)| for every subset S ⊆ X, where N (S) is the subset of vertices of M that are adjacent to some vertices in S i.e N (S) = {v ∈ M : ∃u ∈ S; (u, v) ∈ A}.

Property 2: The existence of a substitution path between two vertices x and r, is a sufficient condition for the existence of a complete matching for the subgraph that is defined by the substitution path.

Proof: By definition, a substitution path P is an Malternating path of odd length that begins with a vertex in M . Suppose that P = {r 1 , x 1 , r 2 , x 2 , . . . , r n , x n } and G ({r 1 , . . . , r n , x 1 , . . . , x n }, A ), where A is the set of edges in P is the subgraph defined by

P . If (r 1 , x 1 ) is in M then (x 1 , r 2 ) is not in M. By recurrence, it is possible to prove that for all i = 1, . . . , n, x i is saturated. If (r 1 , x 1 ) is not in M then (x 1 , r 2
) is in M. By recurrence, it is possible to prove that for all i = 1, . . . , n, x i is saturated. In conclusion, as for all i = 1, . . . , n, x i is saturated, then M is a complete matching for G ({r 1 , . . . , r n , x 1 , . . . , x n }, A ).

IV. DECENTRALIZED DIAGNOSIS: PROBLEM FORMULATION

A. Decentralization and related notions

In the following, "global" means no decentralization and, without loss of generality, only two hierarchical levels, socalled local level and supervisory level, are considered.

A decomposition of the system M , with associated bipartite graph G(M ∪X ∪Z, A), into several subsystems M i is defined as a partition of its equations.

Formally, let

M = {M 1 , M 2 , . . . , M n } with M i ⊆ M , M i = ∅, n i=1 M i = M , and M i ∩ M j = ∅ if i = j.
Definition 13 (Variables of a subsystem i): Given a bipartite graph G(M ∪ X ∪ Z, A), the set of variables of the i th subsystem, denoted as X i and Z i , are defined as the subset of vertices of X and Z respectively that are adjacent to some vertices corresponding to variables in M i :

X i = {u ∈ X : ∃v ∈ M i , (u, v) ∈ A} Z i = {u ∈ Z : ∃v ∈ M i , (u, v) ∈ A}.
This decomposition leads to n subsystems denoted , is defined as the subset of vertices of X i that are adjacent only to vertices in M i , and not to vertices in any other subsystem M j , j = i,

M i (x local i , z i ), with associated subgraphs G(M i ∪ X local i ∪ Z i , A i ), i = 1, . . . ,
X local i = {u ∈ X i : j (j = i) v ∈ M j , (u, v) ∈ A} Lemma 1: X local i = X i ( n j=1,j =i (X i ∩ X j ))
Definition 15 (Shared variables): The shared variables X shared are defined as: A locally redundant relation r may involve only variables of X shared , in which case it is called a pure hierarchical relation. On the other hand, r may involve only variables of X local i but result in a hierarchical relation that involves variables of X shared after the substitution process.

X shared = X ( n i=1 X local i )
Definition 19 (Hierarchical complete matching): A hierarchical complete matching M h is a complete matching between the shared variables X shared and the hierarchical relations R h in the bipartite graph representing the structure of the system at the supervisory level i.e. G h (R h ∪ X shared , A h ).

Figure 6 shows the hierarchical relations r h 1 , r h 5 , and r h 6 resulting from the source relations r 1 , r 5 , and r 6 , respectively, and the local complete matchings shown in Figure 5 (bottom).

The substituted variables in the hierarchical relations are indicated by hash symbols. Proof:

• If the edge (r, x) exists for the global bipartite graph, then a corresponding edge (r h , x) obviously exists at the hierarchical level. • If the adjacency (r, x) does not exist at the global level, this implies that the edge (r h , x) derives from a finite number of variable substitutions in r. Lets say that k substitutions are needed. According to Proposition 1, the substitution of x requires exactly two additional edges, so k substitutions would involve 2k additional edges. Consequently, the path between r h and x involves 2k + 1 edges that alternately belong to M. By definition, such a path is a substitution path.

V. THE EQUIVALENCE OF CENTRALIZED AND DECENTRALIZED DIAGNOSIS

When designing decentralized diagnosers for a system, it is desirable that properties such as fault detectability and isolability are not altered by decentralization. This can be ensured if the set of ARRs derived with the global and decentralized architectures are identical. This section formalizes this equivalence and provides the proof.

Proposition 1: Assume that the system M is decomposed into subsystems M 1 , M 2 , . . . M n , then the set of ARRs that can be derived for M with a centralized architecture is identical to the set of ARRs that can be derived for the decentralized system by deriving the ARRs for each subsystems M i , i = 1, . . . , n, and for the hierarchical relations.

The proof of this proposition relies on proving that the set of behavioral relations involved in a complete matching at the global level, and the ones used to derive a set of local and hierarchical complete matchings are the same. It follows that the set of ARRs which can be derived are the same. (2) Each shared variable x in X shared is matched to one relation r x in M matched . As a consequence of (1), the relation r x is not involved in a local matching. Such relation can be used to derive a hierarchical relation r h x , which can still be matched to x. This set of matches is hence a hierarchical complete matching. Summarizing, for each variable x in X, either x is a local variable, i.e. x ∈ X local i , and can be matched with the same relation in the local matching M i as in the global matching M, or x is a shared variable, i.e. x ∈ X shared , and can then be matched to the hierarchical relation r h

x constructed from the relation r x to which it was matched in the global matching M.

As the matching relations are exactly the same, the decentralized and centralized diagnoser design process lead to the same ARRs from a structural perspective.

B. From local to global: "Only if" proof

Proposition 3: Assume that the system M is decomposed into subsystems

M 1 , M 2 , . . . M n . Given {M 1 , M 2 , • • • , M n }
a set of local complete matchings in the bipartite graphs G(M i ∪X local i , A i ), i = 1 . . . n and M h the hierarchical complete matching in the bipartite graph G h (R h ∪ X shared , A i ), there exists a global complete matching M in G(M ∪ X, A) that results in the same set of ARRs.

The principle of the proof is as follows. A hierarchical complete matching implies the existence of either a global complete matching, i.e. on G(M ∪ X, A), or of a set of substitution paths in the subsystems which permit the matching of the shared variables by substitution. The set of relations involved in the local and hierarchical matchings can be shown to be exactly the same as those involved in the global complete matching, therefore leading to the same set of ARRs.

Proof: First, consider the hierarchical complete matching M h . The hierarchical relation that initially belongs to subsystem G(M i ∪ X local i , A i ) and that is matched with x in M h is denoted by r i h

x . Due to Property 4, there are two possible cases for the existence of each hierarchical match M h : (1) the match corresponds to an edge (r, x) that already exists at the global level, and the match hence remains the same, (2) there exists at least one substitution path that links the shared variable x to the source relation r x at the global level. Due to Property 2, there exists a complete matching for the subgraph defined by the substitution path. This subgraph is totally included in the bipartite graph of subsystem G(M i ∪ X local i , A i ) by the construction process of the hierarchical relation r i h

x . Consequently, for each of the local complete matchings M 1 , . . . , M n , two possibilities exist. Either they are preserved in the global matching M, or if not, the same set of relations are involved. In other words, the set of relations involved in the global complete matching is exactly the same as the ones that are involved in the local matchings and the hierarchical matching. Hence, the global complete matching leads to the same set of ARRs. A PSO set is generically a testable subsystem, but it may contain smaller PSO subsets that are also testable subsystems. The minimal PSO sets [START_REF] Krysander | An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[END_REF], namely the MSO sets, are of special interest since they are at the core of the isolability properties.

Definition 22 (MSO): An SO set is a minimal structurally overdetermined (MSO) set if no proper subset is an SO set.

ARRs correspond to MSO sets, which are sets of equations with one more equation than unknowns [START_REF] Krysander | An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[END_REF]. Unknown variables can be solved using the set of equations minus one, and then the last one is a redundant equation that can be used to check for consistency. We adopt an MSO set based ARR design method for our decentralized diagnoser architecture.

A. Fault-focused structural ARR generation

An efficient algorithm to compute all possible MSO sets for a system is developed in [START_REF] Krysander | An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[END_REF]. However only MSO sets corresponding to relevant faults are interesting to construct residual generators, hence a fault-focused procedure. [START_REF] Krysander | A structural algorithm for finding testable sub-models and multiple fault isolability analysis[END_REF] introduces the concept of Test Equation Support (TES), which is a set of equations expressing redundancy specific to a set of considered faults. This set of faults is known as the Test Support (TS). A minimal TES (MTES) and a minimal TS (MTS) are such that no proper subset is a TES and TS, respectively.

An MSO set or an MTES circumscribes the presence of structural redundancy that can be used to check consistency for a part of the system. It is interesting to notice that, whereas an MSO gives rise to one single residual generator, an MTES gathers all the equations leading to all the possible residual generators for the associated set of faults. MTES are hence a more compact way than MSOs to identify residual generators. An algorithm for finding MTES and MTS for a given system structural description and set of interesting faults is developed by modifying the MSO algorithm of [START_REF] Krysander | An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[END_REF]. To generate residuals from MTESs, we use the method proposed in [START_REF] Svard | Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems[END_REF]. It relies on developing a computational sequence to successively solve for the unknown variables involved in a redundant equation set. One redundant equation together with the developed computational sequence constitute a sequential residual generator. An algorithm to develop the computational sequence is provided.

The FDI scheme for a centralized case can be seen in Figure 9. The offline structural analysis and diagnoser design is illustrated at the top of the figure. The input of the diagnoser design is the structural model M , including information about interesting faults F (M ). The MTES and associated MTS are then computed using the algorithm of [START_REF] Krysander | A structural algorithm for finding testable sub-models and multiple fault isolability analysis[END_REF] (box "MTES algorithm for finding testable sub models"). The residual generator method is then used (box "Calculating analytical residual generators") for the MTES selected by the diagnosability specification module. The analytical residual generators are stored in the "residual generator bank" that is used on-line, fed by system inputs and outputs as illustrated at the bottom of Figure 9. Fault isolation is carried out after fault detection using fault signatures which are vectors composed of the binary residual bank output (0/non0) resulting from an appropriate statistical test. The diagnoser design is done offline and consists of the steps below, performed for each subsystem M i,j j = 1 . . . n i at each level i = 1 . . . n l , in a nested loop. i is the level in the hierarchy, and j the enumeration of subsystems at that level:

MTES algorithm

1) Use the MTES algorithm with the structural model of the subsystem M i,j as input at level i, considering shared variables as known (box "MTES algorithm for finding testable submodels") Output: local MTESs for the subsystem M i,j at level i; MTS for the subsystem M i,j at level i; shared MSOs for the subsystem M i,j at level i to be sent at level i + 1 (arrow "to level i+1"). 2) Use the MTES algorithm with the shared MSOs coming from subordinate local diagnosers of level i -1 Output: hierarchical MTESs for subsystems at level i-1. 3) Use MTS and diagnosability specification to decide which residual generators to implement (box "diagnosability specification") 4) Derive residual generators from local MTES Output: local residual generators for subsystem M i,j stored in the "local residual generator bank".

5) Derive residual generators from hierarchical MTESs

Output: hierarchical residual generators for subordinate local diagnosers of level i-1 stored in the "hierarchical residual generator bank".

The aim of step 2) is to replay the MTES algorithm to eliminate shared variables (that are assumed known locally). It may happen that these variables are just involved in local redundancies without fault support, i.e. are involved in an MSO but not an MTES. This is why shared MSOs are needed at step 2). After the offline structural analysis, the diagnoser is implemented as a residual generator bank that is used on-line, fed by system inputs and outputs as illustrated at the bottom of Figure 10).

C. Extension of the equivalence for MTESs

The goal of this section is to extend the equivalence of centralized and decentralized diagnosis to the use of Test Equation Supports (TESs).

Proposition 4: The set of MTESs computed in a centralized way and the set of MTESs computed in a decentralized way ends to the same set of ARRs.

Proposition 4 is obvious from Property 1 and the fact that the diagnoser design steps compute the set of hierarchical MTES from the set of shared MSOs.

VII. APPLICATION TO THE ATTITUDE DETERMINATION

AND CONTROL SYSTEM OF A SATELLITE Our work has been tested on the Attitude Determination and Control System (ADCS) of a Low Earth Orbit satellite. After a short description of the system and the fault scenarios, we derive MTES and TES sets for the ADCS in a centralized way. Then we compare this set to MTES and TES sets obtained with a decentralized architecture. The last part of this section describes the functioning of the decentralized ADCS diagnoser. The centralized and decentralized ARR based methods are compared in terms of net benefits and on simulated scenarios.

A. The ADCS system 1) Satellite Dynamics: The basic dynamic equations of satellite motion can be summarized as [START_REF] Pirmoradi | Fault detection and diagnosis in a spacecraft attitude determination system[END_REF], [START_REF] Zuliana | A study of reaction wheel configurations for a 3-axis satellite attitude control[END_REF]:

I • (ω) = T -(ω × (I • ω)) (2) 
T = T d + T m -T w = [T x , T y , T z ] (3) 
Here T is the total torque acting along the body axes, while T m , T w and T d are the torque vectors due to the magnetorquer, reaction wheels and disturbances, respectively. The moment of inertia of the satellite body is represented as I, while ω is the angular velocity vector relative to an inertial frame.

2) ADS and ACS modeling: The sensor suite of the satellite is composed of rate gyros for each of the three axes, and vector sensors which are used to periodically clear the accumulated attitude drift error from the rate gyroscopes. Sun and star sensors are examples of vector sensors. The development of the ADS follows that in [START_REF] Sidi | Spacecraft Dynamics and Control: A Practical Engineering Approach[END_REF] and [START_REF] Pirmoradi | Fault detection and diagnosis in a spacecraft attitude determination system[END_REF]. The vector and rate sensor outputs are used to estimate the state vector both independently and merged together. These preliminary estimates are then fused together to arrive at the estimate which is fed back to the ACS. These independent estimates provide an important redundancy in the ADS, which can be used to check consistency.

The state vector of the satellite X is composed of the attitude angles pitch (θ), roll (φ) and yaw (ψ) and the corresponding rates i.e. X = [ψ, θ, φ, ψ, θ, φ].

The ACS is composed of a reaction wheel assembly and magnetotorquers for momentum dumping.

B. Structural modeling of the ADCS

1) Fault scenarios: The structural model of the system is enriched with information about interesting faults. Following the development in [START_REF] Krysander | A structural algorithm for finding testable sub-models and multiple fault isolability analysis[END_REF], faults are introduced as signals in the system model equations. We consider faults on the rate and vector sensors of the ADS and the reaction wheels of the ACS as illustrated in Figure 11 with a broken arrow. The considered fault types include hard, soft and intermittent faults. The faults considered are summarized in Table I. Each of the faults can have three components corresponding to the three axes. 2) Structural modeling: The structure of the ADCS is abstracted as a set of relations R = {r i } relating sets of unknown and known variables X = {x i } and Z = {z i }. It is represented in Figure 11 in which the variables known/unknown or local/shared involved in every relation appear explicitly. For example, the relation r 1 is linked to z 1 and z 2 (known variables) and x 11 (shared variable). A discussion of such modeling, only for the ADS, can be found in [START_REF] Lorentzen | Structural analysis -a case study of the romer satellite[END_REF]. The relations and variables involved are summarized in the Tables II, III and IV. Most of the relations are composed of three behavioral equations corresponding to the three axes indexed by subscripts x, y, and z.

While the relations and variables representing the dynamics of the satellite (DYN) are listed separately, we consider them part of the ADS in Section VII-C. These relations form the input for our decentralized architecture and algorithm.

The X shared set is composed of unknown variables which propagate between the ADS and ACS subsystems: X shared = {T total (x 5 ), h w (x 3 ), X est (x 11 )} where T total = [T x , T y , T z ] T , and h w = [RW amx , RW amy , RW amz ] T , X est = [ψ est , θ est , φ est , ψest , θest , φest ] T .

Figure 12 shows the biadjacency matrix of the ADCS structure with unknown, known and fault variables separated along the X-axis. The equations along the Y-axis are the behavioral equations of the system.

The structural model of the ADCS is composed of 42 equations in total with 42 unknown variables, 15 known variables and 9 faults modeled as variables in the equations. The results demonstrate that all the considered faults can The operation of the decentralized ADCS diagnoser is illustrated in Figure 13. The local diagnosers run their local residual generator banks. Let us say a fault appears in the z-axis rate sensor. Figure 14 illustrates that the local diagnoser detects the fault as the ADS local residual for the z-axis is not equal to zero. It cannot isolate it because this residual reacts both to f rs z and f vs z . Importantly, this process ensures firstly that only the smallest possible set of residual generators is evaluated during nominal operation, which implies better reactivity of the diagnoser, and secondly that communication bandwidth is not used under nominal operation for interaction between the local and supervisory diagnosers. The price to pay is a slower response of the diagnoser when hierarchical levels are involved. In this work, we prioritize fast response in nominal situations, which results in significant computational gain on average. Instead of requiring full visibility, in such a decentralized system engineering approach: 1. the diagnoser design and algorithm is shared among project partners and an interface among diagnosers is enforced with different partners responsible for the various functional units; 2. an underlying system simulation is shared, with interface signals visible to all partners as required; 3. the partners provide diagnosers implemented first in a modeling language such as MATLAB/Simulink and then as the project proceeds in the target SW language to be validated together on the integration simulator.

MTS: [f rw x ], [f rw y ], [f rw z ], [f rs x ], [f rs y ], [f rs z ], [f vs x ], [f vs y ], [f vs z ] MTES: [e4, e7, e10, e13], [e5, e8, e11, e14], [e6, e9, e12, e15], [ e7 
The hierarchical architecture implies that the method can be scaled to much larger systems when the importance of such design and development considerations is critical.

The considerations involved in the development and functional verification of real-world FDIR systems in space applications can be found in [START_REF] Pecover | Functional verification of the ADM-AEOLUS autonomy requirements[END_REF]. Previous work has compared the design and development effort of the decentralized ARR based diagnoser with conventional rule based error monitors [START_REF] Indra | Spacecraft fault detection and isolation system design using decentralized analytical redundancy[END_REF].

Studying the number of thresholds, differentiators and associated filtering (Dif f.), and integrators and associated filtering (Int.) provides a simple way to gauge the change in cost-benefit analysis on decentralization. While setting simultaneous thresholds adds to tuning and validation effort, differentiators and integrators introduce computational and numerical complexity to the tuning, validation and run-time efforts. In actual applications it is these considerations that tip the balance in favor of the utilized technique (cf. Table V). Also, while these figures are for our two levels case study, which is small, the multiplicative effect on the figures as the size of the system increases is considerable. redundancy framework. The need for decentralized diagnosis is justified by many applications, such as spacecrafts whose architecture is organized into functional modules, and developed with decentralized systems engineering. The demonstration of the equivalence between decentralized and centralized approaches for residual generation is done using the structural approach. The second contribution is a fault focused decentralized residual generation design method. The algorithms have been implemented and tested on the ADCS of a satellite. This case study illustrates the advantages of the decentralized diagnosis architecture, which offers lower complexity and isolation on request capabilities while maintaining the same isolability power as centralized design. Future work will focus on the optimization of the process underlying decentralization being considered as a design problem. Whereas we believe that the choice of subsystems is dictated by design constraints, functionality for monolithic systems or geographical location for distributed systems, the definition of the hierarchical layers and the selection of residual generators leaves space for optimization.
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  . From global to local: "If" proof Proposition 2: Given a global complete matching M in the bipartite graph G(M ∪ X, A) that leads to a non-void set of ARRs, then for any decomposition {M 1 , M 2 , • • • , M n } of the system M , there exists a set of local complete matchings {M 1 , M 2 , • • • , M n } and a hierarchical complete matching M h that result in the same set of ARRs. The principle of the proof is as follows. When the system is decomposed into subsystems, each relation matched with a shared variable in M can now be used as the source relation for a hierarchical relation. And, at the hierarchical level, a shared variable can be matched with the corresponding hierarchical relation. Consequently, the local matchings {M 1 , M 2 , . . . , M n }, and the hierarchical matching M h involve the same set of relations as the global complete matching M and therefore result in the same ARRs. Proof: Given the existence of M, Hall's theorem indicates that |X| ≤ |M | + 1. Without loss of generality, consider only the set of matched relations M matched . Then, |M matched | = |X|. (1) In each of the subsystems M i , i = 1 . . . n, the matches of the original global matching M can be preserved when they match local variables x i ∈ X local i . These matches constitute the local complete matching for the local bipartite graph G(M i ∪ X local i , A i ).

Fig. 7 .

 7 Fig. 7. Local complete matchings are not preserved

Fig. 8 .

 8 Fig. 8. Dulmage-Mendelson decomposition of a model M [18]

Fig. 9 .

 9 Fig. 9. The design and implementation scheme for a centralized global diagnoser

Fig. 10 .

 10 Fig.10. The design and implementation scheme of a decentralized diagnoser for a subsystem at level i

Fig. 11 .

 11 Fig. 11. Structural modeling of the ADCS

  . . . e21, e25], [e7 . . . e21, e26], [e7 . . . e21, e27], [e7 . . . e21, e22, e28], [e7 . . . e21, e23, e29], [e7 . . . e21, e24, e30]

Fig. 12 .

 12 Fig. 12. The ADCS structure and its decomposition into ACS and ADS

Fig. 13 .

 13 Fig. 13. The decentralized diagnosis architecture and process applied to an ADCS (the numbers 1 to 6 indicate the sequence of operations)

Fig. 14 .

 14 Fig. 14. ADS local residuals

Fig. 15 .

 15 Fig. 15. ADS hierarchical residuals for the z-axis

  VIII. CONCLUSIONThis paper presents the theoretical keystone for a decentralization of model-based diagnosis within the analytical

  n, where X local i is defined below. Definition 14 (Local variables): The set of local variables of the i th subsystem, denoted as X local i

TABLE III UNKNOWN

 III VARIABLES OF THE ADCS First we use the algorithm to derive MTES and MTS sets for the ADCS considered globally. Faults appearing in the same MTS are not discriminable. The list of equations e i , i = 1 . . . n, is denoted e 1 . . . e n .

	Unknown Var. Subsystem	Description
	ḣw/x1	ACS	Derivative of flywheel angular mo-
			mentum
	hw/x 3	ACS	Flywheel angular momentum
	ωw/x 2	ACS	Flywheel angular speed
	Tm/x 4	ACS	Magnetic torque
	T		

total /x 5 ACS Total torque on satellite Xω/x 6 DYN (ADS) Satellite angular rates Xpos/x 7 DYN (ADS) Satellite attitude angles X est1 /x 8 ADS Estim. sat. state with vector sensors alone X est2 /x 9 ADS Estim. sat. state with rate and vector sensors X est3 /x 10 ADS Estim. sat. state with rate sensors Xest/x 11 ADS Estim.sat. state C. MTES equivalence of centralized and decentralized diagnosers 1) ADCS centralized diagnoser: ADCS global diagnoser: Number of MSO sets: 2448
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be detected and isolated with a centralized diagnoser for the ADCS. The high number of MSO sets (2448) compared to the number of MTES [START_REF] Bregon | An event-based distributed diagnosis framework using structural model decomposition[END_REF] illustrates the great computational advantage of deriving MTES sets focused on the set of interesting faults. These results will be used for comparison with the decentralized configuration later on.

2) Achievable diagnosability based on local diagnosers only: We use the algorithm to derive the MTES and MTS sets for the ACS and ADS separately assuming that the shared variables X shared are unknown.

ACS local diagnoser (taking X shared to be unknown): MTS: From the results, we can conclude that all ACS faults can be detected and isolated by the local ACD diagnoser. On the other hand, although all ADS faults can be detected by the local ADS diagnoser, faults on the rate and vector sensors cannot be isolated.

3) ADCS decentralized diagnosis architecture: The proposed decentralized architecture is now applied to the ADCS by designing the local and supervisory diagnosers.

From the point of view of the local diagnosers, the shared variables X shared are now assumed to be known. Local MTES remain the same as derived in the previous subsection. Shared MTES are derived below using the new observability assumption.

ADS local diagnoser considering X shared known: MTS:

[e19, e20, e21, e27], [e19, e20, e21, e22, e28], [e19, e20, e21,-e23, e29], [e19, e20, e21, e24, e30]

Complete fault isolability is achieved with the current assumption. Let us notice that the shared MTES sets supported by the faults that were not isolable before include relations e19, e20, e21 and relations e22, e23, e24, i.e. the dynamic and kinematic equations of motion of the satellite C dyn and C kin , respectively. These are not functionally part of the ADS, even though they are taken as part of the ADS in our implementation. Rather they are the interface between the ACS and the ADS, representing the physical behavior of the satellite itself.

It can be concluded that it is possible to isolate (some of) the faults in the ambiguity sets [f rs x , f vs x ], [f rs y , f vs y ],[f rs z , f vs z ] if either some/all of the shared variables are sensed in the ACS, or shared relations exist which allow these variables to be expressed in terms of known variables of the ACS.

ACS local diagnoser considering X shared known MTS:

Obviously, shared MTES sets do not increase isolability since for the ACS, full isolability was already achieved with local MTES sets. Shared MTES sets do not bring any improvement from this point of view. Nevertheless, they have a degree of structural redundancy equal to 10 compared to 1 for ACS local MTES sets. There are hence various redundant ways of deriving the ARRs now. X shared would indeed add possibilities of deriving consistency checks. In practice however, residual generators would be derived using the local MTES sets [e4, e7, e10, e13], [e5, e8, e11, e14], [e6, e9, e12, e15] because they involve less equations and result in less complex consistency checks.

Let us use the shared MSOs of ACS and ADS at the global level to derive the hierarchical MTES sets. If we focus the search on the entire set of faults, we get the following results:

ADCS supervisory diagnoser to disambiguate faults: Input behavioural relations: [e1 . . . e18] and [e19 . . . e30] Fault vector under focus:

[f rw x , f rw y , f rw z ,f rs x , f rs y , f rs z , f vs x , f vs y , f vs z ] MTS: Hierarchical MTES sets have a degree of structural redundancy equal to 8. The faults f rs x and f vs x can be isolated now. Similar results are obtained for the ambiguities corresponding to the other two fault ambiguity sets [f rs y , f vs y ] and [f rs z , f vs z ].