
HAL Id: hal-01229077
https://hal.science/hal-01229077v1

Submitted on 2 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Isolation on Request Based on Decentralized
Residual Generation

Elodie Chanthery, Louise Travé-Massuyès, Saurabh Indra

To cite this version:
Elodie Chanthery, Louise Travé-Massuyès, Saurabh Indra. Fault Isolation on Request Based on De-
centralized Residual Generation. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 2015, 99, �10.1109/TSMC.2015.2479192�. �hal-01229077�

https://hal.science/hal-01229077v1
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: SYSTEMS 1

Fault Isolation on Request Based on Decentralized
Residual Generation

E. Chanthery, L. Travé-Massuyès, and S. Indra,

Abstract—This paper presents the theoretical keystone for
a decentralization of Model-Based Diagnosis by proving the
equivalence between decentralized and centralized residual gen-
eration. The proof is based on structural analysis and graph-
theoretical concepts. The second contribution of the paper is
the design of a decentralized fault-focused residual generation
scheme advantageously implementing a strategy of fault isolation
on request. Algorithms are tested on the Attitude Determination
and Control System of a Low Earth Orbit satellite.

Index Terms—Decentralized residual generation, Model-Based
Diagnosis, Structural Analysis, Focused Residual Generation,
Isolation on Request

I. INTRODUCTION

MODEL based diagnosis (MBD) detects and isolates
faults based on a model of the system that can be

developed either during the design phase or by a reverse
engineering process.

Although interest in MBD is now well-established, there
is a wide gap between the “state of art” and the “state of
practice”. This is often due to the extremely conservative
nature of technology decisions and operations, as for example
in the space domain. The main difficulty arises from the trade-
offs between costs, benefits and risks associated with on-board
MBD [1]. Increasing the applicability of MBD requires the
development and adaptation of algorithms and architectures
while keeping in mind the constraints and needs specific to
the application field.

A way to ease the integration of MBD into real systems is
to approach them as a set of several subsystems. As a conse-
quence, while some subsystems follow conventional diagnosis
methods, others may evolve and integrate new MBD tech-
niques. Another important aspect is that industry is not open to
sharing complete information about their systems, even more
so if the development involves several firms. Decentralized
solutions allow proper separation of the industrial knowledge,
provided that inputs and outputs are clearly defined. Finally, a
decentralized diagnosis architecture offers what is termed here
a fault isolation on request capability while maintaining the
same isolability power as centralized diagnosis.

The first contribution of the paper is to provide the formal
proof of the equivalence of decentralized and centralized
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residual generation using the structural analysis approach [2].
The entire theoretical proof, which was sketched out in our
previous work [3], [4], is provided. The structural model of
a system is an abstraction of its behavioral model: only the
structure of the constraints, i.e. the existence of links between
variables, is considered, and not the constraints themselves [5].

The second contribution of the paper is the design, in a
decentralized architecture, of a fault-focused residual gener-
ation scheme thanks to the notion of Minimal Test Equa-
tion Support [6]. We present a revision of the algorithm
that was proposed in [3], [4] and provide details based on
the equivalence proof that were omitted in previous papers.
The algorithms are tested on the Attitude Determination and
Control System (ADCS) of a spacecraft.

This paper goes beyond the work of the two previous papers
[3] and [4] as it consolidates the theoretical foundations of the
equivalence property and presents more realistic experiments
to validate the proposed decentralized approach. It provides
a comprehensive framework for decentralized model-based
diagnosis using the analytical redundancy approach.

The paper is organized in the following way. Section II
clarifies the notion of decentralization and motivates the work
with respect to related work. Section III presents the back-
ground theory and prerequisites about structural analysis. The
decentralized diagnosis problem is presented in Section IV.
Section V demonstrates the equivalence of centralized and
decentralized residual generation. Then Section VI examines
the fault-focused residual generation problem. Section VII
illustrates the theory by comparing the different residual
generation algorithms on the ADCS case study. The paper
is concluded in Section VIII.

II. DECENTRALIZED DIAGNOSIS: RELATED WORK AND
MOTIVATIONS

This section first positions the decentralized diagnosis ap-
proach as compared to centralized and distributed approaches.
It then discusses related work to motivate the contributions.

A. Motivations for decentralized diagnosis architectures

Three main categories of diagnosis architectures exist in
the literature: centralized, decentralized and distributed (cf.
Figure 1).

Definition 1 (Centralized diagnosis architecture): A
centralized diagnosis architecture is composed of local agents
without processing capabilities, typically sensors, that send
data to a centralized diagnoser which computes the (global)
diagnosis.
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Fig. 1. Three architectures for diagnosis

The advantage of a centralized diagnostic system is its
simplicity. There is no communication between local agents
in the architecture. The main drawback is that it requires to
explicitly building a global model of the system [7], which
is unrealistic for large systems and when privacy issues come
into play. Distributing and decentralizing diagnosis are two
solutions to cope with these problems [8], [9].

Definition 2 (Distributed diagnosis architecture): A
distributed diagnosis architecture assumes a set of local
diagnosers, identical in terms of role, with communication
possible between any two of them. A local diagnoser is
an independent software entity. While local diagnosers are
diagnoses for a subsystem, global diagnoses are diagnoses
for the complete distributed system. Communication links
must be designed so that local diagnoses are globally
consistent [10].

Definition 3 (Decentralized diagnosis architecture): A de-
centralized diagnosis architecture is composed of local di-
agnosers whose results are coordinated by a supervisory
diagnoser. There is no intra-level communication in the archi-
tecture. Inter-level communication between local diagnosers
and the hierarchically upstream supervisory diagnoser serves
to disambiguate local diagnosis results.

Decentralized and centralized diagnosis architectures differ
in the place where processing is performed. In the centralized
case, local agents are passive and they just collect and send
data. Conversely, decentralized local agents compute local
diagnoses and send them up to their supervisory diagnoser. In a
distributed diagnosis architecture, local diagnoses are possibly
shared by local agents without referring to any supervisory
or central unit. This latter solution is scalable and robust.
However, for domains like spacecrafts, this solution is not
often investigated because it implies intense and advanced
communication means. One solution, recently proposed by [9],
is to define subsystems guided by the existing redundancies so
that no communication is required. Local diagnosers are hence
globally consistent by design. However the decomposition
proposed in [9] ignores pre-existing constraints, that may be
functional, geographical or privacy-based. We adopt an inverse
approach and consider pre-existing constraints mandatory.

Most of the decentralized diagnosis methods deal with dis-
crete event systems [7], [11], [12]. The decentralized diagnosis
scheme of [7] is based on the “divide and conquer” principle
and does not require computing a global model. We have
the same motivations for continuous systems. [11] uses a
decentralized approach to deal with the size of the model and
to get a tractable representation of diagnoses. With the same
idea, [12] proposes a hierarchical framework that capitalizes
on local diagnoses. These ideas are also used in our approach
with the notion of isolation on request. If local diagnosis is not
sufficient, hierarchical diagnosers come into play to refine the
diagnosis. Only in this case is hierarchical processing required,
hence saving significant CPU time for on-line applications.

Decentralized diagnosis methods have been proposed only
recently for continuous or hybrid systems. [13] presents a
decentralized architecture for systems modeled in a qualitative
framework. The architecture is quite similar to ours. However,
diagnosis reasoning there relies on the logical model-based
diagnosis theory whereas our approach adopts an analytical
redundancy framework [14]. Addressing the fault tolerant
control problem in a networked framework, [15] analyses fault
detectability and fault isolability conditions for centralized,
distributed and decentralized systems within a structural analy-
sis framework. Nevertheless, the considered systems are linear.
Our paper extends these results to nonlinear systems.

B. Structure of the decentralized diagnosis

In the proposed architecture, local diagnosers rely on models
of their subsystems to arrive at diagnosis. Ambiguities might
arise as faults propagate between subsystems. A supervisor at
the higher level serves to resolve ambiguities and to provide
diagnosis at a higher resolution than that possible with purely
local information. The architecture is hierarchically scalable
as can be seen in Figure 2.
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Fig. 2. Generic decentralized diagnosis structure

The decentralization levels are defined by the communica-
tion possibilities between diagnosers. Diagnosers of a level i
communicate with their supervisory diagnoser of level i+1 and
the diagnosers at the level i− 1 below them in the hierarchy.
We aim to expose as little information as possible about the
subsystems.

III. BACKGROUND THEORY AND PREREQUISITES

Our approach to diagnosis relies on residual generators
designed from the structural redundancies of the system under
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the following assumptions: 1) The system is component-based:
a fault fi corresponds to a component ci and fi = 0 if and only
if ci is not faulty; 2) Faults do not introduce “genuine” new
equations and do not change the model structure; 3) The set
of observable variables is known and fixed, i.e. no additional
measurements become available once the diagnosis is initiated.

A. Structural approach to analytical redundancy

Analytical redundancy makes use of a model of the system
to augment the number of tests that can be implemented [16].
These tests take the form of Analytical Redundancy Relations
(ARRs) derived from the model and the knowledge of which
variables are measured. The structural approach to deriving
ARRs can be viewed as one of finding complete matchings
on the bipartite graph of the system’s model structural abstrac-
tion [5]. Even though the graph paradigm may not be the most
efficient from a computational point of view [6], it provides a
well-grounded theoretical framework to study properties.

1) Residual generators: Residual generators are derived
based on ARRs [17] which are relations that involve only
the measured variables of the system and their derivatives.
A residual generator takes as input the values of the measured
variables and, in an ideal case, gives a non-zero output only in
case the system behavior is inconsistent with the model. Most
of this development follows that in [6], [18] and [19].

Let the system description consist of a set of n equations
involving a set of variables partitioned into a set Z of nZ
known (or measured) variables and a set X of nX unknown
(or unmeasured) variables. We refer to the vector of known
variables as z and the vector of unknown variables as x.

Definition 4 (Model): A model, denoted M(z, x) or M
for short, is any set of equations relating z and x. The
equations ri(z, x) ⊆ M(z, x), i = 1, . . . , n, are assumed to
be differential or algebraic in z and x.

The following model M is used to illustrate the concepts.
It is composed of six equations r1 to r6 relating the unknown
variables X = {x1, x2, x3, x4, x5} and the known variables
Z = {u, v, w, y}.

r1 : ẋ1 = −x21 + x3 + u
r2 : ẋ2 = x24
r3 : x1 = 3x32 + v
r4 : y = x5
r5 : ẍ3 = x24 + x5
r6 : x3 = w − x5


M (1)

Definition 5 (Consistency): A model M(z, x) is said to be
consistent with a given trajectory of z, or concisely, consistent
with z, if there exists a trajectory of x such that the equations
M(z, x) are fulfilled.

Definition 6 (ARR for M(z, x)): Let M(z, x) be a model,
then an equation r(z, ż, z̈, . . .) = 0 is an ARR for M(z, x) if,
for each z consistent with M(z, x), the equation is fulfilled.

ARRs can be used to check if the measured variables z
are consistent with the model and as the basis of residual
generators as defined below.

Definition 7 (Residual Generator for M(z, x)): A system
taking a subset of the variables z as input, and generating

a scalar signal r as output, is a residual generator for the
model M(z, x) if, for all z consistent with M(z, x), it holds
that lim

t→∞
r(t) = 0.

2) Structural modeling and ARR generation: The structure
of the system can be abstracted as a representation of which
variables are involved in the equations that make up the model
of the system. This abstraction leads to a bipartite graph
G(M ∪ X ∪ Z,A), or equivalently to G(M ∪ X,A), where
A ⊆ A and A is a set of edges such that a(i, j) ∈ A iff
variable xi is involved in relation rj . As shown in Figure 3, the
bipartite graph (on the right) may be equivalently represented
as a biadjacency matrix (on the left). Known variables u, v, y
and w are not represented.
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Fig. 3. Structural abstraction of M : biadjacency matrix and bipartite graph

The structural abstraction allows us to identify struc-
tural redundancies in the form of Structural ARRs (SARRs)
[19], known as causal interpretations of Minimal Structurally
Overdeterminated sets (MSO set) [6] or Possible Conflicts
[20], independently of the linear or nonlinear nature of the
systems. However one must keep in mind that results obtained
with such a structural representation are a best case scenario.
Causality considerations and the presence of algebraic and
differential loops determine which structural redundancies can
be used for the design of residual generators.

It can be shown [2] that ARRs can be derived from so-called
complete matchings between X and M on the bipartite graph
G(M ∪X,A).

Definition 8 (Matching): A matching between X and M is
a subset of A such that no vertex in X ∪M is incident with
more than one edge of the matching. A matching is complete
if it covers every vertex of X .

A complete matching between X and M is denoted by
M(X,M), or M when there is no ambiguity. M(X,M)
provides a way to identify the paths to calculate the unknown
variables from the measured variables.

Figure 4 illustrates a complete matching for M indicated by
circled entries in the biadjacency matrix (left) or bold edges
in the corresponding bipartite graph (right). For instance, the
unknown variable x3 is matched to the relation r1. Relation
r6 is redundant because it is not involved in the complete
matching. This means that r6 is not needed to calculate
the unknown variables and that it can be used to check for
consistency.

The substitution of unknown variables into a redundant
equation allows one to obtain an ARR, as can be seen in
the bottom part of Figure 4 that shows the substitution path.
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The substitution path gives the ordered dependences between
relations and variables. The structural redundancy of M is
one, hence one redundant relation is available to derive an
ARR.

B. Graph theory background

We now introduce the notions of graph theory needed to
prove the equivalence of decentralized and centralized residual
generation.

Definition 9 (M− (un)saturated vertex): Given a mat-
ching M in a bipartite graph G(M ∪ X,A), a vertex v is
said to be M− (un)saturated if there is an (no) edge of M
incident with v.

Definition 10 (M-alternating path): Given a matching M
in a bipartite graph G(M ∪X,A), an M-alternating path is
a path in G(M ∪X,A) whose edges are alternately members
and non members of M.

Definition 11 (Path length): The length of a path composed
of edges and vertices in a matching M is the number of
vertices in the path.

Definition 12 (Substitution path): A substitution path is an
M-alternating path of odd length that begins with a vertex in
M .

For the matching of Figure 4, vertices r1, r2, x1, x2 are
M− saturated while vertex r6 is M− unsaturated. The
path x1, r3, x2 is an M-alternating path. The path r1, x1, r3
is a substitution path whereas x1, r3, x2 is not.

Property 1: The substitution of a variable xi in a relation
rj involves exactly one edge (xi, rk) in the matching, and one
edge (rj , xi) outside the matching. The path (rj , xi, rk) is said
to be a minimal M-alternating path.

Proof: Assume that a variable xi in a relation rj can be
substituted using a relation rk. This implies that the edge
(rj , xi) is not part of the matching, and that rk is matched to
xi. �

In the example, x1 in r1 can be substituted using r3. (x1, r1)
is not in the matching, (x1, r3) is in the matching. The path
(r1, x1, r3) is a minimal M-alternating path.

The necessary and sufficient conditions for the existence
of a complete matching on a bipartite graph are provided by
Hall’s Theorem [21].

Theorem 1 (Hall’s Theorem): Consider a bipartite graph
G(M ∪ X,A), where |X| ≤ |M |. Then G has a complete

matching M saturating every vertex of X if and only if
|S| ≤ |N(S)| for every subset S ⊆ X , where N(S) is the
subset of vertices of M that are adjacent to some vertices in
S i.e N(S) = {v ∈M : ∃u ∈ S; (u, v) ∈ A}.

Property 2: The existence of a substitution path between
two vertices x and r, is a sufficient condition for the existence
of a complete matching for the subgraph that is defined by the
substitution path.

Proof: By definition, a substitution path P is an M-
alternating path of odd length that begins with a vertex
in M . Suppose that P = {r1, x1, r2, x2, . . . , rn, xn} and
G′({r1, . . . , rn, x1, . . . , xn}, A′), where A′ is the set of edges
in P is the subgraph defined by P . If (r1, x1) is in M then
(x1, r2) is not in M. By recurrence, it is possible to prove
that for all i = 1, . . . , n, xi is saturated. If (r1, x1) is not in
M then (x1, r2) is in M. By recurrence, it is possible to
prove that for all i = 1, . . . , n, xi is saturated. In conclusion,
as for all i = 1, . . . , n, xi is saturated, then M is a complete
matching for G′({r1, . . . , rn, x1, . . . , xn}, A′). �

IV. DECENTRALIZED DIAGNOSIS: PROBLEM
FORMULATION

A. Decentralization and related notions

In the following, ”global” means no decentralization and,
without loss of generality, only two hierarchical levels, so-
called local level and supervisory level, are considered.

A decomposition of the system M , with associated bipartite
graph G(M∪X∪Z,A), into several subsystems Mi is defined
as a partition of its equations.

Formally, let M = {M1,M2, . . . ,Mn} with Mi ⊆ M ,

Mi 6= ∅,
n⋃

i=1

Mi = M , and Mi ∩Mj = ∅ if i 6= j.

Definition 13 (Variables of a subsystem i): Given a bipar-
tite graph G(M ∪ X ∪ Z,A), the set of variables of the ith

subsystem, denoted as Xi and Zi, are defined as the subset
of vertices of X and Z respectively that are adjacent to some
vertices corresponding to variables in Mi:

Xi = {u ∈ X : ∃v ∈Mi, (u, v) ∈ A}
Zi = {u ∈ Z : ∃v ∈Mi, (u, v) ∈ A}.

This decomposition leads to n subsystems denoted
Mi(x

local
i , zi), with associated subgraphs G(Mi ∪ X local

i ∪
Zi, Ai), i = 1, . . . , n, where X local

i is defined below.
Definition 14 (Local variables): The set of local variables

of the ith subsystem, denoted as X local
i , is defined as the

subset of vertices of Xi that are adjacent only to vertices in
Mi, and not to vertices in any other subsystem Mj , j 6= i,

X local
i = {u ∈ Xi : @j (j 6= i) v ∈Mj , (u, v) ∈ A}

Lemma 1: X local
i = Xi�(

n⋃
j=1,j 6=i

(Xi ∩Xj))

Definition 15 (Shared variables): The shared variables
Xshared are defined as:

Xshared = X�(

n⋃
i=1

X local
i )
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Figure 5 illustrates the decomposition of M into two
subsystems Σ1 and Σ2, with M1 = {r1, r2, r3} and M2 =
{r4, r5, r6}. We have X local

1 = {x1, x2}, X local
2 = {x5} and

Xshared = {x3, x4} as illustrated in the bottom part of the
figure. The circled entries should be ignored for now.

Definition 16 (Local complete matching): A local com-
plete matching Mi for the ith subsystem is a complete
matching between local variables X local

i and local behavioral
equations Mi in the bipartite graph G(Mi∪X local

i ,Ai), where
Ai ⊂ Ai is the set of edges incident to vertices of X local

i and
Mi.

Definition 17 (Global complete matching): A global com-
plete matchingM is a complete matching between X and M
on the bipartite graph G(M ∪X,A).

Figure 5 illustrates a global complete matching for M (top),
and local complete matchings for Σ1 and Σ2 (bottom). A circle
indicates a relation and its matched unknown variable.

Fig. 5. From a global system to a decentralized system

Property 3: Given a global complete matchingM for a sys-
tem, let Mmatched be the set of vertices that are matched, and
Mavailable = M\Mmatched. For each relation in Mavailable,
it is possible to substitute every unknown variable using M.
So each behavioral relation r in Mavailable potentially leads
to an ARR.

Definition 18 (Hierarchical and Source Relations): Let us
consider the local bipartite graphs G(Mi ∪ X local

i ,Ai), i =
1, . . . , n, and suppose that a local complete matching Mi

exists for each of them. Consider also the set of relations that
are not matched in any local complete matching Mi, i.e. the
locally redundant relations. Let r be one of these relations.
By construction, r relates a set of variables, among which
unknown variables belong to only one of the X local

i and to
Xshared. Using Mi, it is possible to substitute in r each
variable belonging to X local

i , and so obtain a new relation

rh involving only unknown variables in Xshared. The new
relation rh is called a hierarchical relation because it refers
to several subsystems, and hence belongs to the supervisory
level. The relation r is called the source relation of rh. The
set of hierarchical relations is denoted as Rh.

A locally redundant relation r may involve only variables of
Xshared, in which case it is called a pure hierarchical relation.
On the other hand, r may involve only variables of X local

i

but result in a hierarchical relation that involves variables of
Xshared after the substitution process.

Definition 19 (Hierarchical complete matching): A hierar-
chical complete matchingMh is a complete matching between
the shared variables Xshared and the hierarchical relations Rh

in the bipartite graph representing the structure of the system
at the supervisory level i.e. Gh(Rh ∪Xshared,Ah).

Figure 6 shows the hierarchical relations rh1 , rh5 , and rh6
resulting from the source relations r1, r5, and r6, respectively,
and the local complete matchings shown in Figure 5 (bottom).
The substituted variables in the hierarchical relations are
indicated by hash symbols.

Fig. 6. Structural derivation of hierarchical redundant relations

Property 4: Assume that r is a source relation and rh the
associated hierarchical relation. An edge (rh, x) between the
hierarchical relation and a shared variable x exists at the
hierarchical level if either the edge (r, x) is present in the
bipartite graph of the global system or there exists at least
one substitution path that links x to r at the global level.

Proof:
• If the edge (r, x) exists for the global bipartite graph,

then a corresponding edge (rh, x) obviously exists at the
hierarchical level.

• If the adjacency (r, x) does not exist at the global level,
this implies that the edge (rh, x) derives from a finite
number of variable substitutions in r. Lets say that k
substitutions are needed. According to Proposition 1, the
substitution of x requires exactly two additional edges,
so k substitutions would involve 2k additional edges.
Consequently, the path between rh and x involves 2k+1
edges that alternately belong to M. By definition, such
a path is a substitution path. �

V. THE EQUIVALENCE OF CENTRALIZED AND
DECENTRALIZED DIAGNOSIS

When designing decentralized diagnosers for a system, it
is desirable that properties such as fault detectability and
isolability are not altered by decentralization. This can be
ensured if the set of ARRs derived with the global and de-
centralized architectures are identical. This section formalizes
this equivalence and provides the proof.
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Proposition 1: Assume that the system M is decomposed
into subsystems M1,M2, . . .Mn, then the set of ARRs that
can be derived for M with a centralized architecture is
identical to the set of ARRs that can be derived for the de-
centralized system by deriving the ARRs for each subsystems
Mi, i = 1, . . . , n, and for the hierarchical relations.

The proof of this proposition relies on proving that the set of
behavioral relations involved in a complete matching at the
global level, and the ones used to derive a set of local and
hierarchical complete matchings are the same. It follows that
the set of ARRs which can be derived are the same.

A. From global to local: “If” proof

Proposition 2: Given a global complete matchingM in the
bipartite graph G(M ∪ X,A) that leads to a non-void set
of ARRs, then for any decomposition {M1,M2, · · · ,Mn} of
the system M , there exists a set of local complete matchings
{M1,M2, · · · ,Mn} and a hierarchical complete matching
Mh that result in the same set of ARRs.

The principle of the proof is as follows. When the system
is decomposed into subsystems, each relation matched with
a shared variable in M can now be used as the source
relation for a hierarchical relation. And, at the hierarchical
level, a shared variable can be matched with the correspond-
ing hierarchical relation. Consequently, the local matchings
{M1,M2, . . . ,Mn}, and the hierarchical matching Mh in-
volve the same set of relations as the global complete matching
M and therefore result in the same ARRs.

Proof: Given the existence of M, Hall’s theorem indicates
that |X| ≤ |M |+ 1. Without loss of generality, consider only
the set of matched relations Mmatched. Then, |Mmatched| =
|X|.
(1) In each of the subsystems Mi, i = 1 . . . n, the matches

of the original global matching M can be preserved
when they match local variables xi ∈ X local

i . These
matches constitute the local complete matching for the
local bipartite graph G(Mi ∪X local

i ,Ai).
(2) Each shared variable x in Xshared is matched to one

relation rx in Mmatched. As a consequence of (1), the
relation rx is not involved in a local matching. Such
relation can be used to derive a hierarchical relation rhx ,
which can still be matched to x. This set of matches is
hence a hierarchical complete matching.

Summarizing, for each variable x in X , either x is a local
variable, i.e. x ∈ X local

i , and can be matched with the same
relation in the local matching Mi as in the global matching
M, or x is a shared variable, i.e. x ∈ Xshared, and can then be
matched to the hierarchical relation rhx constructed from the
relation rx to which it was matched in the global matching
M.

As the matching relations are exactly the same, the decen-
tralized and centralized diagnoser design process lead to the
same ARRs from a structural perspective. �

B. From local to global: “Only if” proof

Proposition 3: Assume that the system M is decomposed
into subsystems M1,M2, . . .Mn. Given {M1,M2, · · · ,Mn}

a set of local complete matchings in the bipartite graphs
G(Mi∪X local

i ,Ai), i = 1 . . . n andMh the hierarchical com-
plete matching in the bipartite graph Gh(Rh ∪Xshared,Ai),
there exists a global complete matching M in G(M ∪X,A)
that results in the same set of ARRs.

The principle of the proof is as follows. A hierarchical
complete matching implies the existence of either a global
complete matching, i.e. on G(M ∪ X,A), or of a set of
substitution paths in the subsystems which permit the matching
of the shared variables by substitution. The set of relations
involved in the local and hierarchical matchings can be shown
to be exactly the same as those involved in the global complete
matching, therefore leading to the same set of ARRs.

Proof: First, consider the hierarchical complete matching
Mh. The hierarchical relation that initially belongs to subsys-
tem G(Mi ∪ X local

i ,Ai) and that is matched with x in Mh

is denoted by ri
h

x . Due to Property 4, there are two possible
cases for the existence of each hierarchical match Mh:
(1) the match corresponds to an edge (r, x) that already exists

at the global level, and the match hence remains the same,
(2) there exists at least one substitution path that links the

shared variable x to the source relation rx at the global
level. Due to Property 2, there exists a complete matching
for the subgraph defined by the substitution path. This
subgraph is totally included in the bipartite graph of sub-
system G(Mi ∪ X local

i ,Ai) by the construction process
of the hierarchical relation ri

h

x .
Consequently, for each of the local complete matchings
M1, . . . ,Mn, two possibilities exist. Either they are preserved
in the global matching M, or if not, the same set of relations
are involved. In other words, the set of relations involved in
the global complete matching is exactly the same as the ones
that are involved in the local matchings and the hierarchical
matching. Hence, the global complete matching leads to the
same set of ARRs. �

Fig. 7. Local complete matchings are not preserved

These arguments can be illustrated using the example of
Figures 4, 6 and 7. Figure 6 illustrates the situation when the
decentralized local matchings are preserved from the global
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case given in Figure 4. On the other hand, in Figure 7 (top),
the local complete matching for the first subsystem is different
from the one corresponding to the global matching of Figure 4,
although hierarchical relations (bottom) are the same.

VI. FOCUSED RESIDUAL GENERATION

It is possible to analyze the structural properties of a system
modeled as a set of equations M involving variables X by
using the Dulmage-Mendelson (DM) canonical decomposition
as shown in Figure 8.

 

Fig. 8. Dulmage-Mendelson decomposition of a model M [18]

This decomposition results in the partition of the model
into three parts, the structurally overdetermined part repre-
sented by M+, which has more equations than unknowns,
the structurally just determined part represented by Mo and
the structurally underdetermined part represented by M−. The
sets defined below formalize the notions of a structurally
overdetermined equation set (SO) and a proper structurally
overdetermined (PSO) equation set [6].

Definition 20 (SO): A set M of equations is structurally
overdetermined (SO) if M has more equations than unknowns.

Definition 21 (PSO): An SO set M is a proper structurally
overdetermined (PSO) set if M = M+.

A PSO set is generically a testable subsystem, but it may
contain smaller PSO subsets that are also testable subsystems.
The minimal PSO sets [6], namely the MSO sets, are of special
interest since they are at the core of the isolability properties.

Definition 22 (MSO): An SO set is a minimal structurally
overdetermined (MSO) set if no proper subset is an SO set.

ARRs correspond to MSO sets, which are sets of equations
with one more equation than unknowns [6]. Unknown vari-
ables can be solved using the set of equations minus one, and
then the last one is a redundant equation that can be used
to check for consistency. We adopt an MSO set based ARR
design method for our decentralized diagnoser architecture.

A. Fault-focused structural ARR generation

An efficient algorithm to compute all possible MSO sets
for a system is developed in [6]. However only MSO sets
corresponding to relevant faults are interesting to construct
residual generators, hence a fault-focused procedure. [18]
introduces the concept of Test Equation Support (TES), which
is a set of equations expressing redundancy specific to a set
of considered faults. This set of faults is known as the Test
Support (TS). A minimal TES (MTES) and a minimal TS
(MTS) are such that no proper subset is a TES and TS,
respectively.

An MSO set or an MTES circumscribes the presence of
structural redundancy that can be used to check consistency
for a part of the system. It is interesting to notice that,
whereas an MSO gives rise to one single residual generator,
an MTES gathers all the equations leading to all the possible
residual generators for the associated set of faults. MTES are
hence a more compact way than MSOs to identify residual
generators. An algorithm for finding MTES and MTS for a
given system structural description and set of interesting faults
is developed by modifying the MSO algorithm of [6]. To
generate residuals from MTESs, we use the method proposed
in [22]. It relies on developing a computational sequence to
successively solve for the unknown variables involved in a
redundant equation set. One redundant equation together with
the developed computational sequence constitute a sequential
residual generator. An algorithm to develop the computational
sequence is provided.

The FDI scheme for a centralized case can be seen in
Figure 9. The offline structural analysis and diagnoser de-
sign is illustrated at the top of the figure. The input of
the diagnoser design is the structural model M , including
information about interesting faults F (M). The MTES and
associated MTS are then computed using the algorithm of
[18] (box “MTES algorithm for finding testable sub models”).
The residual generator method is then used (box “Calculating
analytical residual generators”) for the MTES selected by the
diagnosability specification module. The analytical residual
generators are stored in the “residual generator bank” that is
used on-line, fed by system inputs and outputs as illustrated at
the bottom of Figure 9. Fault isolation is carried out after fault
detection using fault signatures which are vectors composed
of the binary residual bank output (0/non0) resulting from an
appropriate statistical test.

MTES algorithm

for finding testable sub models

Calculating

analytical residual

generators

diagnosability

specification

residual generator bank

System

diagnoser design

OFFLINE

FDI process

ONLINE

MTES

MTS
test selection

system inputs

observed

quantities

Structural

Model

including

information

about

interesting

faults

Fault

decision

fault

signature

matrix

Fig. 9. The design and implementation scheme for a centralized global
diagnoser

B. Decentralized diagnoser design

Figure 10 can be considered as the decentralized counterpart
of Figure 9. It represents the diagnoser for a subsystem at level
i and shows the communication required between diagnoser
levels.
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MTES algorithm

for finding testable sub models
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System
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test selection

system inputs

observed
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including
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residual
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shared MSO i
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calculated

shared relations
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to aid

isolation

Fault

decision

from level i 1

to level i+1

Fig. 10. The design and implementation scheme of a decentralized diagnoser
for a subsystem at level i

Local TES/MTES are defined as containing only local vari-
ables. They otherwise contain shared variables and are called
shared TES/MTES.

The diagnoser design is done offline and consists of the
steps below, performed for each subsystem Mi,j j = 1 . . . ni
at each level i = 1 . . . nl, in a nested loop. i is the level in the
hierarchy, and j the enumeration of subsystems at that level:

1) Use the MTES algorithm with the structural model of the
subsystem Mi,j as input at level i, considering shared
variables as known (box “MTES algorithm for finding
testable submodels”)
Output: local MTESs for the subsystem Mi,j at level i;
MTS for the subsystem Mi,j at level i; shared MSOs for
the subsystem Mi,j at level i to be sent at level i + 1
(arrow “to level i+1”).

2) Use the MTES algorithm with the shared MSOs coming
from subordinate local diagnosers of level i− 1
Output: hierarchical MTESs for subsystems at level i−1.

3) Use MTS and diagnosability specification to decide
which residual generators to implement (box “diagnos-
ability specification”)

4) Derive residual generators from local MTES
Output: local residual generators for subsystem Mi,j

stored in the “local residual generator bank”.
5) Derive residual generators from hierarchical MTESs

Output: hierarchical residual generators for subordinate
local diagnosers of level i−1 stored in the “hierarchical
residual generator bank”.

The aim of step 2) is to replay the MTES algorithm to
eliminate shared variables (that are assumed known locally).
It may happen that these variables are just involved in local
redundancies without fault support, i.e. are involved in an
MSO but not an MTES. This is why shared MSOs are needed
at step 2). After the offline structural analysis, the diagnoser is
implemented as a residual generator bank that is used on-line,
fed by system inputs and outputs as illustrated at the bottom
of Figure 10).

C. Extension of the equivalence for MTESs

The goal of this section is to extend the equivalence of
centralized and decentralized diagnosis to the use of Test
Equation Supports (TESs).

Proposition 4: The set of MTESs computed in a centralized
way and the set of MTESs computed in a decentralized way
ends to the same set of ARRs.

Proposition 4 is obvious from Property 1 and the fact that
the diagnoser design steps compute the set of hierarchical
MTES from the set of shared MSOs.

VII. APPLICATION TO THE ATTITUDE DETERMINATION
AND CONTROL SYSTEM OF A SATELLITE

Our work has been tested on the Attitude Determination and
Control System (ADCS) of a Low Earth Orbit satellite. After
a short description of the system and the fault scenarios, we
derive MTES and TES sets for the ADCS in a centralized way.
Then we compare this set to MTES and TES sets obtained with
a decentralized architecture. The last part of this section de-
scribes the functioning of the decentralized ADCS diagnoser.
The centralized and decentralized ARR based methods are
compared in terms of net benefits and on simulated scenarios.

A. The ADCS system

1) Satellite Dynamics: The basic dynamic equations of
satellite motion can be summarized as [23], [24]:

I · ˙(ω) = T − (ω × (I · ω)) (2)
T = Td + Tm − Tw = [Tx, Ty, Tz] (3)

Here T is the total torque acting along the body axes, while
Tm, Tw and Td are the torque vectors due to the magnetorquer,
reaction wheels and disturbances, respectively. The moment of
inertia of the satellite body is represented as I , while ω is the
angular velocity vector relative to an inertial frame.

2) ADS and ACS modeling: The sensor suite of the satellite
is composed of rate gyros for each of the three axes, and vector
sensors which are used to periodically clear the accumulated
attitude drift error from the rate gyroscopes. Sun and star
sensors are examples of vector sensors. The development
of the ADS follows that in [25] and [23]. The vector and
rate sensor outputs are used to estimate the state vector
both independently and merged together. These preliminary
estimates are then fused together to arrive at the estimate which
is fed back to the ACS. These independent estimates provide
an important redundancy in the ADS, which can be used to
check consistency.

The state vector of the satellite X is composed of the
attitude angles pitch (θ), roll (φ) and yaw (ψ) and the cor-
responding rates i.e. X = [ψ, θ, φ, ψ̇, θ̇, φ̇].

The ACS is composed of a reaction wheel assembly and
magnetotorquers for momentum dumping.

B. Structural modeling of the ADCS

1) Fault scenarios: The structural model of the system is
enriched with information about interesting faults. Following
the development in [18], faults are introduced as signals in the
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system model equations. We consider faults on the rate and
vector sensors of the ADS and the reaction wheels of the ACS
as illustrated in Figure 11 with a broken arrow. The considered
fault types include hard, soft and intermittent faults. The faults
considered are summarized in Table I. Each of the faults can
have three components corresponding to the three axes.

TABLE I
FAULT SCENARIOS OF THE ADCS

Component Subsystem Fault
Vector sensors (vs) ADS fvs (fvsx, fvsy , fvsz)
Rate sensors (rs) ADS frs (frsx, frsy , frsz)
Reaction wheel (rw) ACS frw (frwx, frwy , frwz)

2) Structural modeling: The structure of the ADCS is ab-
stracted as a set of relations R = {ri} relating sets of unknown
and known variables X = {xi} and Z = {zi}. It is repre-
sented in Figure 11 in which the variables known/unknown
or local/shared involved in every relation appear explicitly.
For example, the relation r1 is linked to z1 and z2 (known
variables) and x11 (shared variable).

Attitude Determination

(ADS)

Attitude Control

(ACS)

reaction wheel

vector sensor

rate

sensors

shared variable

known variable

unknown variable

magneto torquer

considered fault mode

Satellite

Dynamics

(DYN)

component

x1 x6

x7

x11

z1

z2

x4

x3

z3

z4

z5
x11 r1 r2

r3

r7

r8 r9

r10

r11

r12

r14

r15

r4
r5x2 x8

x9

x10

x5
r6

relation

r13

Fig. 11. Structural modeling of the ADCS

A discussion of such modeling, only for the ADS, can
be found in [26]. The relations and variables involved are
summarized in the Tables II, III and IV. Most of the relations
are composed of three behavioral equations corresponding to
the three axes indexed by subscripts x, y, and z.

While the relations and variables representing the dynamics
of the satellite (DYN) are listed separately, we consider them
part of the ADS in Section VII-C. These relations form the
input for our decentralized architecture and algorithm.

The Xshared set is composed of unknown variables
which propagate between the ADS and ACS subsystems:
Xshared = {Ttotal(x5), hw(x3),Xest(x11)} where Ttotal =
[Tx, Ty, Tz]T, and hw = [RWamx , RWamy , RWamz ]T,
Xest = [ψest, θest, φest, ψ̇est, θ̇est, φ̇est]

T.
Figure 12 shows the biadjacency matrix of the ADCS

structure with unknown, known and fault variables separated
along the X-axis. The equations along the Y-axis are the
behavioral equations of the system.

The structural model of the ADCS is composed of 42
equations in total with 42 unknown variables, 15 known
variables and 9 faults modeled as variables in the equations.

TABLE II
RELATIONS OF THE ADCS

Relations Subsystem Description
rcontrol/r1 ACS Control algorithm
rRW1/r2 ACS Reaction wheel motor dynamics
rRW2/r4 ACS Reaction wheel flywheel dynamics
rRW3/r3 ACS Reaction wheel angular momentum

integration
rMT /r6 ACS Magnetotorquer dynamics
rsumming/r7 ACS Total torque
rtachometer/r5 ACS Tachometer
rdyn/r8 DYN (ADS) Satellite dynamic equations of mo-

tion
rkin/r9 DYN (ADS) Satellite kinematic equations of

motion
rRS/r11 ADS Rate sensors
rV S/r10 ADS Vector sensors
rest1/r12 ADS State estim. with vector sensor

alone
rest2/r13 ADS State estim. with both rate and vec-

tor sensors
rest3/r14 ADS State estim. with rate sensors alone
rfusion/r15 ADS Sensor fusion

TABLE III
UNKNOWN VARIABLES OF THE ADCS

Unknown Var. Subsystem Description
ḣw/x1 ACS Derivative of flywheel angular mo-

mentum
hw/x3 ACS Flywheel angular momentum
ωw/x2 ACS Flywheel angular speed
Tm/x4 ACS Magnetic torque
Ttotal/x5 ACS Total torque on satellite
Xω/x6 DYN (ADS) Satellite angular rates
Xpos/x7 DYN (ADS) Satellite attitude angles
Xest1/x8 ADS Estim. sat. state with vector sensors

alone
Xest2/x9 ADS Estim. sat. state with rate and vec-

tor sensors
Xest3/x10 ADS Estim. sat. state with rate sensors
Xest/x11 ADS Estim.sat. state

C. MTES equivalence of centralized and decentralized diag-
nosers

1) ADCS centralized diagnoser: First we use the algorithm
to derive MTES and MTS sets for the ADCS considered glob-
ally. Faults appearing in the same MTS are not discriminable.
The list of equations ei, i = 1 . . . n, is denoted e1 . . . en.

ADCS global diagnoser: Number of MSO sets: 2448
MTS: [frwx], [frwy], [frwz], [frsx], [frsy], [frsz], [fvsx],
[fvsy], [fvsz]
MTES: [e4, e7, e10, e13], [e5, e8, e11, e14],
[e6, e9, e12, e15], [e7 . . . e21, e25], [e7 . . . e21, e26],
[e7 . . . e21, e27], [e7 . . . e21, e22, e28], [e7 . . . e21, e23, e29],
[e7 . . . e21, e24, e30]

The results demonstrate that all the considered faults can

TABLE IV
KNOWN VARIABLES OF THE ADCS

Known Var. Subsystem Description
Xref/z1 ACS Reference value of state vector
Tc/z2 ACS Reaction wheel control torques
ω̂w/z3 ACS Sensed value of reaction wheel flywheel

angular speed
X̂ω/z5 ADS Sensed satellite angular rates
X̂pos/z4 ADS Sensed satellite attitude angles
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Fig. 12. The ADCS structure and its decomposition into ACS and ADS

be detected and isolated with a centralized diagnoser for the
ADCS. The high number of MSO sets (2448) compared to
the number of MTES (9) illustrates the great computational
advantage of deriving MTES sets focused on the set of
interesting faults. These results will be used for comparison
with the decentralized configuration later on.

2) Achievable diagnosability based on local diagnosers
only: We use the algorithm to derive the MTES and MTS
sets for the ACS and ADS separately assuming that the shared
variables Xshared are unknown.

ACS local diagnoser (taking Xshared to be unknown):
MTS: [frwx], [frwy], [frwz]
Local MTES: [e4, e7, e10, e13], [e5, e8, e11, e14],
[e6, e9, e12, e15]

ADS local diagnoser (taking Xshared to be unknown)
MTS: [frsx, fvsx], [frsy, fvsy], [frsz, fvsz]
Local MTES: [e22, e25, e28], [e23, e26, e29], [e24, e27, e20]

From the results, we can conclude that all ACS faults can
be detected and isolated by the local ACD diagnoser. On the
other hand, although all ADS faults can be detected by the
local ADS diagnoser, faults on the rate and vector sensors
cannot be isolated.

3) ADCS decentralized diagnosis architecture: The pro-
posed decentralized architecture is now applied to the ADCS
by designing the local and supervisory diagnosers.

From the point of view of the local diagnosers, the shared
variables Xshared are now assumed to be known. Local
MTES remain the same as derived in the previous subsection.
Shared MTES are derived below using the new observability
assumption.

ADS local diagnoser considering Xshared known:
MTS: [frsx], [frsy], [frsz], [fvsx], [fvsy], [fvsz]
Shared MTES: [e19, e20, e21, e25], [e19, e20, e21, e26],
[e19, e20, e21, e27], [e19, e20, e21, e22, e28], [e19, e20, e21,-
e23, e29], [e19, e20, e21, e24, e30]

Complete fault isolability is achieved with the current
assumption. Let us notice that the shared MTES sets supported
by the faults that were not isolable before include relations
e19, e20, e21 and relations e22, e23, e24, i.e. the dynamic
and kinematic equations of motion of the satellite Cdyn and

Ckin, respectively. These are not functionally part of the
ADS, even though they are taken as part of the ADS in our
implementation. Rather they are the interface between the ACS
and the ADS, representing the physical behavior of the satellite
itself.

It can be concluded that it is possible to isolate
(some of) the faults in the ambiguity sets [frsx, fvsx],
[frsy, fvsy],[frsz, fvsz] if either some/all of the shared
variables are sensed in the ACS, or shared relations exist
which allow these variables to be expressed in terms of known
variables of the ACS.

ACS local diagnoser considering Xshared known
MTS: [frwx], [frwy], [frwz]
Shared MTES: [e1, e2, e3, e6 . . . e18], [e1, e2, e3, e5, e7
. . . e18], [e1, e2, e3, e4, e7 . . . e18]

Obviously, shared MTES sets do not increase isolability
since for the ACS, full isolability was already achieved with
local MTES sets. Shared MTES sets do not bring any im-
provement from this point of view. Nevertheless, they have a
degree of structural redundancy equal to 10 compared to 1 for
ACS local MTES sets. There are hence various redundant ways
of deriving the ARRs now. Xshared would indeed add pos-
sibilities of deriving consistency checks. In practice however,
residual generators would be derived using the local MTES
sets [e4, e7, e10, e13], [e5, e8, e11, e14], [e6, e9, e12, e15] be-
cause they involve less equations and result in less complex
consistency checks.

Let us use the shared MSOs of ACS and ADS at the global
level to derive the hierarchical MTES sets. If we focus the
search on the entire set of faults, we get the following results:

ADCS supervisory diagnoser to disambiguate faults:
Input behavioural relations: [e1 . . . e18] and [e19 . . . e30]
Fault vector under focus: [frwx, frwy, frwz,-
frsx, frsy, frsz, fvsx, fvsy, fvsz]
MTS: [frwx], [frwy], [frwz], [frsx], [frsy], [frsz], [fvsx],
[fvsy], [fvsz]
Hierarchical MTES: [e4, e7, e10, e13], [e5, e8, e11, e14],
[e6, e9, e12, e15], [e7 . . . e21, e25], [e7 . . . e21, e26],
[e7 . . . e21, e27], [e7 . . . e21, e22, e28], [e7 . . . e21, e23, e29],
[e7 . . . e21, e24, e30]

Consistent with the equivalence result proved in Section V,
the derived hierarchical MTES sets are exactly that derived
for the centralized ADCS diagnoser.

More interestingly, if we aim at implementing an isolation
on request architecture, we can focus the search on the
ambiguity set [frsx, fvsx]:

ADCS supervisory diagnoser to disambiguate faults
Input behavioural relations: [e1 . . . e18] and [e19 . . . e30]
Fault vector under focus: [frsx, fvsx]
MTS: [frsx], [fvsx]
Hierarchical MTES: [e4 . . . e24, e26 . . . e30],
[e4 . . . e21, e23 . . . e27, e29, e30]

Hierarchical MTES sets have a degree of structural redun-
dancy equal to 8. The faults frsx and fvsx can be isolated
now. Similar results are obtained for the ambiguities corre-
sponding to the other two fault ambiguity sets [frsy, fvsy]
and [frsz, fvsz].
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D. The decentralized ADCS diagnoser in operation

The operation of the decentralized ADCS diagnoser is
illustrated in Figure 13.
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Fig. 13. The decentralized diagnosis architecture and process applied to an
ADCS (the numbers 1 to 6 indicate the sequence of operations)

The local diagnosers run their local residual generator
banks. Let us say a fault appears in the z-axis rate sensor.
Figure 14 illustrates that the local diagnoser detects the fault
as the ADS local residual for the z-axis is not equal to zero.
It cannot isolate it because this residual reacts both to frsz
and fvsz .

Fig. 14. ADS local residuals

So, a fault isolation request is sent to the supervisory
level diagnoser, and the local diagnoser starts sending the
relevant calculated shared relations from the ADS. The fault
code is [frsz, fvsz], indicating the source of the ambiguity.
The hierarchical residual generators are then evaluated at
the supervisory level as shown in Figure 15. Fault frsz is
successfully isolated.

Importantly, this process ensures firstly that only the small-
est possible set of residual generators is evaluated during
nominal operation, which implies better reactivity of the diag-
noser, and secondly that communication bandwidth is not used
under nominal operation for interaction between the local and
supervisory diagnosers. The price to pay is a slower response
of the diagnoser when hierarchical levels are involved. In this

work, we prioritize fast response in nominal situations, which
results in significant computational gain on average.

Fig. 15. ADS hierarchical residuals for the z-axis

E. Gauging the benefits of diagnoser decentralization
We have laid out in this paper a framework for decentralized

ARR based diagnoser design. Such a groundwork enables the
design and development of model-based diagnosis systems
within the classical system enginering methodology. In this
way diagnoser development practice can be brought closer to
the development methodology of nominal functionality.

Instead of requiring full visibility, in such a decentralized
system engineering approach: 1. the diagnoser design and
algorithm is shared among project partners and an inter-
face among diagnosers is enforced with different partners
responsible for the various functional units; 2. an underlying
system simulation is shared, with interface signals visible
to all partners as required; 3. the partners provide diag-
nosers implemented first in a modeling language such as
MATLAB/Simulink and then as the project proceeds in the
target SW language to be validated together on the integration
simulator.

The hierarchical architecture implies that the method can be
scaled to much larger systems when the importance of such
design and development considerations is critical.

The considerations involved in the development and func-
tional verification of real-world FDIR systems in space appli-
cations can be found in [27]. Previous work has compared the
design and development effort of the decentralized ARR based
diagnoser with conventional rule based error monitors [28].

Studying the number of thresholds, differentiators and
associated filtering (Diff.), and integrators and associated
filtering (Int.) provides a simple way to gauge the change
in cost-benefit analysis on decentralization. While setting
simultaneous thresholds adds to tuning and validation effort,
differentiators and integrators introduce computational and
numerical complexity to the tuning, validation and run-time
efforts. In actual applications it is these considerations that tip
the balance in favor of the utilized technique (cf. Table V).
Also, while these figures are for our two levels case study,
which is small, the multiplicative effect on the figures as the
size of the system increases is considerable.

VIII. CONCLUSION

This paper presents the theoretical keystone for a decen-
tralization of model-based diagnosis within the analytical
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TABLE V
COMPARISON BETWEEN CENTRALIZED AND DECENTRALIZED ARR

BASED DIAGNOSERS

Diagnoser Thresholds Diff. Int.
Centralized 9 per fault 9 3
Decentralized 6 per fault + 2 per fault (IoR∗) 3+ (IoR) 2 3

*Isolation on Request

redundancy framework. The need for decentralized diagnosis
is justified by many applications, such as spacecrafts whose
architecture is organized into functional modules, and devel-
oped with decentralized systems engineering. The demonstra-
tion of the equivalence between decentralized and centralized
approaches for residual generation is done using the structural
approach. The second contribution is a fault focused decen-
tralized residual generation design method. The algorithms
have been implemented and tested on the ADCS of a satellite.
This case study illustrates the advantages of the decentralized
diagnosis architecture, which offers lower complexity and
isolation on request capabilities while maintaining the same
isolability power as centralized design.

Future work will focus on the optimization of the pro-
cess underlying decentralization being considered as a design
problem. Whereas we believe that the choice of subsystems
is dictated by design constraints, functionality for monolithic
systems or geographical location for distributed systems, the
definition of the hierarchical layers and the selection of resid-
ual generators leaves space for optimization.

ACKNOWLEDGMENT

This work was supported by Thales Alenia Space, France
and the French Space Agency, CNES.

REFERENCES

[1] J. Kurien and M. R-Moreno, “Costs and benefits of model-based
diagnosis,” in Aerospace Conference, 2008 IEEE, march 2008.

[2] M. Blanke, M. Kinnaert, and J. Lunze, Diagnosis and Fault-Tolerant
Control. Springer, 2006.

[3] S. Indra, L. Trave-Massuyes, and E. Chanthery, “A decentralized FDI
scheme for spacecraft: Bridging the gap between model based FDI re-
search & practice,” in 4th European Conference for Aerospace Sciences,
2011.

[4] ——, “A decentralized fault detection and isolation scheme for space-
craft: bridging the gap between model-based fault detection and isolation
research and practice,” Progress in Flight Dynamics, GNC, and Avionics,
vol. 6, pp. 281–298, 2013.

[5] J. P. Cassar and M. Staroswiecki, “A structural approach for the design of
failure detection and identification systems,” IFAC Control of Industrial
Systems, 1997.
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X. Olive, B. Pulido, and L. Travé-Massuyès, “Minimal structurally
overdetermined sets for residual generation: A comparison of alternative
approaches,” in Proceedings of the 7th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes, 2009, pp.
1480–1485.
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