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Abstract—In our data driven world, clustering is of major
importance to help end-users and decision makers understaling
information structures. Supervised learning techniques ely on
ground truth to perform the classification and are usually siwbject
to overtraining issues. On the other hand, unsupervised cktering
techniques study the structure of the data without disposig of
any training data. Given the difficulty of the task, unsupenised
learning tends to provide inferior results to supervised larning.
To boost their performance, a compromise is to use learningrdy
for some of the ambiguous classes. In this context, this pape
studies the impact of pairwise constraints to unsupervise®pec-
tral Clustering. We introduce a new generalization of congtaint
propagation which maximizes partitioning quality while reducing
annotation costs. Experiments show the efficiency of the ppmsed
scheme.

Keywords—Graph Cut, Spectral Clustering, semi-supervised
learning, pairwise constraints, video clustering.

I. INTRODUCTION

Andrei Filip and Bogdan lonescu
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When addressing a complex clustering scenario (e.g., video
data), introducing supervision in Spectral Clustering loiggly
improve clustering performance by solving efficiently these
ter ambiguities. Such constraints, commonly known as “Must
Link” and “Cannot Link”, indicate if two objects belong or
not to the same class. These constraints are generic enough
and can be provided via external knowledge, e.g., user jinput
user studies, etc. Furthermore, similarity annotationasie¥
compared to absolute class annotation, as we only need to
know if two objects belong to a same class. In view of this
idea, it is of major interest to optimize the constraintsstha
maximize clustering quality while minimizing the costs cfeu
knowledge acquisition. One of the most common strategies [8
consists in using a pairwise constraints automatic prajp@ga
approach. However, this propagation strategy is few maatio
in literature and only partially applied.

In this paper, we revisit the concept of pairwise constraint
automatic propagation and introduce a new generalization
of the bi-partitioning propagation rules for multi-paiditing.

Thanks to Internet, the amount of available multimediaE*Perimentations conducted on two types of datasets, one
information has exploded. One has to rely now on autoartificially generated in view of controlling the class segin
matic tools to index and classify these huge data in ordefluality and a publicly available video genre classification

to provide users with searching and browsing capabilities.
the searching for relevant information, user preferences a

dataset [9]; show the efficiency of the proposed approach.
The remainder of the paper is organized as following.

suggestions can improve the results by adapting them to easection Il presents the current state of the art on Spectral
personal’s interests. When assessing resembling mul@émedciustering. Section IlI-A introduces our contribution.cBen
content, many approaches have been explored to measure tfepresents the experimental results while Section V comesu
similarity between images [1] and video [2]. In this papee W the paper and discusses future work.

explore these concepts in the context of clustering techasq

There is currently a lot of literature on clustering [3], .[4]
Classic clustering deals with convex data clusters suches t

Il. SEMI-SUPERVISEDSPECTRAL CLUSTERING

The performance of the data clustering is highly depen-

simple k-means algorithm, while more complex approachesjent on the properties of the initial data. When dealing
such as mixture-resolving and mode-seeking approaches with convex data, standard approaches, such as k-means, are
artificial neural networks, are able to cope with more difficu able to provide accurate results. However, these appreache

cluster representations. One particular category of etirsg

cannot deal with data mapped onto complex manifolds that

are the Spectral Clustering Graph Cut techniques [5], thatequire more elaborated solutions. In the context of skityla
belong to manifold learning. These methods in particulamgraph clustering, state of the art manifold unfolding meiho
are known to be very effective in dealing with non-convexare typically isomap, multidimensional scaling and sp#ctr
data clusters. However, standard Spectral Clusteringirsma clustering. These methods generally attempt to identify a
unsupervised and cannot benefit from external user knowledglower dimensional space to represent and separate adgurate
Recent advances [6], [7] have shown the benefits of intreduci the initial data. In this study, we focus solely on spectral
pairwise constraints to guide the clustering procedurehSu clustering which is able to achieve high accuracy withowyt an
approaches are close to classic supervised techniques suag$sumption on the cluster shape. This method can deal with
as Support Vector Machines (SVM), but in contrast, thelarge datasets when working on sparse similarity graph#, so

knowledge is exploited to clustering in a different way.

is best candidate for approaching large scale video clasgter



Spectral Clustering Spectral Clustering
Graph Eigenspace Graph Eigenspace :> :>
i construction 7>} clustering > T construction >} clustering [
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Constraints Constraints . .
<— “celection <— “celection Rule 1 : ML+ ML = ML Rule 2 :ML+CL = CL

(@) Updating initial similarity (b) Introducing constraints into . . .
graph with constraints the clustering problem Fig. 2: Constraint propagation.

Fig. 1: Guiding spectral clustering with the help of the deac

How to introduce oracle Constraints ? entities and add into the adjacency matiX, their related
constraints: ML (1 valued) and CL (0 valued). However, there
is no guaranty for the constraints to be followed; or (ii)tz
eigenspace computation stegs illustrated in figure 1.b. Sev-

However, in its standard form, Spectral Clustering is un- ral approaches were investigated, e.g., “Flexible Cairatd

supervised and only relies on the input data. In comple s . .
situations, such as video understanding and classificatien %pec_tral Clustering” (CSP) [12] — .m“troduces the consteain
at this step and ends by k-means; “Spectral Clustering with

semantic gap between extracted features and the expegted hi Linear Constraints” (SCLC) [13] — does not use a k-means

level clustering is significant. Then, the introduction rfenal ten but onlv all bi lUustering: “Constrained Chuist
knowledge to guide Spectral Clustering becomes of interesp.cP_Put ONly allows binary clustering, 'Lonstraine 9

Following this idea, we focus our study on semi—supervised"ta Spgcttral R%gutIariz?tion"t(hC?SR)d[]%4] —thadd_s consteaint A
Spectral Clustering by adding sparse pairwise constraBys at an intermediate stage that modiies e eigenspace.

: s . . - different approach is proposed in [7], “Constrained 1-$éc
accurately choosing some specific constraints in the entlr%I oo LI S
dataset, good clustering results can be expected [10]. Thi lustering” (COSC), which integrates the constraints ihie

differs from supervised learning which involves the knadge _graph cut problem and is solved in a convex _optimizatior!-fash
at training stage being subject to data overtraining. ion. This directly leads to a two class clustering resulhwitt

the need of k-means. This method can be extended to multi-
class clustering if used in a recursive way. As shown in [7],
the COSC method achieves a lower misclassification rate than

The Spectral Clustering is well described in several tutori the previously presented methods in 2 or 10 classes problems
als like [5]. It follows three steps. However, performance comparison does not involve comsgtrai

S . o propagation but relies on constraints random selectioa tivo

1) Similarity graph construction:A similarity graph be-  ¢jasses problem with points, constrained spectral clustering
tween samples is first constructed. This similarity graph iSs conducted and ends with a number of pairwise constraints
generally sparse by the usage of a threshold or a k-NN SteFPri?her thatn. However, in such situation, we can expect than
Some kernels, like Gaussian one can be also used to expafdsnhould be the maximum number of constraints needed to
values. obtain the perfect clustering. This motivates us to ingzté

2) Eigenspace constructionSamples are then projected efficient constraint propagation.
onto a spectral space where clusters are easier to ideltify.
is generally a similarity matrix Lapacian eigeinspace.

A. Spectral Clustering

2) Constraints selectionMost of the existing approaches,
choose the constraint location randomly. However, [10jsktb

3) Data clustering in eigenspacéEinally, a standard con- that the selection of unappropriate constraints may degrad
vex clustering is performed in this space to achieve the finatlustering quality while adequate selection can signitigan
results. State of the art methods generally use a simple kmprove it. In general, there are two commonly used metrics
means. However, other convex clustering methods can also smployed to identify the relevance of a constraint: the rinfo

adopted, e.g., use of Gaussian Mixture Models [6]. mativeness — measures the amount of the added information,
and the consistency — that compares constraints with each
B. Pairwise semi-supervision in Spectral Clustering others.

As reported in [6], clustering may introduce semantic ambi- ~ The authors in [8] propose an active constraint selection
guities. This is common in image categorization since tpein model. It identifies and sorts critical edges on the k-ne¢ares
features are typically low-level descriptors while thegieted  neighbor graph and relies on expert opinion to assess the
clustering is highly semantic. In this context, a solutiertie  importance of the ones that link highly connected groups. A
addition of link constraints provided by external knowledg similar approach [6] proposes to identify the most ambiguou
One approach is in introducing “Must Link” (ML) and “Cannot objects whose links are evaluated by an expert. The original
Link” (CL) constraints between entities. However, the loma  0f this work is in the fact that this object selection triegdous
and number of such constraints should be optimized to eaforcon the links that have the highest chances to bring significan
clustering quality while keeping a low computational cost.  changes in the Spectral Clustering results.

1) Constraints managemenEonstraints can be introduced These methods are in general iterative processes with
in the first two steps of the spectral clustering (see Sectiofia posteriori” constraint selection. This implies an itéara
[I-A), namely: (i) atthe similarity graph constructiostep, as process that involves a clustering step and uses its restlts
illustrated in figure 1.a, e.g., in [6], inspired by Spectrahrn-  each iteration to select constraints. It thus leads to a high
ing (SL) [11], authors propose to identify the most ambigaiou computational cost but proved to be efficient from a partitio
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=> ? => 0| Spectral Constraint O Oracle add
" Clustering "] selection ) constraints

A
(a) Rule 3 in a multi-class case: (b) Rule 3 in a 2 class case:

CL+CL= ? CL+CL = ML _ : — v
Automatic propagation of pairwise constraints
; . ; ; Rule 1 > Rule 2 Rule 3
Fig. 3: CL 4+ C'L constraint propagation. ML+ML=>ML ML+CLe>cLl ™ L. +Cl=>ML 1

quality point of view. Fig. 6: Overview of the complete automatic pairwise corstra

. . . ) propagation system.
3) Automatic constraints propagationOnce a constraint

is introduced, other relations can benefit from this ground

truth information and neighborhood ambiguities can beeblv

without the need of supplementary expert ground truth. This One can generalize this example to thesimplex of a

process is illustrated in Figure 2, that shows the transitiv ,, partitioning case. |f(@ _ 1) CL edges exist, then,
properties of ML+ML and ML+CL combinations of local n(n—1) \ ) o

relations. The propagation is of major interest to lower thethe last==—th edge is al/ L constraint. Demonstration is
cost of expert data and reach a better partitioning quatity a iterative and analog to the tetrahedron case. Figure Srifltes

lower computational cost. the n-simplex cases with. in range [4,7].
From a computational point of view, high-order cases
[Il. A CONSTRAINT PROPAGATION FRAMEWORK are difficult to find and may be rare in sparse similarity
A. Constraint propagation generalization matrices but lower orders can be numerous and bring relevant
information.

We propose a new way of applying constraints propagation
that exploits the combination of tw6'L constraints. In gen- B Our framework proposal
eral, in the multi-class scenario, this combination is utaie. ) _
This case is illustrated in Figure 3.8 [ + CL = 7). Figure 6 presents the overall systems that includes spectra
However, as presented in [15], the bi-partition case solve§lustering and the proposed automatic pairwise consfraint
the uncertain case wher@L + CL = ML, see Figure 3.b. Propagation system. Once a spectral clustering iteratson i
Indeed, in the literature, 2-classes case are often caeside applied, oracle assesses a set of constraints, and prapagat
For example, in [7], the COSC method is presented and 3 ou$ applied using the following procedure:
of 5 benchmarks are related to bi-partitioning cases. Hewev

in such studies, no propagation is considered. Rule 1 is first used : MLs are introduced and combined

with the existing ones to generate new ones. This
To our knowledge, in 3 or higher partition cases, rule process is applied iteratively up to idempotence.

CL + CL is still reported to be uncertain. However, we can

still benefit from this configuration. As shown in Figure 4,@n

tetrahedron in a 3 partition case, if(BL edges exist, then the

Rule 2 is applied next and generates several Cl con-
straints in a single pass.

last edge is automatically/ L. Indeed, with the configuration e Rule 3is applied to generate new ML constraints. If at

from Figure 4, objects¥’ and X belong to two different least one is generated, the entire process is restarted.

classes; and a¥ and Z belong to another class, necessarily ) S )

Y and Z will belong to the same third class. Propagation limit is the fully connected graph. However, in
large dataset with very few annotations, propagation stops
earlier.

W v W v
=> IV. EXPERIMENTAL RESULTS
Z X Z X Experimental validation is conducted on two types of

. . . datasets: an artificially generated dataset that alloves dlapa-
Fig. 4: Example of a 3-class tetrahedron with 5 existing CLyation to be controlledand the real-world Blip10000 [9] video
constraints, last link is\/ L. genre classification dataset. Both datasets are used iasg-cl
or multi-class partitioning configurations. In what contethe
Spectral Clustering approaches, we experimented witht2 sta
of the art approaches: the Active Clustering method [6] Whic
manages constraints in the similarity matrix construcstap
and does not ensure constraints to be followed; Constrained
1-Spectral Clustering (COSC) [7] which handles constgint
in the eigenspace construction stage and tries to fulfilball
them.

Fig. 5: Example of an-simplex case withn classes with
@ — 1 existing CL constraints, last link is ML.

1data will be available for the final submission.



To assess performance, we use the standard adjusted Re » | Ist dataset : 2 clusters — random

index [16] which measures the similarity between two date g _| :Copopagm .« %0300
clustering. Its main advantage is to take its values between o —AG - 2 irs propagation rules o om o2, 8°
and1 where the valug means that the 2 partitions are equals & *° i o ety O
and where mainly the value indicates than the 2 partitions are g% ++-00SG - 2 frst propagation rules @ LT SFPPG =]

. . . s ---COSC - all propagation rules ° L °
untied. We compute Rand index between ground truth clustin: § o2 °© 6 "
and the obtain clustering. L g L

. I i S ised pair rat
We adopted the following validation procedure [6]: a first upervised pair rate

clustering is applied without any constraint. At each next,  2nddataset:2 clusters — partially mixed
iteration, some new constraints are chosen randomly and ir3 [T o

7 L e 8o

—AC : no propagation B qﬁ%%c n

volved in the process and managed by each Spectral Clugterii 5 %

. . B c L
method. To be fair and not algorithm dependant, constraint g °° A o e ion ules
are chosen randomely from the ground truth. Constraints argeoe4 7 —AC : all propagations rules ) O
. . . . b - ---COSC : no propagation L o oo n
propagated recursively ensuring that all possible profi@gs = oz +--COSG -2 first propagation rles| | 5o°%P |
have been performed at each iteration. Performance of thg i — - 3;/"0050;3”"""’ang;"”'“'essc/ N
results is then compared to ground truth clusters with thedRa : " Supervised pair rate ’ )
index.
y 3rd dataset : 2 clusters — contiguous
> 1 TS Teeee T T T T T
A. 2-class experiments 2 - - 1
p -g 08 & —AC: no.propagalion‘ L o ogogg _
In this experiments, no normalization is applied and com- g o¢ e = [ P lg o
puted similarities are built from the symmetric 5 nearest o4 +~-00SC : no propagation A @g*
. . . . . [0} H ---COSC : 2 first propagation rules L o
neighbors. A Gaussian weighting is employed. B oaf ---COSC : all propagation rules I & ]
. - S
We have generated five sets of data consisting of 101< %, % . S o
objects spread over 2 circular classes (see right panels Supervised pair rate
Figure 7) with the following properties: 5 4th dataset : 2 clusters — separated
. o 1 Toemeew — T glg !
e 1st datasethas randomly placed objects; 2.4 . L f@csm |
. . ) . o 2% —ACfnobpropagalion_ &§3 . &00
e 2nd datasetis partially mixed and has classes with a §os ko ainoren | [ & #b%%
wide radius variance while their support overlaps;  <oa4f ---COSC : no propagation ) 1t o
Q ---COSC 2 first propaganon rules 0o,
e  3rd datasethas classes with wide variance radius and 2*?| C0SC alpopsgatonries | | 00 ]
<

=3

non overlapping but contiguous areas; 0% 01%  02%  03%  04%  05%  06%
o . ) Supervised pair rate
e 4th dataset similar to third one but areas remain

separated; 5th dataset : 2 clusters - strongly separated

bt
©

e b5th datasethas strongly separated classes. —AC o propagation
—AC : 2 first propagation rules
—AC : all propagation rules
---COSC : no propagation
---COSC : 2 first propagation rules
---COSC : all propagation rules

Figure 7 presents the results of each clustering metho
for each of the considered data sets while using either n g
constraint propagation (black curves), the two first praiag
rules (blue curves) or all of the three rules (red curves)
Each curve is the average of 20 different randomly generate..
runs. One can observe that Active Clustering benefits thejg. 7: partition quality as a function of the supervisedr pai
most from constraint propagation. COSC method performgate for Active Learning (continuous lines) and COSC (ddshe
in general better and only takes advantage of the constraifjhes) using no propagation and the 2 first or 3 propagation
propagation when dealing with complex situations, e.gt, 1sryles. Results are reported on 5 reference datasets haring a
and 2nd datasets. increasing class separation configuration.

From a general point of view, the use of all the three rules
ensures to reach perfect partitioning in less than 100 sigset
pairs, i.e.,2% of all the possible relations. In difficult cases, - ) o )
e.g., 1st and 2nd datasets, on average, COSC is able ﬁgidmor! of constraints. This is rela_ted to the eff(_actnssne_f
converge two times faster when using constraint propagatioconstraint propagation as a function of supervised pairs as
compared to the original solution. Active Clustering cames illustrated in figure 8. When constraints are spread all over
slower than COSC but its speed factor provided by the use dhe dataset, for example when selecting constraints ratylom
constraint propagation is higher. As a reference, in an easg tOO.fEV\_I pairs are connected which limits propagation. Propa
such as for the 5th dataset, both clustering methods directigation increases much faster as long as constraints caonct
converge to maximum partition quality without the need of@Ppear.
constraints.

ed Rand index

USs!
=3
2

=3
< o

0% 0.02% 0.0‘4%_ O.Qé% 0.0‘8% 0.1%
Supervised pair rate

Regarding the impact of the third rule that we propose,
One can also observe on the 2-complex dataset exampl#se first graph of the figure 8 shows its effect onto the overall
that partition quality starts to increase only after a digant  propagation system in a two class problem. The two soligline
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Fig. 8: Number of propagated constraints as a function of 5°° ggsz frst propagaton rules B
. . . [ inopropagation | . J
supervised pairs for a 100 points 2 or 3 class dataset. 8 %8.--OSC :2 frstpropagation rles| ..+ T o
B 04f Lzt
D Lanien”
-20-27 eziizizic’t s
; ; T et N :
show the total number of added constraints with respect to a < o — — T o

set of used rules. Blue solid curve only relies on the use®f th Supervised pair rate

two first rules while the red one shows results obtained with a _. ) - . . _— .

the three rules. This latter case shows a significant inergas Fig. 9 Partition quahty as a funct]on of pairwise consital

constraint addition. More into details, those added cairsts addition. Continuous lines for Active Clustering methodian

do not only rely on the third rule : red solid line is much highe dashed Il_nes for COSC method. Red “F‘es show thg 3 rules

than the sum of the blue solid curve added to the red dotte§roPagation re§ults, blue _S.hOWS the 2 first propagatiorsrule

line of rule 3. Indeed, the total number of added constraint§€Sults. Black lines are original method results.

benefits from a domino effect coming from a synergy of all

the rules, and the third one has a dramatic effect. The second

graph of the figure 8 shows a similar tendency in the casg yariable number of items.

of a 3 class problem. In such case, the number of constraints

added by the third rule is already significant but its effecst 0~ Results are presented in Figure 9. One can observe that

the total number of added constraints is even higher. In thi# this new use case, automatic propagation brings signifi-

last example, once the oracle assessipairs, using only the ~cant convergence speed gain. More specifically, the two first

two first rules allowed 035 constraints to be added. Using also datasets show the advantage of the third propagation rule

the third rule,338 constraints are directly added, Kit91 are  pProposed in Section llI-A which allows perfect partitiogin

globally added. Finally, the third rule allows a constraigain ~ With 20% less constraint addition costs compared to the limited

of 110% compared to the use on only the two first rules. Also,use of the two first propagation rules. In this experiment,

coming back to the oracle work, its contribution is amplified COSC achieves lower performance than Active Clustering.

by a factor of15.6 by the global framework. This can be explained by the fact that COSC hierarchically
clusters data in 2-classes problems which is less adapted to

B. Multi-class experiments this 3-classes context.

When considering larger scale datasets with large number

We first present the results obtained on a 100 point con: : ;
TR . . of clusters, COSC outperforms Active Clustering. Both meth
trolled dataset which is divided into 3 equivalent clas§esch ods benefit from the proposed constraint propagation.

points of each class are randomly placed in a unity circle.
The second dataset is composed of 100 points corresponding Results shows that the 2 first propagation rules applied
to real video sequences from the Blip10000 [9] dataset. Eacbn 50,000 links, i.e., 0.37% of all possible links of the
video is described via thetandard audio featureproposed graph, allow partition quality to be improved by 21% for

in [17]. In this dataset, videos are classified in 3 equaldsize COSC and by 650% for Active Clustering. However, in such
categories: “Health”, “Documentary” and “Literature”. Aitd  cases, one should discuss about the computational costs of
dataset is proposed to show the data scalability potential che propagation technique. Indeed, the two first rules can be
these methods. It is similar to the second one but is muclpplied efficiently thanks to matrix operation vectorieatiBut
larger and comprises 5,197 videos from the Blip10000 datasehe third rule consists here in the analysis of all the 26pséx

that are distributed in 26 video genre categories. Clustave  analysis. For now, such analysis is not optimized and besome
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. . 100 [2]
# supervised pairs
Fig. 10: Number of propagated constraints as a function of
supervised pairs for a 100 points 2 class dataset. Both for[3]
total random and random linked selection constraints.

[4]
too much time and memory consuming. As a consequence,

only the two first rules have been applied. Further work sthoul
try to improve on this aspect to support large scale analysis

(6]

5]

C. Amplifying propagation effect with a constraint selenti
strategy [7]

From the beginning, object pairs were selected randomly
from the unsupervised pairs set. However, as we have seen
in section 1I-B2, many constraint selection strategiesstexi
and they have chances to amplify even more the effect of thel®!
proposed propagation method. A simple yet efficient way to
do it is to restrict random pair selection to the subset ofai
having only one object connected to an already supervisied pa [9]
Figure 10 compares this “random linked selection” stratiegy
the “totally random” selection on the same 2 class dataset as
the one used in figure 8. On green curves we can see that
the random linked selection strategy boosts propagation fd1ol
all the rules from the beginning. As an illustration, orizfe
pairs have been assessed by the oracle, the totally random
constraint strategy alloweB0 constraints to be added while [11]
random linked constraint strategy add&id). Constraints gain
amplification factor is her&. This strategy is interesting when [12]
oracle cost is high and forces annotation process to stdp ear
However, in the end, both selection methods converge to the
same value.

[13]
V. CONCLUSIONS

This paper presented a generalization of constraint propay
gation used in the case of similarity graph clustering ojatam
tion. We experimented with a controlled dataset and realdvo
video genre classification problem and showed the repeatabl
benefit of the use of the proposed constraints propagation
techniques. Two different state of the art Spectral Clirsger 15
techniques that manage constraints in different ways kenefi
from it and converge faster to higher partition quality.

The main contribution of this paper is in the generalization

: X ! . [16]
of constraint propagation techniques. We do recommend |tg
usage since it reduces the cost of constraints addition to
enhance clustering quality. In the worst case, perform&nce

would be the ones of the original clustering methods. [17]

Further work will mainly address the optimizing of the
constraint propagation from a computational point of view.

Also, the constraints selection topic becomes of majoréaste

in maximizing methods efficiency. An other perspective is to
compare such approach to state of the art supervised dhgster
techniques in challenges such as MediaEval.
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