
HAL Id: hal-01229050
https://hal.science/hal-01229050

Submitted on 16 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two Clause Learning Approaches for Disjunctive
Scheduling

Mohamed Siala, Christian Artigues, Emmanuel Hébrard

To cite this version:
Mohamed Siala, Christian Artigues, Emmanuel Hébrard. Two Clause Learning Approaches for Dis-
junctive Scheduling. Principles and Practice of Constraint Programming, Aug 2015, Cork, Ireland.
pp.393-402, �10.1007/978-3-319-23219-5_28�. �hal-01229050�

https://hal.science/hal-01229050
https://hal.archives-ouvertes.fr

Two Clause Learning Approaches for Disjunctive
Scheduling

Mohamed Siala1,2,3, Christian Artigues2,4, and Emmanuel Hebrard2,4

1 Insight Centre for Data Analytics, University College Cork, Ireland
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
4 Univ de Toulouse, LAAS, F-31400 Toulouse, France

mohamed.siala@insight-centre.org

{siala, artigues, hebrard}@laas.fr

Abstract. We revisit the standard hybrid CP/SAT approach for solv-
ing disjunctive scheduling problems. Previous methods entail the creation
of redundant clauses when lazily generating atoms standing for bounds
modifications. We first describe an alternative method for handling lazily
generated atoms without computational overhead. Next, we propose a
novel conflict analysis scheme tailored for disjunctive scheduling. Our ex-
periments on well known Job Shop Scheduling instances show compelling
evidence of the efficiency of the learning mechanism that we propose. In
particular this approach is very efficient for proving unfeasibility.

1 Introduction

Disjunctive scheduling refers to a large family of scheduling problems having in
common the Unary Resource Constraint . This constraint ensures that a set of
tasks run in sequence, that is, without any time overlap. The traditional con-
straint programming (CP) approaches for this problem rely on tailored propa-
gation algorithms (such as Edge-Finding [6, 17, 24]) and search strategies (such
as Texture [20]). The technique of Large Neighborhood Search [22] (LNS) was
also extensively used in this context [7, 25].

A different type of approaches emerged recently, based on the so-called
Conflict-Driven Clause Learning (CDCL) algorithm for SAT [16]. This proce-
dure uses resolution to learn a new clause for each conflict during search. Re-
cent constraint programming approaches similarly trade off strong propagation-
based inference for a way to learn during search. For instance, a hybrid CP/SAT
method, Lazy Clause Generation (LCG) [8, 9, 18] was shown to be extremely effi-
cient on the more general Resource Constrained Project Scheduling Problem [21]
(RCPSP). Even simple heuristic weight-based learning was shown to be very
efficient on disjunctive scheduling [10–13]. The so called light model combines
minimalist propagation with a slight variant of the weighted degree [5] heuristic.

In this paper, we propose a hybrid CP/SAT method based on this light
model. Similarly to LCG, our approach mimics CDCL However, it differs from

LCG in two main respects: First, as the time horizon can be large, literals repre-
senting changes in the bounds of the tasks domains should be generated “lazily”
during conflict analysis as it was proposed in [8]. However, handling domain con-
sistency through clauses entails redundancies and hence suboptimal propagation.
We use a dedicated propagation algorithm, running in constant amortized time,
to perform this task. The second contribution is a novel conflict analysis scheme
tailored for disjunctive scheduling. This technique could be applied to any prob-
lem where search can be restricted to a predefined set of Boolean variables. This
is the case of disjunctive scheduling since once every pair of tasks sharing the
same resource is sequenced, we are guaranteed to find a complete solution in
polynomial time. Most methods therefore only branch on the relative order of
tasks sharing a common resource. We propose to use this property to design a
different conflict analysis method where we continue resolution until having a
nogood with only Boolean variables standing for task ordering. As a result, we
do not need to generate domain atoms.

We compare the two methods experimentally and show that the benefit of
not having to generate new atoms during search outweigh in many cases the
more expressive language of literals available in traditional hybrid solvers. The
novel approach is very efficient, especially for proving unfeasibility. We were
able to improve the lower bounds on several well known Job Shop Scheduling
Problem (JSSP) benchmarks. However, a method implemented within IBM CP-
Optimizer studio recently found, in general, better bounds [25].

The rest of the paper is organized as follows: We give a short background
on hybrid CP/SAT solving in Section 2. Next, we briefly describe the baseline
CP model and strategies that we use in Section 3. We introduce in Section 4
our new lazy generation approach. In Section 5, we present our novel conflict
analysis scheme. Last, we give and discuss the experimental results in Section 6.

2 Hybrid CP/SAT Solving

In this section, we briefly describe the basic mechanisms and notations of hybrid
CP/SAT used in modern Lazy Clause Generation solvers [8, 18, 9].

Let X = [x1, .., xn] be a sequence of variables. A domain D maps every vari-
able x ∈ X to a finite set D(x)⊂ Z. D(x) is a range if max(D(x))−min(D(x)) +
1 = |D(x)|. A constraint C is defined by a relation over the domains of a se-
quence of variables. In this context, each constraint is associated to a propagator
to reduce the domains with respect to its relation. Propagators are allowed to
use only domain operations of a given type (often Jx = vK, Jx 6= vK, Jx ≤ vK, and
Jx ≥ vK). Every domain operation is associated to a literal p that can have an
atom (i.e. Boolean variable) generated “eagerly” before starting the search, or
“lazily” when learning a conflict involving this change. Let p be a literal corre-
sponding to a domain operation. level(p) is the number of nodes in the current
branch of the search tree when p becomes true (i.e., when this domain operation
takes place). Moreover, rank(p) is the number of such domain operations that
took place at the same node of the search tree before p. Last, a literal p is as-

sociated to a logical implication of the form ℘ ⇒ p where ℘ is a conjunction of
literals sufficient for a given propagator to deduce p. We call ℘ an explanation of
p. We assume that the function explain(p) returns the explanation ℘ for p. The
explanations can be computed at the moment of propagation (i.e., clausal and
forward explanations in [8]), or on demand during conflict analysis (backward).
The notion of explanation is extended to a failure ⊥ in the natural way.

Whenever a failure occurs during search, a conflict analysis procedure is
used to compute a nogood, that is, an explanation of the failure which is not
yet logically implied by the model. Algorithm 1 depicts the conflict analysis
procedure based on the 1-UIP scheme [27]. The nogood Ψ is initialized in Line 1
to the explanation for the failure. It is returned once it contains a single literal
that has been propagated at the current level (Line 2). When this is not the
case, the last propagated literal is selected and its explanation is resolved with
the current nogood in Line 3. The final nogood Ψ can be seen as

∧
i∈[1,n] pi ⇒ p

The solver then backtracks to the level l = max(level(pi)).

Algorithm 1: 1-UIP-with-Propagators
1 Ψ ← explain(⊥) ;
2 while |{q ∈ Ψ | level(q) = current level}| > 1 do

p← argmaxq({rank(q) | level(q) = current level ∧ q ∈ Ψ}) ;

3 Ψ ← Ψ ∪ {q | q ∈ explain(p) ∧ level(q) > 0} \ {p} ;

return Ψ ;

Consider now the lazy generation of atoms (i.e. after computing Ψ). When
Jx ≤ uK has to be generated, the clauses ¬Jx ≤ aK∨ Jx ≤ uK; ¬Jx ≤ uK∨ Jx ≤ bK
where a and b are the nearest generated bounds to u with a < u < b must
be added to maintain the consistency of Jx ≤ uK with respect to previously
generated atoms. In this case, the clause ¬Jx ≤ lK∨ Jx ≤ uK becomes redundant.

3 A Simple CP Model for Job Shop Scheduling

A JSSP consists in sequencing the tasks from n jobs on m machines. The jobs
J = {Ji | 1 ≤ i ≤ n} define sequences of tasks to be scheduled in a given
order. Moreover, each of the m tasks of a job must be processed by a different
machine. We denote Tik the task of job Ji requiring machine Mk. Each task Tik
is associated to a processing duration pik. Let tik be the variable representing the
starting time of task Tik. The processing interval of a task Tik is [tik, tik + pik).
For all k ∈ [1,m], the Unary Resource Constraint for machine Mk ensures that
for any i 6= j ∈ [1, n], there is no overlap between the processing interval of
Tik and Tjk. We use a simple decomposition with O(n2) Boolean variables δkij
(i < j ∈ [1, n]) per machine Mk using the following Disjunctive constraints:

δkij =

{
0⇔ tik + pik ≤ tjk
1⇔ tjk + pjk ≤ tik

(1)

A JSSP requires also a total order on the tasks of each job. We enforce this order
with simple precedence constraints. Last, the objective is to minimize the total
scheduling duration, i.e., the makespan. To this purpose, we have an objective
variable Cmax subject to precedence constraints with the last task of each job.

We use the same search strategy as that proposed in [10, 13]. First, we com-
pute a greedy upper bound on the makespan. Then we use a dichotomic search to
reduce the gap between lower and upper bounds. Each step of this dichotomic
phase corresponds to the decision problem with the makespan variable Cmax
fixed to the mid-point value. Each step is given a fixed time cutoff, and exceed-
ing it is interpreted as the instance being unsatisfiable. Therefore, the gap might
not be closed at the end of this phase, so a classic branch and bound procedure
is used until either closing the gap or reaching a global cutoff.

We branch on the Boolean variables of the Disjunctive constraints follow-
ing [13] using the solution guided approach [3] for value ordering. We use the
weighed degree heuristic taskDom/tw in a similar way to [10, 13] in addition to
VSIDS [16]. The former branches first on variables occurring most in constraints
triggering failures. The latter favors variables involved in conflict analysis.

4 Lazy Generation of Atoms

In this section we describe an efficient propagator to maintain the consistency
of lazily generated atoms. Recall that domain clauses are likely to be redundant
in this case (Section 2). Instead of generating clauses to encode the different
relationships between the newly generated atoms, we propose to encode such
relations through a dedicated propagator in order to avoid this redundancy and
hence the associated overhead. We introduce the DomainFaithfulness con-
straint. Its role is twofold: firstly, it simulates Unit-Propagation (UP) as if the
atoms were generated eagerly; secondly it performs a complete channeling be-
tween the range variable and all its generated domain atoms.

We consider only the lazy generation of atoms of the type Jx ≤ uK since all
propagators in our models perform only bound tightening operations. Neverthe-
less, the generalization with Jx = vK is quite simple and straightforward. Let x be
a range variable, [v1, . . . , vn] be a sequence of integer values, and [b1 . . . bn] be a
sequence of lazily generated Boolean variables s.t. bi is the atom Jx ≤ viK. We de-
fine DomainFaithfulness(x, [b1 . . . bn], [v1, . . . , vn]) as follows: ∀i, bi ↔ x ≤ vi.

We describe now the data structures and the procedures that allow to main-
tain Arc Consistency [4] (AC) with a constant amortized time complexity down
a branch of the search tree. We assume without loss of generality that n ≥ 1 and
that vi < vi+1. The filtering is then organized in two parts:

1. Simulating UP as if the atoms were eagerly generated with all domain
clauses. That is, whenever an atom bi becomes assigned to 1 (respectively
0), the atom bi+1 (respectively bi−1) is assigned to 1 (respectively 0).

2. Performing a complete channeling between x and b1, . . . , bn: We sketch the
process related to the upper bound of x. A similar process in applied with
the lower bound. There are two cases to distinguish:

(a) Changing the upper bound of x w.r.t. newly assigned atoms: When an
atom bi ↔ Jx ≤ viK becomes assigned to 1, we check if vi can be the new
upper bound of x. Note that a failure can be triggered if vi < min(x).

(b) In the case of an upper bound propagation event, one has to assign
some atoms to be consistent with the new upper bound u of x. Ev-
ery atom bi such that vi ≥ u has to be assigned to 1. Let iub =
arg maxk(vk | D(bk) = {1}). Observe first that the part simulating UP
(1) guarantees that all atoms bi where i > iub are already assigned
to 1. Consider now the set ϕ ={biub

, biub−1, biub−2 . . . , blastub
} where

lastub = arg mink(vk | vk ≥ u)). It is now sufficient to assign every atom
in ϕ to 1 in order to complete the filtering.

Finally, since down a branch of the search tree the upper bound can only de-
crease, we can compute the current value of iub, that is, arg maxk(vk | D(bk) = {1})
by exploring the sequence of successive upper bounds from where we previously
stopped. Therefore, each atom is visited at most once down a branch. This fil-
tering can thus be performed in constant amortized time, that is, in O(n) time
down a branch, however, we must store iub and ilb as “reversible” integers.

5 Learning Restricted to Task Ordering

Here we introduce a learning scheme as an alternative to lazy generation for
disjunctive scheduling problems. Recall that we branch only on Boolean variables
coming from the Disjunctive constraints. It follows that every bound literal
p s.t. level(p) > 0 has a non-empty explanation. We can exploit precisely this
property in order to avoid the generation of any bound atom.

The first step in this framework is to perform conflict analysis as usual by
computing the 1-UIP nogood Ψ . Next, we make sure that the latest literal in Ψ
is not a bound literal. Otherwise, we keep explaining the latest literal in Ψ until
having such UIP. We know that this procedure terminates because the worst
case would reach the last decision which corresponds to a UIP that is not a
bound literal. Let Ψ∗ be the resulting nogood.

Consider now = to be the set of bound literals in Ψ∗. Instead of generating
the corresponding atoms, we start a second phase of conflict analysis via the
procedure Substitute(=, Ψ) with (=, Ψ∗) as input. Algorithm 2 details this pro-
cedure. In each step of the main loop, a bound literal p from = is chosen (Line
1) and replaced in Ψ with its explanation (Line 2). = is updated later at each
step in Line 3. The final nogood Ψ involves only Boolean variables. Note that
the backjump level remains the same as in Ψ∗ since for every p there must exists
a literal in explain(p) with the same level of p.

The advantage of this approach is that since no atom need to be generated
during search, we do not need to maintain the consistency between tasks’ do-
mains and bounds atoms. In particular, it greatly reduces the impact that the
size of the scheduling horizon has on the space and time complexities. Note, how-
ever, that there may be a slight overhead in the conflict analysis step, compared
to the lazy generation mode, since there are more literals to explain. Moreover,

Algorithm 2: Substitute(=, Ψ)

visited← ∅ ;
while |=| > 0 do

1 p← choose p ∈ = ;
visited← visited ∪ {p} ;

2 Ψ ← Ψ ∪ {q | q ∈ explain(p) ∧ level(q) > 0} \ visited ;
3 = ← {q | q ∈ Ψ ∧ q is a bound litteral};

return Ψ ;

since the language of literal is not as rich in this method, shorter proofs may be
possible with the standard approach.

6 Experimental Results

We first compare the two approaches described in this paper, that is, the imple-
mentation of lazy generation using DomainFaithfulness (lazy) as well as the
new learning scheme (disj) against the the CP model described in [11] on two
well known benchmarks for the JSSP: Lawrence [14] and Taillard [23]. Then, we
compare the lower bounds found by our approaches with the best known lower
bounds. All models are implemented within Mistral-2.0 and are tested on Intel
Xeon E5-2640 processors. The source code, the detailed results, and the experi-
mental protocol are available at http://siala.github.io/jssp/details.pdf.

We denote CP(task) the CP model using the taskDom/tw heuristic. For
the hybrid models, we use the notation H(θ, σ) where θ ∈ {vsids, task} is the
variable ordering and σ ∈ {lazy, disj} indicates the type of learning used.

6.1 Empirical Evaluation on the Job Shop Scheduling Problem

We ran every method 10 times using randomized geometric restarts [26]. Each
dichotomy step is limited to 300s and 4×106 propagation calls. The total runtime
for each configuration is limited to 3600s. The results are summarized in Table 1.

Table 1 is divided in two parts. The first part concerns instances that are
mostly proven optimal by our experiments. We report for these instances the
average percentage of calls where optimality was proven %O, the average CPU
time T , and the number of nodes explored by second (nds/s). The second part
concerns the rest of the instances (i.e. hard instances). We report for each data
set the speed of exploration (nds/s) along with the average percentage relative
deviation (PRD) of each model. The PRD of a model m for an instance C is
computed with the formula: 100∗ Cm−Cbest

Cbest
, where Cm is the minimum makespan

found by model m for this instance ; and Cbest is the minimum makespan known
in the literature [1, 2, 25]. The bigger the PRD, the less efficient a model is.

Consider first small and medium sized instances, i.e., la-01-40, tai-01-10, and
tai-11-20. Table 1 shows clearly that the learning scheme that we introduced (i.e.
H(vsids/task, disj)) dominates the other models on these instances. For exam-
ple H(vsids, disj) proves 91.5% of Lawrence instances to optimality whereas

Table 1. Summary of the results

Instances CP(task) H(vsids, disj) H(vsids, lazy) H(task, disj) H(task, lazy)

Mostly proven optimal

%O T nds/s %O T nds/s %O T nds/s %O T nds/s %O T nds/s
la-01-40 87 522 8750 91.5 437 6814 88 632 2332 90.50 434 5218 88.75 509 2694
tai-01-10 89 768 5875 90 517 4975 88 1060 1033 90 634 3572 84 1227 1013

Hard instances

PRD nds/s PRD nds/s PRD nds/s PRD nds/s PRD nds/s
tai-11-20 1.8432 4908 1.1564 3583 1.3725 531 1.2741 2544 1.2824 489
tai-21-30 1.6131 3244 0.9150 2361 1.0841 438 0.9660 1694 0.8745 409
tai-31-40 5.4149 3501 4.0210 2623 3.7350 580 4.0536 1497 3.8844 510
tai-41-50 7.0439 2234 4.8362 1615 4.6800 436 4.9305 1003 5.0136 390
tai-51-60 3.0346 1688 3.2449 2726 3.7809 593 1.1156 1099 1.1675 575
tai-61-70 6.8598 1432 6.5890 2414 5.4264 578 3.9637 866 3.6617 533

CP(task) and H(vsids, lazy) achieve a ratio of 87% and 88%, respectively. More-
over, VSIDS generally performs better than weighted degree on these instances,
although this factor does not seem as important as the type of learning.

Consider now the rest of instances (tai-21-30 to tai-61-70). The impact of
clause learning is more visible on these instances. For example, with tai-31-
40, CP(task) has a PRD of 5.4149 while the worst hybrid model has a PRD
of 4.0536. The choice of the branching strategy seems more important on the
largest instances. For instance, on tai-51-60, the PRD of H(task, disj) is 1.1156
while H(vsids, disj) has a PRD of 3.2449.

Table 1 shows also that the CP model is often faster than any hybrid model
(w.r.t. nds/s). This is expected because of the overhead of propagating the learnt
clauses in the hybrid models. Lazy generation (lazy) slows the search down
considerably compared to the mechanism we introduced (disj).

Regarding the clauses size, we observed that the new method constantly
learns shorter clauses. For example when both methods use the heuristic VSIDS,
the average size on tai-11..20 is 31 for the disjunctive learning whereas the stan-
dard approach has an average size of 43. This may seem surprising, but several
bounds literals may share part of their explanations.

Overall, our hybrid models outperform the CP model in most cases. The
novel conflict analysis shows promising results especially for small and medium
sized instances. It should be noted that we did not find new upper bounds for
hard instances. However, our experiments show that our best model deviates
only of a few percents from the best known bounds in the literature. Note that
the state-of-the-art CP method [25] uses a timeout of 30000s (similarly to [19])
with a maximum of 600s per iteration in the bottom-up phase for improving the
lower bound. Moreover, they use the best known bounds as an extra information
along with a double threading phase. In our experiments, we use a single thread
and a fixed time limit of 3600s per instance.

6.2 Lower Bound Computation

We ran another set of experiments with a slightly modified dichotomy phase.
Here we assume that the outcome of step i is satisfiable instead of unsatisfiable
when the cutoff is reached. Each dichotomy step is limited to 1400s and the
overall time limit is 3600s. We used the set of all 22 open Taillard instances before
the results of [25] and we found 7 new lower bounds (cf. Table 2). However, most

Table 2. New Lower Bounds for Taillard Instances

tai13 tai21 tai23 tai25 tai26 tai29 tai30

new old new old new old new old new old new old new old

1305 1282 1613 1573 1514 1474 1544 1518 1561 1558 1576 1525 1515 1485

of these bounds were already improved by Viĺım et al. [25]. The main difference
is that their algorithm uses the best known bounds as an additional information
before starting search. Our models, however, are completely self-contained in the
sense where search is started from scratch (see Section 3).

We computed the average PRD w.r.t. the best known lower bound includ-
ing those reported in [25]. Excluding the set tai40-50, the best combination,
H(vsids, disj) using Luby restarts [15], finds lower bounds that are 2.78% lower,
in average, than the best known bound in the literature.

Finally, in order to find new lower bounds, we launched again the model
H(vsids, disj) with 2500s as a timeout for each dichotomy step and 7200s as a
global cutoff. We found a new lower bound of 1583 for tai-29 (previously 1573)
and one of 1528 for tai-30 (previously 1519).

7 Conclusion

We introduced two hybrid CP/SAT approaches for solving disjunctive schedul-
ing problems. The first one avoids a known redundancy issue regarding lazy
generation without computational overhead, whereas the second constitutes a
‘hand-crafted’ conflict analysis scheme for disjunctive scheduling.

These methods fit naturally the CDCL framework and, in fact, similar tech-
niques appear to have been implemented in existing hybrid solvers, such as
Chuffed, although they have never been published nor documented. Experimen-
tal evaluation shows the promise of these techniques. In particular, the novel
learning scheme is extremely efficient for proving unfeasibility. Indeed, we im-
proved the best known lower bounds of two Taillard instances.

Acknowledgments

This work is funded by CNRS and Midi-Pyrénées region (grant number 11050449).
The authors would like to thank the Insight Centre for Data Analytics for kindly
granting us access to its computational resources.

References

1. Best known lower/upper bounds for Taillard Job Shop instances.
http://optimizizer.com/TA.php. Accessed: April 15, 2015.

2. Éric Taillard homepage. http://mistic.heig-
vd.ch/taillard/problemes.dir/ordonnancement.dir/jobshop.dir/best lb up.txt.
Accessed: April 15, 2015.

3. J. Christopher Beck. Solution-guided multi-point constructive search for job shop
scheduling. Journal of Artificial Intelligence Research, 29(1):49–77, 2007.

4. Christian Bessiere. Constraint propagation. In Peter van Beek Francesca Rossi
and Toby Walsh, editors, Handbook of Constraint Programming, volume 2 of Foun-
dations of Artificial Intelligence, pages 29 – 83. Elsevier, 2006.

5. Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing Systematic Search by Weighting Constraints. In Proceedings of the 16th Euro-
pean Conference on Artificial Intelligence, ECAI’04, Valencia, Spain, pages 146–
150, 2004.

6. Jacques Carlier and Éric Pinson. An algorithm for solving the job-shop problem.
Management Science, 35(2):164–176, 1989.

7. Laurent Perron Emilie Danna. Structured vs. Unstructured Large Neighborhood
Search: A Case Study on Job-Shop Scheduling Problems with Earliness and Tardi-
ness Costs. In Proceedings of Principles and Practice of Constraint Programming
- CP’03. LNCS No. 2833, pages 817–821, 2003.

8. Thibaut Feydy, Andreas Schutt, and Peter J. Stuckey. Semantic Learning for Lazy
Clause Generation. In Proceedings of TRICS Workshop: Techniques foR Imple-
menting Constraint programming Systems, TRICS’13, Uppsala, Sweden, 2013.

9. Thibaut Feydy and Peter J. Stuckey. Lazy Clause Generation Reengineered. In
Proceedings of the 15th International Conference on Principles and Practice of
Constraint Programming, CP’09, Lisbon, Portugal, pages 352–366, 2009.

10. Diarmuid Grimes and Emmanuel Hebrard. Job Shop Scheduling with Setup
Times and Maximal Time-Lags: A Simple Constraint Programming Approach.
In Proceedings of the 7th International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
CPAIOR’10, Bologna, Italy, pages 147–161, 2010.

11. Diarmuid Grimes and Emmanuel Hebrard. Models and Strategies for Variants of
the Job Shop Scheduling Problem. In Proceedings of the 17th International Con-
ference on Principles and Practice of Constraint Programming, CP’11, Perugia,
Italy, pages 356–372, 2011.

12. Diarmuid Grimes and Emmanuel Hebrard. Solving variants of the job shop schedul-
ing problem through conflict-directed search. INFORMS Journal on Computing,
27(2):268–284, 2015.

13. Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert. Closing the Open
Shop: Contradicting Conventional Wisdom. In Proceedings of the 15th Interna-
tional Conference on Principles and Practice of Constraint Programming, CP’09,
Lisbon, Portugal, pages 400–408, 2009.

14. Stephen R. Lawrence. Supplement to Resource Constrained Project Scheduling:
An Experimental Investigation of Heuristic Scheduling Techniques. Technical re-
port, Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, PA, 1984.

15. Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las
Vegas algorithms. Information Processing Letters, 47(4):173 – 180, 1993.

16. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Annual Design Automation Conference, DAC’01, Las Vegas, Nevada, USA, pages
530–535, 2001.

17. Wim Nuijten. Time and resource constrained scheduling: a constraint satisfaction
approach. PhD thesis, Eindhoven University of Technology, 1994.

18. Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via Lazy
Clause Generation. Constraints, 14(3):357–391, 2009.

19. Panos M. Pardalos and Oleg V. Shylo. An algorithm for the job shop scheduling
problem based on global equilibrium search techniques. Computational Manage-
ment Science, 3(4):331–348, 2006.

20. Norman M. Sadeh. Lookahead techniques for micro-opportunistic job-shop schedul-
ing. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1991.

21. Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Solving
rcpsp/max by lazy clause generation. Journal of Scheduling, 16(3):273–289, 2013.

22. Paul Shaw. Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems. In Proceedings of Principles and Practice of Constraint
Programming - CP’98. LNCS No. 1520, pages 417–431, 1998.

23. Éric Taillard. Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64(2):278 – 285, 1993. Project Management anf Scheduling.

24. Petr Viĺım. Edge Finding Filtering Algorithm for Discrete Cumulative Resources
in O(kn log(n)). In Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming, CP’09, Lisbon, Portugal, volume 5732,
pages 802–816, 2009.

25. Petr Viĺım, Philippe Laborie, and Paul Shaw. Failure-directed Search for
Constraint-based Scheduling. In Proceedings of the 12th International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, CPAIOR’15, Barcelona, Spain, page to appear,
2015.

26. Toby Walsh. Search in a Small World. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence, IJCAI’99, Stockholm, Sweden, pages
1172–1177, 1999.

27. Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Ef-
ficient Conflict Driven Learning in a Boolean Satisfiability Solver. In Proceedings
of the 2001 IEEE/ACM International Conference on Computer-aided Design, IC-
CAD’01, San Jose, California, pages 279–285, 2001.

