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TEXTURE CLASSIFICATION USING RAO’S DISTANCE :
AN EM ALGORITHM ON THE POINCARÉ HALF PLANE

Salem Said, Lionel Bombrun, Yannick Berthoumieu

Laboratoire IMS (CNRS – UMR 5218), Université de Bordeaux

ABSTRACT
This paper presents a new Bayesian approach to texture classifica-
tion, yielding enhanced performance in the presence of intraclass
diversity. From a mathematical point of view, it specifies an origi-
nal EM algorithm for mixture estimation on Riemannian manifolds,
generalising existing, non probabilistic, clustering analysis methods.
For texture classification, the chosen feature space is the Riemannian
manifold known as the Poincaré half plane, here denoted H , (this is
the set of univariate normal distributions, equipped with Rao’s dis-
tance). Classes are modelled as finite mixtures of Riemannian priors,
(Riemannian priors are probability distributions, recently introduced
by the authors, which represent clusters of points in H). During the
training phase of classification, the EM algorithm, proposed in this
paper, computes maximum likelihood estimates of the parameters of
these mixtures. The algorithm combines the structure of an EM al-
gorithm for mixture estimation, with a Riemannian gradient descent,
for computing weighted Riemannian centres of mass.

Index Terms— Texture classification, Information geometry,
Riemannian centre of mass, Mixture estimation, EM algorithm

1. INTRODUCTION

In information geometry [1], a parametric family of probability den-
sities is considered as a Riemannian manifold. Precisely, the role of
Riemannian metric is played by the Fisher metric, and that of Rie-
mannian distance by Rao’s distance, (see below, Sections 2 and 3).
The use of Rao’s distance has lead to several statistical applications
being formulated as problems of clustering analysis on Riemannian
manifolds. These include object detection and tracking, shape clas-
sification, and image segmentation [2–5].

The present paper considers the use of Rao’s distance in tex-
ture classification. In doing so, it offers a new probabilistic ap-
proach to clustering analysis on Riemannian manifolds, taking ad-
vantage of the concept of Riemannian prior, recently introduced by
the authors [6]. This allows for clustering analysis to be carried
out using an expectation-maximisation, or EM, algorithm, instead
of the essentially deterministic k-means approach of existing works,
(e.g. [2–5]).

Riemannian priors are defined as follows [6], (see Section 4).
Let Θ be the parameter space, of a given parametric family, and
d(θ1, θ2) denote Rao’s distance, between θ1, θ2 ∈ Θ. A Riemannian
prior distribution G(θ̄, γ) has two parameters, the centre of mass
θ̄ ∈ Θ, and the dispersion γ > 0. Its density, with respect to the
volume element defined by the Fisher metric, has the form

p(θ∣θ̄, γ) =
1

Z(γ)
exp [−

d2
(θ, θ̄)

2γ2
] (1)

The most important property of Riemannian priors, as defined in
(1), is the fact that the normalisation constant Z(γ), does not de-

pend on θ̄, (see Proposition 2, below). This property holds whenever
Θ, equipped with Rao’s distance, is a symmetric space of negative
sectional curvature, (see definition in [7]). This is the case when Θ
is the Poincaré half plane, considered in the present paper, or when
Θ is the space of covariance matrices, as in [2–5], which will be the
subject of a future journal submission.

The new approach to clustering analysis, introduced in this pa-
per, is the following, (see Section 5). Assume a class of points C =
{θ1, . . . , θN} ⊂ Θ is expected to contain K clusters C1, . . . ,CK .
Each cluster Ca is modelled as a sample from a Riemannian prior
G(θ̄a, γa). Then, the class C is modelled as a sample from a
mixture distribution, whose components are the Riemannian priors
G(θ̄a, γa), (see equation (12)). Accordingly, the task of clustering
analysis is reduced to maximum likelihood estimation of the param-
eters of a mixture of Riemannian priors. This is realised using an
original EM algorithm, (the main steps are (14)–(16) and (17)–(18)).

The major advantage offered by the probabilistic approach of
the present paper, over existing deterministic approaches, is the fact
that a cluster Ca is described, in addition to its centre θ̄a, by a dis-
persion parameter γa. This additional parameter serves as a measure
of confidence, in the cluster Ca, with a more dispersed cluster being
assigned a lower level of confidence, (see discussion after (8)).

In addition to its general contribution to clustering analysis, the
present paper aims to pursue the application to texture classification,
started in [6]. This was based on the description of textures using
the outputs of a bank of Gabor filters, as in [8, 9]. These outputs are
assumed to constitute univariate normal populations, (that is, they
follow univariate normal distributions). Then, in [6], the idea is to
use Riemannian priors on the Poincaré half plane, (as defined in (1)),
as prior distributions for Bayesian classification of univariate normal
populations. Recall, here, that the Poincaré half plane is the set of
univariate normal distributions, equipped with Rao’s distance. Geo-
metrically, (see Section 3), this is the half plane H ⊂ R2, consisting
of points z = (x, y) where y > 0. If Π = {π1, . . . , πn} ⊂ R is
a univariate normal population, with empirical mean and variance
µ̂ and σ̂2, then Π is represented by the point z(Π) ∈ H , where
z(Π) = (µ̂/

√
2, σ̂), (see (4) and (5)).

The present paper, in order to improve upon the performance ob-
tained in [6], uses mixtures of Riemannian priors, rather than “sin-
gle” Riemannian priors, as prior distributions for classification. This
is motivated by the observation that Riemannian priors, mainly due
to their relatively simple structure, fail to take into account the pres-
ence of intraclass diversity, which may arise from variations in illu-
mination or viewing conditions [10]. Precisely, intraclass diversity
leads to classes of textures having a more complex configuration,
where each class may contain several distinct clusters. The gain in
performance, achieved through the present use of mixtures of Rie-
mannian priors, is demonstrated in Section 6.



2. FISHER INFORMATION AS A RIEMANNIAN METRIC

The Fisher information matrix is an object of considerable impor-
tance in parametric statistics. In finite sample statistics [11], it gives
the Cramér-Rao lower bound, on the variance of unbiased estima-
tors. In large sample statistics [12], its inverse matrix is the asymp-
totic covariance of the maximum likelihood estimator. In 1945 [13],
Rao discovered that the Fisher matrix also has a geometric signif-
icance, as it can be used to define a Riemannian metric, (that is, a
length element), on parametric models.

Recall the definition of the Fisher matrix. Let {Pθ; θ ∈ Θ} be a
parametric family of positive probability densities, whose parameter
space Θ ⊂ Rp is an open set. For θ = (θi; i = 1, . . . p), the Fisher
matrix I(θ) has matrix elements,

Iij(θ) = Eθ [
∂ logPθ
∂θi

∂ logPθ
∂θj

] i, j = 1, . . . , p (2)

where Eθ denotes expectation under Pθ . Rao’s main observation is
that the expression

d`2(θ) =∑
i,j

Iij(θ)dθ
idθj (3)

is invariant under reparameterisation. Precisely, if a new parameter ρ
is used instead of θ, then d`2(ρ) = d`2(θ), as long as the relation be-
tween ρ and θ is unique and differentiable. This invariance property
makes it sensible to think of d`2(θ), (indeed, a positive quantity), as
a length element. In effect [1], expression (3) defines a Riemannian
metric on Θ. This is often called the Fisher metric, although it is
really due to Rao.

Throughout the following, the parametric model under consid-
eration is the univariate normal model. That is, Θ ⊂ R2 is the set of
couples θ = (µ,σ) where σ > 0, and Pθ the univariate normal distri-
bution having mean µ and variance σ2. To express the Fisher metric
on this parametric model, one may take advantage of the invariance
property just mentioned. Use the new parameter

z = (x, y) x = µ/
√

2 and y = σ (4)

Then [14], expression (3) reduces to

d`2(z) =
dx2 + dy2

y2
(5)

This expression is the foundation of Rao’s Riemannian geometry of
the univariate normal model. As explained in the following section,
it leads to identifying this parametric model with the Riemannian
manifold known as the Poincaré half plane.

3. RAO’S DISTANCE AND CLASSIFICATION

Consider the univariate normal model with the parameter z, defined
in (4) of the previous section. Clearly, z ranges over the set H =

{(x, y); y > 0} ⊂ R2. As with any Riemannian metric, the metric
(5) on H induces a Riemannian distance d ∶ H ×H → R+. In infor-
mation geometry, this Riemannian distance, induced by the Fisher
metric, is called Rao’s distance [1, 14].

On the other hand, in Riemannian geometry [15, 16], the set H ,
(which is the upper half plane of R2), equipped with the Rieman-
nian metric (5), is known as the Poincaré half plane. As such, the
Fisher metric leads to identifying the univariate normal model with
the Poincaré half plane.

Roughly [15], the Riemannian distance d is defined as follows.
The length of a curve c(t) ∈H , where t ∈ [a, b], with c(a) = z1 and

c(b) = z2, is L(c) = ∫
b

a d`(c(t)). By definition, the Riemannian
distance between z1 and z2 is the infemum of L(c), taken over all
such curves c. It has the analytic expression [16],

d(z1, z2) = acosh( 1 +
(x1 − x2)

2
+ (y1 − y2)

2

2y1y2
) (6)

In the present paper, Rao’s distance is used in the classification of
univariate normal populations, (recall every such population Π is
represented by a point z(Π) ∈ H). For the purpose of classification,
Rao’s distance offers several advantages, which are discussed in the
following. First, it yields the important property of existence and
uniqueness of Riemannian centre of mass, given in Proposition 1
below, (an up-to-date reference on the concept of Riemannian centre
of mass is [17]).

Let C = {z1, . . . zN} be a cluster of points in H . Also, let ω =

{ω1, . . . , ωN}, be positive weights, with ω1+. . .+ωN = 1. Consider
the problem of minimising the weighted sum of squared distances,

V ∶H → R+ where V (z) =
1

2

N

∑
j=1

ωj × d
2
(zj , z) (7)

Here, a global minimiser of V will be called a weighted Riemannian
centre of mass of the cluster C, for the given set of weights ω. In
the case of uniform weighting, ω1 = . . . = ωN = 1/N , such a global
minimiser is called a Riemannian centre of mass of C.

Proposition 1 (Uniqueness of centre of mass) For any cluster
C = {z1, . . . zN} ⊂ H and any weights ω = {ω1, . . . , ωN}, as
above, the function V of (7) has a unique global minimiser ẑω . In
particular, any cluster C of points in H has a unique Riemannian
centre of mass ẑ.

Proof: This follows from a general result in [17], (Theorem 2.1,
Page 659), which implies existence and uniqueness of weighted Rie-
mannian centres of mass, in Riemannian manifolds with sectional
curvature bounded above by a negative number. But the Poincaré
half plane is a Riemannian manifold of constant negative sectional
curvature, so the result of [17] applies immediately. ∎

A Riemannian gradient descent algorithm, for computation of
weighted Riemannian centres of mass in H is given in Section 5.

The importance of Proposition 1 for classification is illustrated
by the approach taken in [18]. Assume within a learning sequence
of objects, each represented by a univariate normal population, clus-
ters C1, . . . ,CK have been identified. These may be thought of
as clusters of points in the Poincaré half plane H . To each clus-
ter Ca, (a = 1, . . . ,K), one may associate its Riemannian centre of
mass ẑa. Then, given a new test object, described by a point zt ∈
H , one decides to associate it to the cluster C∗ where d(zt, ẑ∗) =

mina {d(zt, ẑa)}, (minimum over a = 1, . . . ,K).

4. RIEMANNIAN PRIORS FOR BAYESIAN
CLASSIFICATION

Recently [6], the authors of the present paper have proposed a new
Bayesian approach, generalising the “nearest neighbour” approach
of [18], (described at the end of the previous section), and improving
upon its performance.

The idea of this Bayesian approach is to model a cluster C =

{z1, . . . zN} ⊂ H , as a sample of size N drawn from a probability
distribution G(z̄, γ) on H , called a Riemannian prior. The distribu-
tion G(z̄, γ) has two parameters, the centre of mass z̄ ∈ H , and the



dispersion γ > 0. It is designed to have the property, (see Proposi-
tion 2 below), that the maximum likelihood estimate of z̄ is non other
than the Riemannian centre of mass ẑ ofC, (which was defined after
(7)). The maximum likelihood estimate of γ will be denoted γ̂.

In [6], Riemannian priors were used to classify univariate nor-
mal populations, based on a maximum-marginal-likelihood decision
rule. Precisely, assume that clusters Ca (a = 1, . . . ,K) lead to maxi-
mum likelihood estimates (ẑa, γ̂a). It was shown, in [6], there exists
an increasing function Z ∶ R+ → R+, such that a test object, de-
scribed by zt ∈H , is associated to the cluster C∗, which realises the
following minimum over a

mina {logZ(γ̂a) +
1

2γ̂2
a
d2

(zt, ẑa)} (8)

This decision rule reduces to the “nearest neighbour” rule, used
in [18], when all classes have the same dispersion, i.e. γa is the
same for all a. By taking into account the role of dispersion, the
decision rule (8) ascribes a smaller likelihood to classes with a larger
dispersion.

The exact definition of Riemannian priors is the following. Re-
call the Fisher metric (5) can be used to define a Riemannian area
element dA(z). This is given by dA(z) = dxdy/y2. The Rieman-
nian prior distribution G(z̄, γ) has probability density with respect
to dA(z),

p(z∣z̄, γ) =
1

Z(γ)
exp [−

d2
(z, z̄)

2γ2
] (9)

Where d2
(z, z̄) is the square of Rao’s distance, defined in (6), and

the normalisation constant Z(γ) is given by

Z(γ) = 2π × (πγ2
/2)

1
2 × eγ

2/2
× erf(γ/

√
2 ) (10)

where erf is the error function [19]. This last expression was found
in [6], by ensuring the integral of p(z∣z̄, γ) with respect to dA(z) is
equal to 1. It is remarkable, as it shows that the normalisation con-
stant does not depend on z̄. Mathematically [16], this results from
the invariance of Rao’s distance under all Moebius transformations
of the Poincaré half plane. This yields the second advantage of using
Rao’s distance in classification, which is encapsulated in the follow-
ing Proposition 2.

Proposition 2 (Maximum likelihood is Centre of mass) For the
Riemannian prior G(z̄, γ), the maximum likelihood estimate of z̄,
based on C = {z1, . . . , zN}, is the Riemannian centre of mass ẑ of
C, defined according to (7).

Proof: Using (9), as in [6], the log-likelihood function is found to
be

L(z̄, γ) = −N logZ(γ) −
1

2γ2

N

∑
j=1

d2
(zj , z̄) (11)

Since Z(γ) does not depend on z̄, the first term on the right hand
side may be overlooked, in seeking the maximum of L(z̄, γ) over z̄.
To conclude, it is enough to compare the second term to (7). ∎

5. EM ALGORITHM FOR MIXTURE ESTIMATION

This section presents the main original contribution of the present
paper. Namely, a new EM algorithm, for the estimation of mixtures
of Riemannian priors on the Poincaré half plane. The need for this
task, of estimating mixtures of Riemannian priors, stems from the
following observation.

While successful, in application to specific data sets, the
Bayesian approach of [6], summarised in the previous section,
fails to take into account the presence of intraclass diversity. Pre-
cisely, this approach assumes that the given learning sequence is
immediately subdivided into clusters, whose members display “ho-
mogeneous” properties, in the sense that they can be faithfully
modelled as belonging to the same Riemannian prior.

Clearly, this is a restrictive assumption. In the presence of in-
traclass diversity, a learning sequence should be subdivided into
classes, whose members display “heterogeneous” properties, in
the sense that they may belong, within the same class, to different
clusters, each corresponding to a different Riemannian prior.

Here, this situation is formulated as follows. If a class C, whose
members are points z1, . . . , zN ∈ H , is expected to contain K clus-
ters, respectively corresponding to Riemannian priors G(z̄a, γa),
where a = 1, . . . ,K, then C is modelled as a sample of size N ,
drawn from the mixture of Riemannian priors

p(z∣$a, z̄a, γa) =
K

∑
a=1

$a p(z∣z̄a, γa) (12)

where $1, . . . ,$K are positive weights, with $1 + . . . +$K = 1,
and each density p(z∣z̄a, γa) is given by (9).

Now, assume a training sequence is subdivided into classes, each
containing a known numbers of clusters. In order to implement a de-
cision rule, generalising rule (8), which associates any test object,
described by zt ∈ H , to the most likely cluster within the train-
ing sequence, it is necessary, for each class C, modelled by (12),
to find maximum likelihood estimates of the mixture parameters
ϑ = ($a, z̄, γa).

Here, this task is realised using an expectation-maximisation, or
EM, algorithm. This algorithm proceeds along the general lines of
EM algorithms for mixture estimation, see [20, 21], with necessary
adaptation to the use of Riemannian priors of the form (9).

In order to respect the number of pages allocated for this pa-
per, the derivation of the algorithm from first principles, exhibiting
the “expectation” and the “maximisation” steps, is here omitted, in
favour of a more detailed description of the algorithm itself, at a
computational level.

Following [20], the starting point, for the EM algorithm, is the
introduction of the following quantities

ωa(zj)∝$a × p(zj ∣z̄a, γa) na =
N

∑
j=1

ωa(zj) (13)

where, ∝ denotes proportionality, so that ∑a ωa(zj) = 1. To em-
phasise the fact that ωa(zj) and na are computed for a given value
of ϑ = ($a, z̄, γa), they shall be denoted ωa(zj , ϑ) and na(ϑ).

The algorithm iteratively updates ϑ̂ = ($̂a, ẑa, γ̂a), an approx-
imation of the maximum likelihood estimate of ϑ = ($a, z̄a, γa).
Precisely, the update rules for $̂a, ẑa, and γ̂a are repeated, for as
long as this introduces a sensible change in the values of $̂a, ẑa,
and γ̂a. Other stopping criteria, involving the amount of increase
in the joint likelihood function of $̂a, ẑa, and γ̂a, may be used.
Also, it is useful to run the algorithm several times, with different
initialisations. The update rules are the following,

▸ Update for $̂a: Based on the current value of ϑ̂, assign to $̂a the
new value

$̂new
a =

na(ϑ̂)

∑
K
a=1 na(ϑ̂)

(14)



▸ Update for ẑa: Based on the current value of ϑ̂, compute ẑa to be
the global minimiser of the following function, (compare to (7)),

V (z∣ϑ̂) =
1

2

N

∑
j=1

ωa(zj , ϑ̂) × d
2
(zj , z) (15)

▸ Update for γ̂a: Based on the current value of ϑ̂, compute γ̂a to be
the solution of the following equation, for unknown γ,

F (γ) =
1

2na(ϑ̂)
V (ẑa∣ϑ̂) (16)

where F (γ) = γ3
× d
dγ

logZ(γ).

These three update rules should be performed in the above given
order. Therefore, the “current value of ϑ̂ = ($̂a, ẑa, γ̂a)” is dif-
ferent, in each one of them. For instance, in the update rule of γ̂a,
the current value of ẑa is found from the minimisation of (15), just
before.

Realisation of the update rules for $̂a and γ̂a is rather straight-
forward. On the other hand, the update rule for ẑa requires minimi-
sation of the function V (z∣ϑ̂), which is a function defined on H .

Since this is a function of the form (7), Proposition 1, of Section
3, guarantees it has a unique global minimiser ẑa. Moreover, by a
further result of [17], ẑa is the unique stationary point of V (z∣ϑ̂).
It is therefore justified to compute ẑa using a Riemannian gradient
descent algorithm, (for the definition of such algorithms, see [22]).

To state this algorithm, denote, for simplicity, ωa(zj , ϑ̂) ≡ ωj
and ẑa ≡ ẑ. This is possible since a and ϑ are fixed. Also, denote
the Riemannian exponential and logarithm mappings expz ∶ C→H
and logz ∶H → C, respectively, for z ∈H . The exact expressions of
these mappings are given in [6].

At the n-th iteration of the algorithm, an approximation ẑn of ẑ
is available. Then, one computes,

µ =
N

∑
j=1

ωj logẑn(zj) (17)

And, for the new approximation ẑn+1,

ẑn+1 = expẑn(τn × µ) (18)

where τn > 0 is a step-size parameter, which may be chosen manu-
ally, or according to a backtracking procedure.

This algorithm is indeed a Riemannian gradient descent algo-
rithm, for the function V (z∣ϑ̂) defined in (15). The Riemannian
gradient of V (z∣ϑ̂), computed at ẑn, is equal to −µ, given by (17).
Therefore, one may repeat the iteration (17)–(18) for as long as
∣µ∣ > ε, where ε is a suitable precision parameter.

6. APPLICATION TO THE VISTEX DATABASE

The present section proposes a new decision rule, for the classifica-
tion of univariate normal populations, and applies it to texture clas-
sification, using the VisTex texture database [23]. The new decision
rule, given by (19) below, is a generalisation of decision rule (8), tak-
ing into account the new mixture model (12), defined in the previous
section.

To begin, the decision rule (19) is presented from the general
point of view of classification of univariate normal populations. As-
sume a training sequence of univariate normal populations is avail-
able. Each univariate normal population Π is represented by a point

z(Π) ∈ H . Thus, the training sequence can be thought of as a train-
ing sequence of points in H .

Within this training sequence, classes C = {z1, . . . , zN} ⊂ H
are identified, (the number N depends on the given class C ). Each
class is assumed to contain the same number K of clusters, and is
modelled as a sample drawn from a mixture distribution (12). First,
the EM algorithm of Section 5 is applied to each class, leading to
maximum likelihood estimates ($̂a, ẑa, γ̂a), for a = 1, . . . ,K. Each
triple of such estimates defines a cluster within the training sequence.
Denote the total number of clusters defined in this way L, and the
corresponding maximum likelihood estimates ($̂c, ẑc, γ̂c), for c =
1, . . . , L. Then, a test population represented by zt ∈H is associated
to the cluster C∗, realising the minimum over c,

minc {− log $̂c + logZ(γ̂c) +
1

2γ̂2
c
d2

(zt, ẑc)} (19)

This is the new decision rule, proposed for use with the mixture
model (12). It reduces to rule (8) of Section (4), in the case where
K = 1 — in this case, $c = 1 identically, according to (12).

In application to the VisTex database, the following numerical
experiment was carried out, (for a detailed presentation, the reader
should refer to [6, 8]).

Half the database, 20 images, was used for training, and other
half for testing. Each of the 20 training images was subdivided into
169 subimages of 128×128 pixels, with a 32 pixel overlap. For each
training subimage, 24 Gabor energy subbands were computed. Each
subband s of subimage j gives a univariate normal population Πsj ,
represented by a point zsj ∈H .

Each training image I, thought of as a class, in the sense of
Section 5, gives N = 169 “arrays”, zj ≡ (zsj ; s = 1, . . . ,24), corre-
sponding to subimages j = 1, . . . ,N . These arrays zj are considered
as multivariate realisations of a mixture distribution (12), with inde-
pendent components (zsj ; s = 1, . . . ,24), (for this step, see [6]).

Decision rules (8) and (19) were applied to subimages from the
20 test images. The following table shows their performance, as well
as that of a benchmark decision rule, here called the “conjugate prior
rule”, based on the use of a conjugate normal-inverse gamma prior,
in place of the Riemannian prior (9), (again, this is detailed in [6]).

Table 1 : Classification performance with the VisTex database

Prior Decision rule Overall Accuracy

Riemannian prior (9) Rule (8) 83.29 ± 0.51%

Mixture prior (12) Rule (19) with K=3 88.50 ± 0.88%

Conjugate prior Conjugate prior rule 83.48 ± 0.53%

The table shows that decision rule (8) has sensibly the same per-
formance as the conjugate prior rule. On the other hand, decision
rule (19), based on the mixture model (12), and implementing the
EM algorithm of Section 5, displays much better performance than
the two other rules, (a gain of 5 points in overall accuracy).

It may be surprising, to the reader, that decision rule (8) does not
perform significantly better than the benchmark conjugate prior rule.
It should be noted this is due to the presence of overlap among the
textures in the training sequence, (as mentioned above). In [6], each
one of the 20 training images was subdivided into 16 non overlap-
ping subimages. Then, decision rule (8) lead to an overall accuracy
of 71.88 ± 2.61%, while the conjugate prior rule lead to an overall
accuracy of 68.73 ± 2.92%.
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