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This paper presents a new Bayesian approach to texture classification, yielding enhanced performance in the presence of intraclass diversity. From a mathematical point of view, it specifies an original EM algorithm for mixture estimation on Riemannian manifolds, generalising existing, non probabilistic, clustering analysis methods. For texture classification, the chosen feature space is the Riemannian manifold known as the Poincaré half plane, here denoted H, (this is the set of univariate normal distributions, equipped with Rao's distance). Classes are modelled as finite mixtures of Riemannian priors, (Riemannian priors are probability distributions, recently introduced by the authors, which represent clusters of points in H). During the training phase of classification, the EM algorithm, proposed in this paper, computes maximum likelihood estimates of the parameters of these mixtures. The algorithm combines the structure of an EM algorithm for mixture estimation, with a Riemannian gradient descent, for computing weighted Riemannian centres of mass.

INTRODUCTION

In information geometry [START_REF] Amari | Methods of information geometry[END_REF], a parametric family of probability densities is considered as a Riemannian manifold. Precisely, the role of Riemannian metric is played by the Fisher metric, and that of Riemannian distance by Rao's distance, (see below, Sections 2 and 3). The use of Rao's distance has lead to several statistical applications being formulated as problems of clustering analysis on Riemannian manifolds. These include object detection and tracking, shape classification, and image segmentation [START_REF] Tuzel | Pedestrian detection via classification on Riemannian manifolds[END_REF][START_REF] Porikli | Covariance tracking using model update based means on Riemannian manifolds[END_REF][START_REF] Kurtek | Parameterization invariant shape statistics and probabilistic classification of anatomical surfaces[END_REF][START_REF] Gu | Improving superpixelbased image segmentation by incorporating color covariance matrix manifolds[END_REF].

The present paper considers the use of Rao's distance in texture classification. In doing so, it offers a new probabilistic approach to clustering analysis on Riemannian manifolds, taking advantage of the concept of Riemannian prior, recently introduced by the authors [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF]. This allows for clustering analysis to be carried out using an expectation-maximisation, or EM, algorithm, instead of the essentially deterministic k-means approach of existing works, (e.g. [START_REF] Tuzel | Pedestrian detection via classification on Riemannian manifolds[END_REF][START_REF] Porikli | Covariance tracking using model update based means on Riemannian manifolds[END_REF][START_REF] Kurtek | Parameterization invariant shape statistics and probabilistic classification of anatomical surfaces[END_REF][START_REF] Gu | Improving superpixelbased image segmentation by incorporating color covariance matrix manifolds[END_REF]).

Riemannian priors are defined as follows [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], (see Section 4). Let Θ be the parameter space, of a given parametric family, and d(θ1, θ2) denote Rao's distance, between θ1, θ2 ∈ Θ. A Riemannian prior distribution G( θ, γ) has two parameters, the centre of mass θ ∈ Θ, and the dispersion γ > 0. Its density, with respect to the volume element defined by the Fisher metric, has the form

p(θ θ, γ) = 1 Z(γ) exp - d 2 (θ, θ) 2γ 2 (1) 
The most important property of Riemannian priors, as defined in [START_REF] Amari | Methods of information geometry[END_REF], is the fact that the normalisation constant Z(γ), does not de-pend on θ, (see Proposition 2,below). This property holds whenever Θ, equipped with Rao's distance, is a symmetric space of negative sectional curvature, (see definition in [START_REF] Terras | Harmonic analysis on symmetric spaces and application[END_REF]). This is the case when Θ is the Poincaré half plane, considered in the present paper, or when Θ is the space of covariance matrices, as in [START_REF] Tuzel | Pedestrian detection via classification on Riemannian manifolds[END_REF][START_REF] Porikli | Covariance tracking using model update based means on Riemannian manifolds[END_REF][START_REF] Kurtek | Parameterization invariant shape statistics and probabilistic classification of anatomical surfaces[END_REF][START_REF] Gu | Improving superpixelbased image segmentation by incorporating color covariance matrix manifolds[END_REF], which will be the subject of a future journal submission.

The new approach to clustering analysis, introduced in this paper, is the following, (see Section 5). Assume a class of points C = {θ1, . . . , θ N } ⊂ Θ is expected to contain K clusters C1, . . . , C K . Each cluster Ca is modelled as a sample from a Riemannian prior G( θa, γa). Then, the class C is modelled as a sample from a mixture distribution, whose components are the Riemannian priors G( θa, γa), (see equation ( 12)). Accordingly, the task of clustering analysis is reduced to maximum likelihood estimation of the parameters of a mixture of Riemannian priors. This is realised using an original EM algorithm, (the main steps are ( 14)-( 16) and ( 17)-( 18)).

The major advantage offered by the probabilistic approach of the present paper, over existing deterministic approaches, is the fact that a cluster Ca is described, in addition to its centre θa, by a dispersion parameter γa. This additional parameter serves as a measure of confidence, in the cluster Ca, with a more dispersed cluster being assigned a lower level of confidence, (see discussion after [START_REF] Grigorescu | Comparison of texture features based on gabor filters[END_REF]).

In addition to its general contribution to clustering analysis, the present paper aims to pursue the application to texture classification, started in [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF]. This was based on the description of textures using the outputs of a bank of Gabor filters, as in [START_REF] Grigorescu | Comparison of texture features based on gabor filters[END_REF][START_REF]Rotation-invariant and scale-invariant gabor features for texture image retrieval[END_REF]. These outputs are assumed to constitute univariate normal populations, (that is, they follow univariate normal distributions). Then, in [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], the idea is to use Riemannian priors on the Poincaré half plane, (as defined in (1)), as prior distributions for Bayesian classification of univariate normal populations. Recall, here, that the Poincaré half plane is the set of univariate normal distributions, equipped with Rao's distance. Geometrically, (see Section 3), this is the half plane H ⊂ R 2 , consisting of points z = (x, y) where y > 0. If Π = {π1, . . . , πn} ⊂ R is a univariate normal population, with empirical mean and variance μ and σ2 , then Π is represented by the point z(Π) ∈ H, where z(Π) = (μ √ 2, σ), (see (4) and ( 5)).

The present paper, in order to improve upon the performance obtained in [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], uses mixtures of Riemannian priors, rather than "single" Riemannian priors, as prior distributions for classification. This is motivated by the observation that Riemannian priors, mainly due to their relatively simple structure, fail to take into account the presence of intraclass diversity, which may arise from variations in illumination or viewing conditions [START_REF] Schutz | K-centroidsbased supervised classification of texture images using the SIRV modeling[END_REF]. Precisely, intraclass diversity leads to classes of textures having a more complex configuration, where each class may contain several distinct clusters. The gain in performance, achieved through the present use of mixtures of Riemannian priors, is demonstrated in Section 6.

FISHER INFORMATION AS A RIEMANNIAN METRIC

The Fisher information matrix is an object of considerable importance in parametric statistics. In finite sample statistics [START_REF] Lehmann | Theory of point estimation[END_REF], it gives the Cramér-Rao lower bound, on the variance of unbiased estimators. In large sample statistics [START_REF] Ibragimov | Statistical estimation: asymptotic theory[END_REF], its inverse matrix is the asymptotic covariance of the maximum likelihood estimator. In 1945 [START_REF] Rao | Information and the accuracy attainable in the estimation of statistical parameters[END_REF], Rao discovered that the Fisher matrix also has a geometric significance, as it can be used to define a Riemannian metric, (that is, a length element), on parametric models.

Recall the definition of the Fisher matrix. Let {P θ ; θ ∈ Θ} be a parametric family of positive probability densities, whose parameter space Θ ⊂ R p is an open set. For θ = (θ i ; i = 1, . . . p), the Fisher matrix I(θ) has matrix elements,

Iij(θ) = E θ ∂ log P θ ∂θ i ∂ log P θ ∂θ j i, j = 1, . . . , p (2) 
where E θ denotes expectation under P θ . Rao's main observation is that the expression

d 2 (θ) = i,j Iij(θ)dθ i dθ j (3) 
is invariant under reparameterisation. Precisely, if a new parameter ρ is used instead of θ, then d 2 (ρ) = d 2 (θ), as long as the relation between ρ and θ is unique and differentiable. This invariance property makes it sensible to think of d 2 (θ), (indeed, a positive quantity), as a length element. In effect [START_REF] Amari | Methods of information geometry[END_REF], expression (3) defines a Riemannian metric on Θ. This is often called the Fisher metric, although it is really due to Rao.

Throughout the following, the parametric model under consideration is the univariate normal model. That is, Θ ⊂ R 2 is the set of couples θ = (µ, σ) where σ > 0, and P θ the univariate normal distribution having mean µ and variance σ 2 . To express the Fisher metric on this parametric model, one may take advantage of the invariance property just mentioned. Use the new parameter

z = (x, y) x = µ √ 2 and y = σ (4) 
Then [START_REF] Atkinson | Rao's distance measure[END_REF], expression (3) reduces to

d 2 (z) = dx 2 + dy 2 y 2 (5) 
This expression is the foundation of Rao's Riemannian geometry of the univariate normal model. As explained in the following section, it leads to identifying this parametric model with the Riemannian manifold known as the Poincaré half plane.

RAO'S DISTANCE AND CLASSIFICATION

Consider the univariate normal model with the parameter z, defined in (4) of the previous section. Clearly, z ranges over the set H = {(x, y); y > 0} ⊂ R 2 . As with any Riemannian metric, the metric (5) on H induces a Riemannian distance d ∶ H × H → R+. In information geometry, this Riemannian distance, induced by the Fisher metric, is called Rao's distance [START_REF] Amari | Methods of information geometry[END_REF][START_REF] Atkinson | Rao's distance measure[END_REF].

On the other hand, in Riemannian geometry [START_REF] Berger | A panoramic view of Riemannian geometry[END_REF][START_REF] Ramsay | Introduction to hyperbolic geometry[END_REF], the set H, (which is the upper half plane of R 2 ), equipped with the Riemannian metric [START_REF] Gu | Improving superpixelbased image segmentation by incorporating color covariance matrix manifolds[END_REF], is known as the Poincaré half plane. As such, the Fisher metric leads to identifying the univariate normal model with the Poincaré half plane.

Roughly [START_REF] Berger | A panoramic view of Riemannian geometry[END_REF], the Riemannian distance d is defined as follows. The length of a curve c(t) ∈ H, where t ∈ [a, b], with c(a) = z1 and

c(b) = z2, is L(c) = ∫ b a d (c(t))
. By definition, the Riemannian distance between z1 and z2 is the infemum of L(c), taken over all such curves c. It has the analytic expression [START_REF] Ramsay | Introduction to hyperbolic geometry[END_REF],

d(z1, z2) = acosh 1 + (x1 -x2) 2 + (y1 -y2) 2 2y1y2 (6) 
In the present paper, Rao's distance is used in the classification of univariate normal populations, (recall every such population Π is represented by a point z(Π) ∈ H). For the purpose of classification, Rao's distance offers several advantages, which are discussed in the following. First, it yields the important property of existence and uniqueness of Riemannian centre of mass, given in Proposition 1 below, (an up-to-date reference on the concept of Riemannian centre of mass is [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness and convexity[END_REF]). Let C = {z1, . . . z N } be a cluster of points in H. Also, let ω = {ω1, . . . , ω N }, be positive weights, with ω1 +. . .+ω N = 1. Consider the problem of minimising the weighted sum of squared distances,

V ∶ H → R+ where V (z) = 1 2 N j=1 ωj × d 2 (zj, z) (7) 
Here, a global minimiser of V will be called a weighted Riemannian centre of mass of the cluster C, for the given set of weights ω. In the case of uniform weighting, ω1 = . . . = ω N = 1 N , such a global minimiser is called a Riemannian centre of mass of C.

Proposition 1 (Uniqueness of centre of mass) For any cluster C = {z1, . . . z N } ⊂ H and any weights ω = {ω1, . . . , ω N }, as above, the function V of ( 7) has a unique global minimiser ẑω. In particular, any cluster C of points in H has a unique Riemannian centre of mass ẑ.

Proof: This follows from a general result in [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness and convexity[END_REF], (Theorem 2.1, Page 659), which implies existence and uniqueness of weighted Riemannian centres of mass, in Riemannian manifolds with sectional curvature bounded above by a negative number. But the Poincaré half plane is a Riemannian manifold of constant negative sectional curvature, so the result of [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness and convexity[END_REF] applies immediately. ∎ A Riemannian gradient descent algorithm, for computation of weighted Riemannian centres of mass in H is given in Section 5.

The importance of Proposition 1 for classification is illustrated by the approach taken in [START_REF] Nielsen | Hyperbolic voronoi diagrams made easy[END_REF]. Assume within a learning sequence of objects, each represented by a univariate normal population, clusters C1, . . . , C K have been identified. These may be thought of as clusters of points in the Poincaré half plane H. To each cluster Ca, (a = 1, . . . , K), one may associate its Riemannian centre of mass ẑa. Then, given a new test object, described by a point zt ∈ H, one decides to associate it to the cluster C * where d(zt, ẑ * ) = mina {d(zt, ẑa)}, (minimum over a = 1, . . . , K).

RIEMANNIAN PRIORS FOR BAYESIAN CLASSIFICATION

Recently [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], the authors of the present paper have proposed a new Bayesian approach, generalising the "nearest neighbour" approach of [START_REF] Nielsen | Hyperbolic voronoi diagrams made easy[END_REF], (described at the end of the previous section), and improving upon its performance. The idea of this Bayesian approach is to model a cluster C = {z1, . . . z N } ⊂ H, as a sample of size N drawn from a probability distribution G(z, γ) on H, called a Riemannian prior. The distribution G(z, γ) has two parameters, the centre of mass z ∈ H, and the dispersion γ > 0. It is designed to have the property, (see Proposition 2 below), that the maximum likelihood estimate of z is non other than the Riemannian centre of mass ẑ of C, (which was defined after [START_REF] Terras | Harmonic analysis on symmetric spaces and application[END_REF]). The maximum likelihood estimate of γ will be denoted γ.

In [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], Riemannian priors were used to classify univariate normal populations, based on a maximum-marginal-likelihood decision rule. Precisely, assume that clusters Ca (a = 1, . . . , K) lead to maximum likelihood estimates (ẑa, γa). It was shown, in [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], there exists an increasing function Z ∶ R+ → R+, such that a test object, described by zt ∈ H, is associated to the cluster C * , which realises the following minimum over a

mina {log Z(γa) + 1 2γ 2 a d 2 (zt, ẑa)} (8) 
This decision rule reduces to the "nearest neighbour" rule, used in [START_REF] Nielsen | Hyperbolic voronoi diagrams made easy[END_REF], when all classes have the same dispersion, i.e. γa is the same for all a. By taking into account the role of dispersion, the decision rule (8) ascribes a smaller likelihood to classes with a larger dispersion.

The exact definition of Riemannian priors is the following. Recall the Fisher metric (5) can be used to define a Riemannian area element dA(z). This is given by dA(z) = dxdy y 2 . The Riemannian prior distribution G(z, γ) has probability density with respect to dA(z),

p(z z, γ) = 1 Z(γ) exp - d 2 (z, z) 2γ 2 (9) 
Where d 2 (z, z) is the square of Rao's distance, defined in ( 6), and the normalisation constant Z(γ) is given by

Z(γ) = 2π × πγ 2 2 1 2 × e γ 2 2 × erf( γ √ 2 ) ( 10 
)
where erf is the error function [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]. This last expression was found in [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], by ensuring the integral of p(z z, γ) with respect to dA(z) is equal to 1. It is remarkable, as it shows that the normalisation constant does not depend on z. Mathematically [START_REF] Ramsay | Introduction to hyperbolic geometry[END_REF], this results from the invariance of Rao's distance under all Moebius transformations of the Poincaré half plane. This yields the second advantage of using Rao's distance in classification, which is encapsulated in the following Proposition 2.

Proposition 2 (Maximum likelihood is Centre of mass) For the Riemannian prior G(z, γ), the maximum likelihood estimate of z, based on C = {z1, . . . , z N }, is the Riemannian centre of mass ẑ of C, defined according to [START_REF] Terras | Harmonic analysis on symmetric spaces and application[END_REF].

Proof: Using (9), as in [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], the log-likelihood function is found to be

L(z, γ) = -N log Z(γ) - 1 2γ 2 N j=1 d 2 (zj, z) (11) 
Since Z(γ) does not depend on z, the first term on the right hand side may be overlooked, in seeking the maximum of L(z, γ) over z.

To conclude, it is enough to compare the second term to [START_REF] Terras | Harmonic analysis on symmetric spaces and application[END_REF]. ∎

EM ALGORITHM FOR MIXTURE ESTIMATION

This section presents the main original contribution of the present paper. Namely, a new EM algorithm, for the estimation of mixtures of Riemannian priors on the Poincaré half plane. The need for this task, of estimating mixtures of Riemannian priors, stems from the following observation.

While successful, in application to specific data sets, the Bayesian approach of [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], summarised in the previous section, fails to take into account the presence of intraclass diversity. Precisely, this approach assumes that the given learning sequence is immediately subdivided into clusters, whose members display "homogeneous" properties, in the sense that they can be faithfully modelled as belonging to the same Riemannian prior.

Clearly, this is a restrictive assumption. In the presence of intraclass diversity, a learning sequence should be subdivided into classes, whose members display "heterogeneous" properties, in the sense that they may belong, within the same class, to different clusters, each corresponding to a different Riemannian prior.

Here, this situation is formulated as follows. If a class C, whose members are points z1, . . . , z N ∈ H, is expected to contain K clusters, respectively corresponding to Riemannian priors G(za, γa), where a = 1, . . . , K, then C is modelled as a sample of size N , drawn from the mixture of Riemannian priors

p(z a, za, γa) = K a=1 a p(z za, γa) (12) 
where 1, . . . , K are positive weights, with 1 + . . . + K = 1, and each density p(z za, γa) is given by ( 9). Now, assume a training sequence is subdivided into classes, each containing a known numbers of clusters. In order to implement a decision rule, generalising rule [START_REF] Grigorescu | Comparison of texture features based on gabor filters[END_REF], which associates any test object, described by zt ∈ H, to the most likely cluster within the training sequence, it is necessary, for each class C, modelled by [START_REF] Ibragimov | Statistical estimation: asymptotic theory[END_REF], to find maximum likelihood estimates of the mixture parameters ϑ = ( a, z, γa).

Here, this task is realised using an expectation-maximisation, or EM, algorithm. This algorithm proceeds along the general lines of EM algorithms for mixture estimation, see [START_REF] Mengersen | Mixtures : estimation and applications[END_REF][START_REF] Fruhwirth-Schnatter | Finite mixture and Markov switching models[END_REF], with necessary adaptation to the use of Riemannian priors of the form [START_REF]Rotation-invariant and scale-invariant gabor features for texture image retrieval[END_REF].

In order to respect the number of pages allocated for this paper, the derivation of the algorithm from first principles, exhibiting the "expectation" and the "maximisation" steps, is here omitted, in favour of a more detailed description of the algorithm itself, at a computational level.

Following [START_REF] Mengersen | Mixtures : estimation and applications[END_REF], the starting point, for the EM algorithm, is the introduction of the following quantities

ωa(zj) ∝ a × p(zj za, γa) na = N j=1 ωa(zj) (13) 
where, ∝ denotes proportionality, so that ∑ a ωa(zj) = 1. To emphasise the fact that ωa(zj) and na are computed for a given value of ϑ = ( a, z, γa), they shall be denoted ωa(zj, ϑ) and na(ϑ).

The algorithm iteratively updates θ = ( ˆ a, ẑa, γa), an approximation of the maximum likelihood estimate of ϑ = ( a, za, γa). Precisely, the update rules for ˆ a, ẑa, and γa are repeated, for as long as this introduces a sensible change in the values of ˆ a, ẑa, and γa. Other stopping criteria, involving the amount of increase in the joint likelihood function of ˆ a, ẑa, and γa, may be used. Also, it is useful to run the algorithm several times, with different initialisations. The update rules are the following, ▸ Update for ˆ a: Based on the current value of θ, assign to ˆ a the new value

ˆ new a = na( θ) ∑ K a=1 na( θ) (14) 
▸ Update for ẑa: Based on the current value of θ, compute ẑa to be the global minimiser of the following function, (compare to (7)),

V (z θ) = 1 2 N j=1 ωa(zj, θ) × d 2 (zj, z) (15) 
▸ Update for γa: Based on the current value of θ, compute γa to be the solution of the following equation, for unknown γ,

F (γ) = 1 2na( θ) V (ẑa θ) (16) 
where

F (γ) = γ 3 × d dγ log Z(γ).
These three update rules should be performed in the above given order. Therefore, the "current value of θ = ( ˆ a, ẑa, γa)" is different, in each one of them. For instance, in the update rule of γa, the current value of ẑa is found from the minimisation of ( 15), just before.

Realisation of the update rules for ˆ a and γa is rather straightforward. On the other hand, the update rule for ẑa requires minimisation of the function V (z θ), which is a function defined on H.

Since this is a function of the form (7), Proposition 1, of Section 3, guarantees it has a unique global minimiser ẑa. Moreover, by a further result of [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness and convexity[END_REF], ẑa is the unique stationary point of V (z θ). It is therefore justified to compute ẑa using a Riemannian gradient descent algorithm, (for the definition of such algorithms, see [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF]).

To state this algorithm, denote, for simplicity, ωa(zj, θ) ≡ ωj and ẑa ≡ ẑ. This is possible since a and ϑ are fixed. Also, denote the Riemannian exponential and logarithm mappings exp z ∶ C → H and log z ∶ H → C, respectively, for z ∈ H. The exact expressions of these mappings are given in [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF].

At the n-th iteration of the algorithm, an approximation ẑn of ẑ is available. Then, one computes,

µ = N j=1 ωj log ẑn (zj) (17) 
And, for the new approximation ẑn+1, ẑn+1 = exp ẑn (τn × µ)

where τn > 0 is a step-size parameter, which may be chosen manually, or according to a backtracking procedure. This algorithm is indeed a Riemannian gradient descent algorithm, for the function V (z θ) defined in [START_REF] Berger | A panoramic view of Riemannian geometry[END_REF]. The Riemannian gradient of V (z θ), computed at ẑn, is equal to -µ, given by [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness and convexity[END_REF]. Therefore, one may repeat the iteration ( 17)-( 18) for as long as µ > , where is a suitable precision parameter.

APPLICATION TO THE VISTEX DATABASE

The present section proposes a new decision rule, for the classification of univariate normal populations, and applies it to texture classification, using the VisTex texture database [START_REF]MIT Media Lab Vision and Modeling group[END_REF]. The new decision rule, given by ( 19) below, is a generalisation of decision rule (8), taking into account the new mixture model [START_REF] Ibragimov | Statistical estimation: asymptotic theory[END_REF], defined in the previous section.

To begin, the decision rule ( 19) is presented from the general point of view of classification of univariate normal populations. Assume a training sequence of univariate normal populations is available. Each univariate normal population Π is represented by a point z(Π) ∈ H. Thus, the training sequence can be thought of as a training sequence of points in H.

Within this training sequence, classes C = {z1, . . . , z N } ⊂ H are identified, (the number N depends on the given class C ). Each class is assumed to contain the same number K of clusters, and is modelled as a sample drawn from a mixture distribution [START_REF] Ibragimov | Statistical estimation: asymptotic theory[END_REF]. First, the EM algorithm of Section 5 is applied to each class, leading to maximum likelihood estimates ( ˆ a, ẑa, γa), for a = 1, . . . , K. Each triple of such estimates defines a cluster within the training sequence. Denote the total number of clusters defined in this way L, and the corresponding maximum likelihood estimates ( ˆ c, ẑc, γc), for c = 1, . . . , L. Then, a test population represented by zt ∈ H is associated to the cluster C * , realising the minimum over c,

minc {-log ˆ c + log Z(γc) + 1 2γ 2 c d 2 (zt, ẑc)} (19) 
This is the new decision rule, proposed for use with the mixture model [START_REF] Ibragimov | Statistical estimation: asymptotic theory[END_REF]. It reduces to rule [START_REF] Grigorescu | Comparison of texture features based on gabor filters[END_REF] of Section (4), in the case where K = 1 -in this case, c = 1 identically, according to [START_REF] Ibragimov | Statistical estimation: asymptotic theory[END_REF].

In application to the VisTex database, the following numerical experiment was carried out, (for a detailed presentation, the reader should refer to [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF][START_REF] Grigorescu | Comparison of texture features based on gabor filters[END_REF]).

Half the database, 20 images, was used for training, and other half for testing. Each of the 20 training images was subdivided into 169 subimages of 128×128 pixels, with a 32 pixel overlap. For each training subimage, 24 Gabor energy subbands were computed. Each subband s of subimage j gives a univariate normal population Πsj, represented by a point zsj ∈ H.

Each training image I, thought of as a class, in the sense of Section 5, gives N = 169 "arrays", zj ≡ (zsj; s = 1, . . . , 24), corresponding to subimages j = 1, . . . , N . These arrays zj are considered as multivariate realisations of a mixture distribution [START_REF] Ibragimov | Statistical estimation: asymptotic theory[END_REF], with independent components (zsj; s = 1, . . . , 24), (for this step, see [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF]).

Decision rules [START_REF] Grigorescu | Comparison of texture features based on gabor filters[END_REF] and [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] were applied to subimages from the 20 test images. The following table shows their performance, as well as that of a benchmark decision rule, here called the "conjugate prior rule", based on the use of a conjugate normal-inverse gamma prior, in place of the Riemannian prior (9), (again, this is detailed in [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF]). The table shows that decision rule (8) has sensibly the same performance as the conjugate prior rule. On the other hand, decision rule [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF], based on the mixture model [START_REF] Ibragimov | Statistical estimation: asymptotic theory[END_REF], and implementing the EM algorithm of Section 5, displays much better performance than the two other rules, (a gain of 5 points in overall accuracy).

It may be surprising, to the reader, that decision rule (8) does not perform significantly better than the benchmark conjugate prior rule. It should be noted this is due to the presence of overlap among the textures in the training sequence, (as mentioned above). In [START_REF] Said | New Riemannian priors on the univariate normal model[END_REF], each one of the 20 training images was subdivided into 16 non overlapping subimages. Then, decision rule (8) lead to an overall accuracy of 71.88 ± 2.61%, while the conjugate prior rule lead to an overall accuracy of 68.73 ± 2.92%.

Table 1 :

 1 Classification performance with the VisTex database

	Prior	Decision rule	Overall Accuracy
	Riemannian prior (9)	Rule (8)	83.29 ± 0.51%
	Mixture prior (12)	Rule (19) with K=3	88.50 ± 0.88%
	Conjugate prior	Conjugate prior rule	83.48 ± 0.53%
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