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ABSTRACT 33 

Aim: Within river and coastal ecosystems worldwide, water, wind and sediment flows 34 

generate a shifting landscape mosaic composed of bare substrate, pioneer and 35 

mature vegetation successional stages. Pioneer-plant species that colonise these 36 

ecosystems at the land-water interface have developed specific traits to 37 

environmental constraints (response traits) and are able to modify habitat conditions 38 

by modulating geomorphic processes (effect traits). Changes in the geomorphic 39 

environment under the control of engineer plants often feed back to organism traits 40 

(feedback traits), and thereby ecosystem functioning, leading to eco-evolutionary 41 

dynamics. Here we explain the joint foundations of fluvial and coastal ecosystems 42 

according to feedbacks between plants and the geomorphic environment. 43 

Location: Dynamic river and coastal ecosystems worldwide. 44 

Method: Drawing from a pre-existing model of ‘fluvial biogeomorphic succession’, we 45 

propose a conceptual framework showing that fluvial and coastal ‘biogeomorphic 46 

ecosystems’ are functionally similar due to eco-evolutionary feedbacks between 47 

plants and geomorphology. 48 

Results: The relationships between plant traits and their geomorphic environments 49 

within the different fluvial and coastal biogeomorphic ecosystems are identified and 50 

classified within a framework of biogeomorphic functional similarity according to three 51 

criteria: (i) pioneer plants develop specific responses to the geomorphic environment; 52 

(ii) engineer plants modulate the geomorphic environment; (iii) geomorphic changes 53 

under biotic control within biogeomorphic ecosystems feed back to organisms. 54 

Main conclusions: The conceptual framework of functional similarity proposed here 55 

will improve our capacity to analyse, compare, manage and restore fluvial and 56 

coastal biogeomorphic ecosystems worldwide by using the same protocols based on 57 

the three criteria and the four phases of the biogeomorphic succession model. 58 

59 
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 60 

INTRODUCTION 61 

The geomorphic heterogeneity and variability of fluvial and coastal ecosystems (i.e. 62 

rivers, coastal and estuarine salt marshes and mangroves, coastal dunes) makes 63 

them among the most dynamic  and productive ecosystems over extensive linear 64 

stretches of the Earth surface. These ecosystems at the interface between land and 65 

water (Fig. 1) encompass an enormous diversity of physical configurations, and 66 

species life forms and assemblages, reflecting the regional and local geological, 67 

geomorphic and bioclimatic settings. However, they also share common features 68 

reflecting the relation between plant dynamics and the geomorphic environment. 69 

The structure and function of any physically disturbed fluvial or coastal ecosystem 70 

(e.g. meso to macrotidal conditions along the coast, piedmont to plain river reaches) 71 

result from feedbacks between plant dynamics and motion of water, wind, and 72 

sediment. Based on the strong feedbacks between plants and geomorphology, Balke 73 

et al. (2014) recently termed fluvial and coastal ecosystems ‘biogeomorphic 74 

ecosystems’ (BE), implying that ecosystem structure and function (i.e. habitat 75 

properties and species assemblages; matter and energy fluxes) are emergent 76 

properties of plant-geomorphic feedbacks. These feedbacks exist because of the 77 

ability of plants to adjust their characteristics to a geomorphologically-dynamic 78 

environment by genotypic or phenotypic adaptation, enhancing connectedness (i.e. 79 

degree to which the integrity of an ecosystem is controlled through internal feedbacks 80 

between small and large scale processes), and resistance and resilience (i.e. ability 81 

of the system to recover from physical disturbances) (see Holling, 1973). The BEs we 82 

define here relate exclusively to ‘geomorphologically dynamic ecosystems’, which are 83 

unstable and subject to frequent and regular physical disturbance. The BE concept is 84 

directly related to the ‘fluvial biogeomorphic succession’ (Corenblit et al., 2007, 85 

2009a), which encompasses four phases of matter and energy organization in space 86 

and time (i.e. geomorphic, pioneer, biogeomorphic, ecological; Fig. 2). Each phase is 87 

linked to different time- and space-limited ecosystem structures and functions and is 88 

characterized by a specific set of interactions and feedbacks between plants and 89 

geomorphology. 90 

The geomorphic phase is the rejuvenation phase following a flood, storm or tsunami, 91 

during which landform properties and stability are mainly defined by hydrodynamic 92 

and aerodynamic forces and intrinsic sediment cohesiveness. During this phase, the 93 

geomorphic environment controls plant diaspore dispersal (Fig. 2). During the 94 

pioneer phase, vegetation recruitment occurs on newly formed bare sediment 95 

surfaces, and the geomorphic environment controls seed germination and seedling 96 

survival and growth (Fig. 2). During the biogeomorphic phase, strong feedbacks 97 
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occur between plant and geomorphic dynamics as morphological and biomechanical 98 

characteristics of plants strongly interact with substrate cohesion and geomorphic 99 

flows of matter and energy. In the absence of major physical disturbances, changes 100 

in the geomorphic environment under the control of and resulting feedback on plants, 101 

result in the stabilization of the ecosystem during the ecological phase where biotic 102 

interactions dominate (Fig. 2). 103 

It has been suggested that the ‘fluvial biogeomorphic succession’ model is relevant to 104 

dynamic rivers (Davies and Gibling, 2013; Gurnell, 2014; Bätz et al., 2015), and also 105 

coastal (Kim, 2012; Balke et al., 2014), and terrestrial BEs (e.g. lateral moraines, 106 

Eichel et al., 2013), implying that it could be a useful common foundation for 107 

investigating many geomorphically dynamic ecosystems. However, this wide range of 108 

applicability does not imply that the quantity and intensity of interactions of plant - 109 

geomorphology feedbacks are the same in each BE because: (i) many different taxa 110 

and floristic assemblages are observed according to local and regional settings; (ii) at 111 

the same location, divergent trajectories in plant community assemblages can occur 112 

during the biogeomorphic succession, reflecting variations in initial biological and 113 

physical conditions; (iii) the duration and spatial extension of each phase of the 114 

biogeomorphic succession varies with the disturbance regime; (iv) different feedback 115 

loops exist between plants and geomorphology and related biogeomorphic stability 116 

according to the disturbance regime and plant characteristics. 117 

Although BEs differ widely taxonomically around the world, comparable constraints 118 

can lead to convergent patterns of adaptive traits developing across taxa, as implied 119 

by the functional framework of adaptive CSR strategies proposed by Grime (2001). A 120 

‘trait’ is any morphological, biomechanical, physiological or phenological feature, 121 

measurable at the individual level, from the cell to the whole-organism (Violle et al., 122 

2007). Many pioneer plant species have homologous traits optimizing their capacity 123 

for reproduction, survival and growth (i.e. fitness) within areas exposed to water, wind 124 

and sediment flows (Hesp, 1991; Bornette et al., 2008). This does not mean that all 125 

co-occurring species have the same characteristics; alternative strategies may co-126 

occur to cope with a stress, causing a few response trait-groups to co-inhabit a 127 

specific habitat (Stallins, 2005; Puijalon et al., 2011).  128 

We suggest that fluvial and coastal BEs are functionally similar as a result of 129 

dominant feedback mechanisms between the geomorphic environment and plant 130 

response, effect and feedback traits. Here, response traits are any plant attributes 131 

that provide an adaptive response to water or wind flow, sediment erosion, 132 

transportation and deposition, and lead to successful dispersal, recruitment, 133 

establishment and reproduction. Effect traits are morphological and biomechanical 134 

plant traits that induce a significant effect on the geomorphic environment. Within 135 

BEs, response and effect traits are strongly linked and may coincide because 136 
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successful colonization is a prerequisite for plants to affect the geomorphic 137 

environment and create biogeomorphic feedbacks. For example, a multi-stemmed 138 

flexible morphology may increase the capacity of a plant to resist hydrodynamic 139 

forces (response) while also affecting sediment fluxes and topography (effect). We 140 

define feedback traits as those that provide a response to the modification they 141 

induce in the geomorphic dimensions of their niche. 142 

Based on a critical review of ecological and geomorphological investigations of fluvial 143 

and coastal ecosystems across the world, we highlight below how different engineer 144 

(sensu Jones, 2012) pioneer plants respond to wind, water and sediment flows and 145 

affect geomorphic processes in a similar way, leading to an enhanced understanding 146 

of the role of plant traits in geomorphologically-dynamic ecosystems that opens new 147 

research perspectives.  148 

The trait-based approach we propose here to define a BE is founded on three key 149 

criteria related to the geomorphic setting and to the nature of its relation with plants 150 

(Fig. 3): (1) plants must have developed specific response traits to the geomorphic 151 

environment and its disturbances; (2) they must display effect traits that control the 152 

geomorphic environment; (3) they must display feedback traits to these biotic-153 

controlled geomorphic changes. In the presence of a biogeomorphic ecosystem 154 

sensu stricto, all three criteria have to apply to the plants. In this paper the term ‘trait’ 155 

(response, effect and feedback) will be used as recommended by Violle et al. (2007) 156 

specifically at the level of individuals. However, responses, effects and feedbacks 157 

can relate to varying spatio-temporal levels including individuals (i.e. plastic and 158 

evolutionary adjustments of traits), populations (i.e. changes in survival-mortality 159 

ratio, age structure, cover) and communities (i.e. adjustments in short and long-term 160 

floristic assemblages and biodiversity). 161 

CRITERION 1: RESPONSE TRAITS OF PIONEER PLANTS TO THE 162 

GEOMORPHIC ENVIRONMENT 163 

BEs are unstable and subjected to a physical disturbance regime 164 

Most fluvial and coastal BEs consist of unconsolidated sediment and are subjected to 165 

a natural disturbance regime (i.e. variations in river water flow, tidal currents and 166 

waves, or wind), incorporating both low to medium magnitude variations in 167 

hydrodynamic and aerodynamic forces, and also less predictable medium to high 168 

magnitude exceptional fluctuations during extreme events (Naiman et al., 2008). 169 

Within rivers, the disturbance regime corresponds to seasonal variations in water 170 

level and velocity and medium intensity flow pulses, and isolated intense flood 171 

events. Within salt marshes and mangroves, it corresponds to daily and seasonal 172 

variations in tidal water level and isolated storm or tsunami events. Within coastal 173 
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dunes, it relates to seasonal variations in extratropical and tropical storm tracks, 174 

mean wind velocity and direction, and isolated storm and tsunami events (Balke et 175 

al., 2014).  176 

Plant assemblages and their corresponding functional structure within BEs vary along 177 

gradients of exposure to these physical disturbances (Fig. 4), and also along 178 

gradients of stress related to anoxia, salinity, drought or competition. Within fluvial 179 

ecosystems these gradients are superimposed onto transverse gradients of 180 

hydrogeomorphic connectivity and topography from the channel to the floodplain 181 

(Bornette et al., 2008; Fig. 4a). Within salt marshes and mangroves they are 182 

superimposed onto gradients of wave energy, tide influence, micro-topography and 183 

salinity from the seashore to inland (Thom, 1967; Fig. 4b, c). Within coastal dunes 184 

they are superimposed onto gradients of exposure to aerodynamic and 185 

hydrodynamic forces, topography and salinity from the shoreline to inland (Stallins & 186 

Parker, 2003; Hesp & Martínez, 2008; Kim & Yu, 2009; Fig. 4d).  187 

The disturbance regime acts as an environmental filter of response traits 188 

Engineer plant response traits adapt over the long term to the most regular 189 

component of the physical disturbance regime (Lytle & Poff, 2004; Naiman et al., 190 

2008). At the establishment stage, selection among the pool of species reflects 191 

response traits that favour high net productivity, dispersal, reproduction and survival 192 

rates. Many pioneer riparian and coastal species share equivalent response traits 193 

(e.g. sexual/vegetative reproduction; body and seed size) related to their morphology, 194 

physiology and phenology (Table 1). Plant trait optimization to water, wind and 195 

sediment flows does not necessarily result in convergence, but may also cause 196 

divergence of traits based on the disturbance regime, resulting in contrasts in the way 197 

pioneer plants and flows interact and modulate geomorphic processes and landforms 198 

(Bouma et al., 2005, 2013; Stallins, 2005). At the earlier stages of the biogeomorphic 199 

succession, and in comparison to biological disturbances such as grazing and 200 

bioturbation by animals, the disturbance regime represents the pre-eminent selection 201 

pressure for riparian and coastal plants (1 in Fig. 3). It acts as a strong environmental 202 

filter of response traits throughout the biogeomorphic succession (Fig. 2; Table 1). 203 

Pioneer plants can respond to physical disturbances and sustain viable populations 204 

through resistance and resilience mechanisms (Table 1), where resistance is the 205 

capacity of the plant to maintain its structure or biomass during disturbances, and 206 

resilience is the capacity of the plant to restore its structure or biomass after 207 

disturbances. In many cases high frequency disturbances of low to medium intensity 208 

are essential for the expression of response traits favouring plant resistance and 209 

resilience within fluvial and coastal BEs.  210 
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Plant response traits during the geomorphic phase  211 

During the geomorphic phase, the geomorphic environment controls the biotic 212 

compartment (Fig. 2), especially diaspore dispersal, which is a crucial process that 213 

may coincide with predictable (seasonal) hydrogeomorphic or aerodynamic 214 

conditions that guarantee successful recruitment. Recruitment of pioneer populations 215 

in BEs requires the coincidence of diaspore release with adequate abiotic conditions. 216 

Phenological response traits of many plant species are intimately coupled to the 217 

periodicity and intensity of hydrogeomorphic constraints (Bornette et al., 2008; Maun, 218 

2009; Balke, 2013; Table 1). In order to cope with the inherently stochastic nature of 219 

the geomorphic phase, pioneer engineer plants generally employ opportunistic 220 

strategies (sensu Grime, 2001; Table 1). Diaspores are mostly produced in very large 221 

numbers and can remain viable for a long period. Their production and release are 222 

usually well synchronized with the disturbance regime and climate patterns. For 223 

example, within temperate river environments seed production and release by 224 

riparian Populus and Salix spp. coincides with the period following predictable annual 225 

floods (Lytle & Poff, 2004; Stella et al., 2006) so that their small, buoyant seeds are 226 

transported by water and wind to newly-formed bare sediment surfaces. In coastal 227 

environments, diaspores (seeds, rhizomes, stolons, roots and branches) are mainly 228 

hydrochorous (Table 1). They are mobilized and transported by water, usually during 229 

floods and storms (Maun, 2009), and they maintain their capacity to germinate and 230 

sprout after transportation in salty water (Guja et al., 2010). Within mangroves formed 231 

by Rhizophora and Avicennia spp., massive propagule production occurs during the 232 

wet season when salinity is low (Fernandes, 1999). Within coastal dune BEs, certain 233 

annual species release large quantities of seeds during the period with the highest 234 

availability of bare moist coastal substrates that are required for seed germination 235 

(Wagner, 1964). 236 

Plant response traits during the pioneer phase  237 

The transition toward more vegetated states that accompanies amelioration of the 238 

harsh abiotic environment is highly variable because initial habitat conditions strongly 239 

affect initial plant establishment, and the transition requires adequate physical 240 

conditions related to combinations of morphological, biomechanical and physiological 241 

response traits (Table 1), and also proximity to a diaspore source or dispersal 242 

pathway. In rivers (Cooper et al., 2003), salt marshes and mangroves (Balke et al., 243 

2014), dynamic interactions between numerous fluctuating climatic and 244 

geomorphologic parameters lead to multiple possible pathways of seedling 245 

recruitment on bare surfaces that are only colonised in sufficient numbers every few 246 

years. Recruitment success can change with quite small variations in 247 

hydrogeomorphic parameters. Similarly, in dune settings, seedling recruitment 248 

depends upon the contrasts in wave energy under winter and summer wave regimes 249 
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and the net balance between seasonal patterns of sediment erosion and deposition 250 

with subsidies from seaweed and other organic wrack debris enhancing the likelihood 251 

of seedling recruitment (Davidson-Arnott & Law, 1990). 252 

Once seeds and propagules (e.g. rhizomes, stolons, roots) of pioneer engineer 253 

species reach a freshly exposed, bare surface they germinate or anchor almost 254 

immediately, whether on alluvial bars within fluvial BEs (Gom & Rood, 1999), on mud 255 

flats within mangroves (Guja et al., 2010) or on the upper beach within coastal dune 256 

BEs (Maun, 2009). Many riparian (e.g. Populus and Salix spp.), salt marsh (e.g. 257 

Spartina and Puccinellia spp.) and mangrove tree (Sonneratia and Avicennia spp.) 258 

species are highly clonal. The ability to easily resprout is a major advantage for 259 

colonizing areas heavily disturbed by extreme disturbance events. 260 

During the early stage of the biogeomorphic succession, emerging seedlings or 261 

sprouts remain highly exposed to fluctuating hydrodynamic and aerodynamic forces, 262 

sediment dynamics and substrate moisture (Mahoney & Rood, 1998; Bouma et al., 263 

2009; Balke et al., 2014). Following germination, rooting anchorage may develop 264 

very quickly ensuring a strong, early mechanical and physiological resistance to 265 

hydrodynamic or aerodynamic forces, sediment burial or to stress induced by ground 266 

and soil water fluctuation (Westelaken & Maun, 1985; Guilloy et al., 2011). For 267 

example, many vivipar propagules of mangrove trees have pre-formed roots that 268 

ensure almost immediate anchoring and morphological plasticity is already important. 269 

Balke et al. (2013) showed that sediment burial increases shoot growth and erosion 270 

increases root growth of mangrove tree seedlings, increasing their survival chances 271 

according to the disturbance regime. Seedling growth rate is also crucial. Balke et al. 272 

(2014) identified two conditions for successful recruitment within fluvial and coastal 273 

BEs: (i) the coincidence of dispersal events with sufficient hydrodynamic or 274 

aerodynamic force to bring an adequate number of diaspores to suitable sites; (ii) a 275 

sufficiently long period for seedlings to germinate and establish that is free of 276 

destructive disturbances. This window of opportunity can be a few days to a few 277 

months in fluvial BEs and a few hours to a few days within salt marshes, mangroves 278 

and coastal dunes (Balke et al., 2014). Therefore, colonization events can potentially 279 

be predicted when plant response trait information on germination, root growth and 280 

plant stability are linked to environmental variables such as water level, wind speed 281 

and salinity. 282 

Plant response traits during the biogeomorphic phase  283 

Plants that are adapted to unstable and fluctuating geomorphic environments have 284 

high phenotypic variability and plasticity, including modulation of above and 285 

belowground biomass allocation, architecture, and the biomechanical and 286 

physiological properties of organs, which ensure their resistance to water flow and 287 
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wind, sediment erosion, burial and sand abrasion (Bornette et al., 2008; Maun, 2009; 288 

Table 1). Trait changes result from trade-offs between the need to resist abrasive and 289 

tractive mechanical forces, prolonged submersion, and sediment erosion and burial; 290 

to acquire resources; and to adapt their reproductive strategy (clonal vs. sexual) to 291 

disperse and establish efficiently. 292 

Response traits that support resistance to mechanical constraints are mainly 293 

morphological and biomechanical, including strengthening tissues; stiff stems; prop, 294 

stilt and kneed roots; small and streamlined leaves and canopies; brittle stems with 295 

breaking points (Bouma et al., 2005; Bornette et al., 2008; Maun, 2009; Table 1). 296 

Pioneer plants are highly resilient to damage. For example, they can resprout from 297 

damaged stumps and rhizomes (Nzunda et al., 2007; Moggridge & Gurnell, 2009), or 298 

they can show a plastic morphological and biomechanical response (i.e. 299 

thigmomorphogenesis) to repetitive mechanical forces from water or wind, increasing 300 

their resistance to breakage and uprooting. Response trait variations can express a 301 

trade-off between tolerance (e.g. large stem cross-section, production of 302 

strengthening tissues, increase in root biomass) and avoidance (e.g. increase in stem 303 

flexibility, aerial biomass reduction, morphological reconfiguration within the fluid) 304 

(Puijalon et al., 2011), and can have major consequences for a plant’s ability to fit to 305 

disturbance (Bouma et al., 2005; Stallins, 2005; Gurnell, 2014). In the case of 306 

absence of major disturbances, the biogeomorphic phase can be followed by the 307 

ecological phase where biotic interactions (e.g. competition) are dominant and 308 

physical disturbances rare. 309 

CRITERION 2: EFFECT TRAITS OF ENGINEER PLANTS THAT MODULATE THE 310 

GEOMORPHIC ENVIRONMENT 311 

Within BEs, the control of ecosystem structure and function by engineer plants is 312 

achieved through durable modification of the habitat (2 in Fig. 3). Three main 313 

categories of effects of engineer plants on their geomorphic environment can be 314 

identified and are explored further below: (i) increase in sediment retention and 315 

cohesiveness; (ii) fluid stress divergence; and (iii) physicochemical modification and 316 

biogenic accumulation. 317 

Increase in sediment retention and cohesion 318 

In fluvial and coastal BEs, the roots and rhizomes of plants increase sediment 319 

cohesiveness (Polvi et al., 2014), offering protection against erosion, particularly 320 

where pioneer plants have dense root systems and flexible, flattening or creeping 321 

canopies. A very-well developed literature demonstrates how such engineer plants 322 

obstruct water and wind flows, reducing shear stresses at the ground surface and 323 

trapping matter ‘within-site’ (within their canopy) and ‘off-site’ (downstream or 324 
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downwind of the vegetation stand). Within-site effects on sediment trapping and the 325 

extent of downstream or downwind deposition vary with canopy structure, fluid 326 

properties, and sediment transport (Bouma et al., 2013; Nardin & Edmonds, 2014). 327 

Individual woody plants or isolated herbaceous patches locally impact sediment 328 

transport forming small hummocks or coppice dunes. Isolated groups of dense 329 

ligneous and herbaceous perennials form pioneer islands and discontinuous benches 330 

at river channel margins (Gurnell et al., 2012); large hummocks within salt marshes 331 

(Bouma et al., 2009); islands and platforms within mangroves (Fromard et al., 2003); 332 

and large coppice dunes, incipient foredunes or parabolic dunes within coastal dune 333 

systems (Baas, 2007; Hesp & Martínez, 2008). At larger spatial and temporal scales, 334 

between catastrophic floods, storms and tsunamis, engineer plants interact with 335 

sediment transport to create large stabilized vegetated islands and floodplains in 336 

fluvial BEs, and plain dunes and inter-tidal stabilized flats in coastal BEs. Pioneer 337 

biogeomorphic units also induce off-site effects by protecting downstream and 338 

downwind areas and allowing further recruitment. This is illustrated, for example, by 339 

the way in which pioneer islands colonized by Populus nigra and Salix spp. within the 340 

high-energy Tagliamento river (Northern Italy) enhance seedling and sapling survival 341 

in sheltered areas (Moggridge & Gurnell, 2009). 342 

Topographic changes induced by engineer plants can reflect species-specific 343 

morphology, biomechanics and growth patterns, as illustrated by experiments with 344 

tamarisk (Tamarix spp.) and cottonwood (Populus fremontii) disposed within a mobile 345 

sand-bed flume (Manners et al., 2015), where the shrubby morphology of tamarisk 346 

resulted in greater reductions in near-bed velocities and sediment flux rates. In 347 

another flume experiment the spatial pattern of salt marsh sediment erosion and 348 

deposition was observed to vary with morphological and biomechanical effect traits 349 

and growth patterns of Spartina anglica, Puccinellia maritima and Salicornia 350 

procumbens (Bouma et al., 2013). Furthermore, Perry & Berkeley (2009) showed that 351 

the planting of Rhizophora mucronata in SW Indian Ocean mangroves led to 352 

structural changes, particularly an increase in fine sediment and organic-matter in the 353 

intertidal substrate. Krauss et al. (2003) found that fine sediment accretion rates 354 

varied with root morphology in Micronesian mangrove forests, particularly with the 355 

prop roots of Rhizophora spp., root knees of Bruguiera gymnorrhiza, and 356 

pneumatophores of Sonneratia alba. Lastly, in coastal dunes of the USA Pacific 357 

Northwest, Zarnetske et al. (2012) observed that dune shape varies with the ability of 358 

certain species (Elymus mollis, Ammophila arenaria and A. breviligulata) to trap sand 359 

and their growth habit in response to sand deposition (see also Maun, 2009; Pelletier 360 

et al., 2009). 361 
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Fluid stress divergence  362 

Resistant engineer plants also induce turbulent scouring in their surroundings. Such 363 

stress divergence plays a major role in increasing landscape complexity and diversity 364 

and forming newly-exposed bare substrate locally during the biogeomorphic phase. 365 

Pioneer trees that establish on river gravel bars induce sediment scours upstream 366 

and laterally (Gurnell et al., 2005). Within coastal BEs colonized by vegetation, 367 

entrenched channels are formed through erosion between laterally expanding and 368 

aggregating tussocks and vegetated levees (Temmerman et al., 2007). D’Alpaos et 369 

al. (2007) noted that vegetation controls tidal drainage network formation and 370 

geometry according to the combined effects of within-site sediment binding and off-371 

site flow diversion and concentration by plants. Furthermore, dune topography 372 

controlled in part by dune-building plants can also redirect future overwash and 373 

shape local patterns of erosion as well as accretion (Davidson-Arnott & Law, 1990).  374 

The combination of local and downstream or downwind protective-accretive and off-375 

site erosive effects of plants control spatial and temporal self-organization of BEs 376 

mainly during the biogeomorphic phase (Temmerman et al., 2007; Bouma et al., 377 

2009, 2013; Kim, 2012; Corenblit et al., 2015). It has been further suggested that the 378 

pattern of sediment trapping and erosion corresponds to a biogeomorphic scale-379 

dependent feedback. Such feedbacks occur within ecosystems when the landform 380 

pattern is reinforced and maintained by a positive feedback in resource acquisition at 381 

the local scale (within-site) and when an inhibiting feedback occurs at a larger scale 382 

(off-site, at the margins). Evidence for the landscape consequences of scale-383 

dependent feedbacks in BEs is especially strong for rivers (Gurnell, 2014) and salt 384 

marshes (Temmerman et al., 2007; Bouma et al., 2009, 2013), although 385 

biogeomorphic self-organization also occurs within sand-dune systems (Baas, 2007). 386 

Physicochemical modification and biogenic accumulation 387 

Plants induce physicochemical modification of the habitat and biogenic accumulation 388 

within BEs. Such engineer effects in different fluvial and coastal BEs enhance local 389 

biochemical activity improving ecosystem processes and ambient conditions within 390 

engineered sites. 391 

For example, in high energy rivers, Bätz et al. (2015) showed how organic matter 392 

input within stabilized pioneer landforms enhance the transition from landforms 393 

dominated by fresh sediment deposits towards soil-covered biogeomorphic units 394 

such as floodplains. Within salt marshes and mangroves, where the tidal range and 395 

the minerogenic sediment input are limited, engineer plants alter the topography 396 

through peat-like substrate formation. Morris et al. (2002) suggested that coastal 397 

engineer plants can control their relative elevation through biomass modulation in 398 
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order to keep up with sea-level rise. Several studies have also shown that many salt 399 

marshes and mangroves are able to maintain their surface elevation within the inter-400 

tidal zone over long periods of sea level rise through the modulation of root and aerial 401 

biomass production by plants, and associated peat formation and vertical land-402 

building (Larsen & Harvey, 2010; Marani et al., 2013). Furthermore, fixed dune 403 

systems are characterized by the existence of soil catenas that reflect feedbacks 404 

between sediment characteristics, topography, drainage conditions and vegetation 405 

(Maun, 2009).  406 

CRITERION 3: FEEDBACK TRAITS ASSOCIATED WITH BIOTIC-CONTROLLED 407 

GEOMORPHIC CHANGES 408 

Geomorphic changes that occur under biotic control during the biogeomorphic phase 409 

feed back into the ecosystem at varying levels (i.e. individual, population and 410 

community; 3 in Fig. 3). Changes in individual traits, population parameters and 411 

community properties are not just a passive response to initial habitat conditions. 412 

During succession, pioneer engineer plants, by controlling landform construction, 413 

affect gradients of strategies, population and community dynamics within BEs. 414 

Individual and population plant response to sediment accretion they enhance 415 

Many pioneer engineer plant species that establish within fluvial and coastal BEs 416 

require sediment burial to enhance their anchorage, to favour more vigorous growth, 417 

and to increase their chances of reaching sexual maturity (Maun, 2009; Corenblit et 418 

al., 2014). One or more plant individuals that initiate formation of an embryo fluvial or 419 

coastal island, a small shadow dune, or a tussock, can exploit the freshly deposited 420 

sediment by developing adventitious roots and rhizomes to stabilize a viable 421 

population in a geomorphologically-unstable environment (Maun, 2009; Rood et al., 422 

2011), and lead at the micro- to meso-scales to a positive feedback of landform 423 

construction, vegetation growth (i.e. feedback traits) and population demographic 424 

stabilization. This is exemplified by Populus and Salix spp. within river environments 425 

(Corenblit et al., 2014; Gurnell, 2014), subspecies of Spartina patens within salt 426 

marshes (Wolner et al., 2013) and Avicennia germinans in mangroves (Fromard et 427 

al., 2003). This is also well exemplified in coastal dunes by grass species. For 428 

example, Zarnetske et al. (2012) noted that aerial growth of pioneer engineer plants 429 

is favored by sediment deposition they enhance in coastal dunes of the Pacific 430 

Northwest of the USA. Vertical canopy growth was observed to be stimulated within a 431 

few weeks following burial, and the dune building capacity of engineer species was 432 

linked to a specific biogeomorphic feedback between plant growth and architecture, 433 

and sediment deposition.  434 
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Through spatially explicit feedbacks between vegetation and topography, the 435 

diversity of plant traits can canalize patterns of plant establishment and persistence in 436 

BEs and lead to different biogeomorphic domains of stability (Stallins, 2005; Corenblit 437 

et al., 2009a; Wolner et al., 2013; Vinent and Moore, 2015). For example, in coastal 438 

dunes where overwash forcing is more frequent, plants displaying horizontal growth 439 

in response to sediment burial (i.e. ‘burial tolerant stabilizers’) are reinforced because 440 

they enhance a flat topography with low resistance that promotes the likelihood of 441 

overwash. Where overwash disturbance is less frequent, plants with vertical growth 442 

are favoured by sediment burial (i.e. ‘landform builders’) since they promote positive-443 

relief topographies. Ammophila arenaria produces dense vertical tillers when buried, 444 

which favor its development and the development of tall narrow foredunes, while the 445 

less dense lateral growth of A. breviligulata builds shorter but wider foredunes. 446 

Plant community response to geomorphic changes 447 

Sediment accretion and related topographic aggradation under the control of 448 

engineer plants also control plant assemblages at community level through the 449 

exclusion of species by burial, the decrease of exposure to disturbance and 450 

vegetation shading (Corenblit et al., 2014, 2015). Within rivers and coastal BEs, it is 451 

the combination of sediment accretion, topographic rise and vegetation growth that 452 

leads to the main changes in the physicochemical properties of the habitat and in 453 

floristic assemblages during the biogeomorphic phase (Tabacchi et al., 2000; Gurnell, 454 

2014). For example, when foredunes develop within coastal dunes, they lower the 455 

amount of sand and salt spray transported inland, facilitating the incursion of woody 456 

vegetation in their lee-protection. At the same time, as control by physical constraints 457 

diminishes, biogeochemical controls become prominent, with organic matter 458 

accumulation and shifts in habitat diversity from a horizontal (within the habitat 459 

mosaic) to a vertical (soil to canopy) development (Bätz et al., 2015).  460 

Eco-evolutionary feedbacks 461 

Engineer species certainly change selection pressures within the environment 462 

(Wright et al., 2012). Key parameters of the physical environment within BEs are 463 

strongly controlled by the effect traits displayed by pioneer engineer plants. We 464 

suggest that the long-term history of adaptive changes related to ecological and 465 

evolutionary feedbacks between organism response, effect and feedback traits, and 466 

geomorphic dimensions lead to the emergence of BEs as self-organized adaptive 467 

ecosystems sensu Holling (1973). 468 

Therefore, the geomorphic gradients and associated community assembly rules and 469 

functional structure that are observed within fluvial and coastal BEs, need to be 470 

considered as emergent properties of short-term (ecological) and long-term (eco-471 
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evolutionary) top-down and bottom-up abiotic-biotic feedbacks (Corenblit et al., 472 

2015). Recent palaeontological studies (e.g. Davies & Gibling, 2013) have shown 473 

that the evolutionary trajectory of engineer plant traits and many other passenger 474 

taxa (microorganisms, fauna and flora) has been modulated over the long term within 475 

fluvial BEs by the niche-constructing activity of engineer plants and the resulting 476 

network of diffuse co-evolution among the different taxa (Corenblit et al., 2014, 2015). 477 

Consequently, eco-evolutionary (sensu Erwin, 2008) concepts such as niche 478 

construction (Odling-Smee et al., 2003) certainly represent a useful framework for 479 

analyzing feedbacks between organisms and geomorphology within fluvial and 480 

coastal BEs.  481 

FUTURE RESEARCH TASKS 482 

The proposed model of biogeomorphic functional similarity of plant response, effect 483 

and feedback traits has the potential to become an operational framework for the 484 

articulation of future research priorities of fresh- and saltwater-terrestrial interface 485 

systems. This global model of biogeomorphological ecosystem (BE) functioning is 486 

also conceived to contribute to the improvement of management and restoration 487 

strategies. In order to achieve these goals, we list below future tasks to be 488 

investigated for each of the three criteria that define BEs. 489 

Criterion 1: defining the window of opportunity of engineer species 490 

The habitat conditions leading to successful germination and growth of key engineer 491 

species must be quantified in situ. The quantification of the factors affecting 492 

recruitment of plants within fluvial and coastal environments has begun a long time 493 

ago. The ‘recruitment box’ model for fluvial systems of Mahoney & Rood (1998) and 494 

the homologous model of a ‘window of opportunity’ for all four biogeomorphic 495 

ecosystems proposed by Balke et al. (2014) emerged from previous studies. They 496 

are both useful operational conceptual frameworks for analyzing the relationship 497 

between environmental variability and vegetation recruitment during the pioneer 498 

phase of the biogeomorphic succession. The hierarchy of the same local and 499 

regional factors affecting plant dispersal, germination, initial growth and survival in 500 

different world locations must be established. Response traits that provide an 501 

advantage must be identified and quantified simultaneously in situ and ex situ in 502 

controlled conditions to isolate the key factors (e.g. Guilloy et al., 2011; Balke et al., 503 

2014). Quantitative comparison between different BEs will lead to a formal definition 504 

of the worldwide envelope of environmental conditions leading to successful 505 

recruitment of engineer plant species that can modulate their geomorphic 506 

environment. The frequency histogram of the number (and related functional status) 507 

of recruited engineer species along geomorphic niche dimensions, such as for 508 
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example mean duration and frequency of disturbances, will be a useful tool for 509 

identifying functional groups of response to geomorphic constraints. 510 

It is also necessary to quantify thresholds of resistance of colonizing engineer plants 511 

to the mechanical and physiological constraints imposed by water and wind within 512 

BEs. This remains challenging because of dynamic interactions between the fluid, the 513 

sediment and the plant (Corenblit et al., 2007) and because of the latter’s high 514 

phenotypic variability and plasticity. Quantifying these thresholds will also require ex 515 

situ flume experiments using key engineer species. 516 

Criterion 2: linking plant traits and landform properties 517 

Establishing quantitative understanding of the relation between engineer plant 518 

response, effect and feedback traits, and landform geometry, dynamics and 519 

physicochemical properties is also a priority. Effects of engineer plants on 520 

geomorphology must be quantified by considering causal linkages with resulting 521 

feedback traits. We consider that the geometrical and physicochemical properties of 522 

each category of small to large scale coastal and fluvial landforms (e.g. pioneer 523 

fluvial or mangrove islands, hummocks, copies dunes and foredunes) are modulated 524 

across the world by the same basic processes but according to specific traits of the 525 

local pioneer engineer plant species. These landforms that develop under the control 526 

of engineer plants thus exhibit a large range of possible deviations in size, shape, 527 

texture, physicochemical characteristics, resistance and resilience relative to their 528 

theoretical physical state. Such deviations are likely to be biologically functional for 529 

the engineer species and potentially for passenger species. Therefore, it is an 530 

important goal to test the hypothesis of engineered landform functionality at the 531 

global scale (Corenblit et al., 2015). This will be achieved by analyzing correlations 532 

between plant growth performance and type of reproduction, and the frequency 533 

histogram of landform properties such as relative elevation, exposure to disturbances 534 

(Bertoldi et al., 2011) and physicochemical properties (Bätz et al., 2015). Ultimately, 535 

the correspondence between genetic variability of engineer plant species and 536 

landform properties must be analyzed to establish a genetic basis of the variation of 537 

landform geometry and dynamics. 538 

Another important research objective related to criterion 2 is to test the effects of 539 

plant trait diversity on the function of landform construction and ecosystem 540 

stabilization. Plant functional traits enhancing sediment cohesiveness and trapping 541 

often combine at the community level and form functional units with varying sediment 542 

stabilization and trapping capacities (Corenblit et al., 2009b). Population thresholds 543 

of sediment stabilization and trapping might be overridden by the combination of 544 

different traits at the community scale. The combination of varying traits, and thus 545 

varying genomes, is likely to increase the stability of the biogeomorphic function of 546 
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sediment trapping and landform construction. The presence of different functional 547 

types and genomes may potentially also lead to the persistence of fluctuating 548 

biogeomorphic conditions over larger areas (Stallins, 2005). These relationships 549 

between trait diversity and functional stability of BEs require further investigation 550 

worldwide.  551 

Criterion 3: testing the hypothesis of niche construction 552 

Landform construction during the biogeomorphic succession and related variation in 553 

mean trait value and vegetation assemblage are viewed here as an emergent 554 

property of ecosystems originating from ecological (10-1 to 103 years) and 555 

evolutionary (>104 years) feedbacks between genes, organisms and the geomorphic 556 

environment (for more details see Corenblit et al., 2014, 2015). We acknowledge that 557 

formal evidence of this statement is lacking but we stress that the validation of the 558 

hypothesis of eco-evolutionary dynamics within BEs has become a priority (e.g. 559 

Jones, 2012; Matthews et al., 2014). The proposed models of biogeomorphic 560 

succession and biogeomorphic functional similarity at a global scale will help in 561 

testing the limits of the niche construction hypothesis because they offer a conceptual 562 

framework that helps to establish a causal relationship between selection of plant 563 

traits (response) according to the physical environment and the effects of plant traits 564 

on the physical environment.  565 

Biogeomorphic ecosystem management and restoration  566 

We also stress the opportunity presented by developing this worldwide model of 567 

biogeomorphic functional similarity for the restoration and management of BEs. The 568 

identification and quantification of key traits leading to establishment of viable 569 

populations of engineer species should become a priority for restoration in relation to 570 

their increase of ecosystem stability, specifically in the context of global change. The 571 

identification and ‘use’ of target response, effect and feedback traits associated with 572 

engineer plant species may represent a more efficient solution than the taxonomic 573 

approach for ‘manipulating’ BE resistance and resilience in the context of global 574 

environmental change. Comprehension and quantification of the natural dynamics of 575 

BEs to restore their dynamic biogeomorphic equilibrium according to the reciprocal 576 

dependency between engineer plant traits, independently from their biogeographic 577 

origin (i.e. native or exotic species) and a changing physical disturbance regime, 578 

offers great perspectives for orienting BEs gradually toward suitable target ecological 579 

states. The use of engineer species traits in such an ecological engineering context 580 

may promote sustainable restoration of services to society such as buffering against 581 

erosion and inundation (e.g. Byers et al., 2006; Crain & Bertness, 2006; Temmerman 582 

et al., 2013). In the context of global environmental change, the question of which 583 
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level (i.e. genes, population, community, landscape) should be manipulated will 584 

certainly become crucial. 585 
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 796 

Biosketch 797 

 798 

The biogeomorphic research group which has collaborated for this article is 799 

interested in studying feedbacks between plant dynamics and geomorphology within 800 

various fluvial and coastal ecosystems around the world. All authors contributed 801 

substantially in writing the article according to their experience of rivers (D. Corenblit, 802 

E. González, V. Garófano-Gómez, A.M. Gurnell, B. Hortobágyi, F. Julien, L. Lambs, 803 

J. Steiger, E. Tabacchi), salt marshes and mangroves (T. Balke, T. Bouma, D. Kim, 804 

F. Fromard, R. Walcker) and coastal dunes (A. Baas, J.A. Stallins).  805 

 806 
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Tables 807 

Table 1. Developmental sequence of biogeomorphic ecosystems (BEs) during the biogeomorphic succession and related plant 808 

functional traits. The functional structure of a BE is shaped by a set of plant species specifically adapted to geomorphic 809 

disturbances and to stress. Such species are related, for example within temperate fluvial BEs, to the genera Alnus, Populus, Salix, 810 

and Tamarix; within tropical mangrove BEs to Avicennia, Ceriops, Rizophora and Sonneratia; within temperate salt marsh BEs to 811 

Juncus, Puccinellia, and Spartina; and within temperate dune BEs to Ammophila, Cakile, Panicum, and Uniolo. Many species of 812 

these genera developed similar functional response traits specifically related to regular and ordinary variations in hydrodynamic and 813 

aerodynamic forces and also to a certain range of energy pulses and their subsequent consequences on sediment erosion, 814 

transportation and deposition. Here, the common and specific functional traits of the four different BEs are listed and related to each 815 

biogeomorphic succession phase.  816 

Biogeomorphic 
succession 
phase 

Duration of the BS 
phase 

Main characteristics Main geomorphic 
processes and landform 
formation 

Main ecological 
processes 

Common and specific plant 
functional traits 

Geomorphic Continuous at a local 
scale within certain 
locations (e.g. 
entrenched channels); 
enhanced by high 
frequency disturbances 
(e.g. convex bar 
formation during 
progressive meander 
migration in rivers) and 
tides within dynamic 
coastal zones 

Punctual at a larger 
scales; driven by low 
frequency floods and 
storms or tsunamis 

 

Biogeomorphic 
rejuvenation and bare 
surface formation; BE 
structured mainly by 
geomorphic processes 

Fluvial BEs: landform 
erosion and alluvial bar 
formation 

Salt marsh and mangrove 
BEs: landform erosion and 
tidal mudflat deposition 

Coastal dune BEs: 
beach/dune erosion and 
beach accretion 

 

Diaspore dispersal; 
diaspore and organic 
matter deposition on 
open bare sediments 

Common: short lifespan; production of 
numerous buoyant seeds and 
propagules; seed release synchronized 
with the flow regime 

Salt marsh and mangrove: vivipary and 
floating diaspores (longer lifespan in 
salty water) 
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Pioneer Few days to few 
months  

Establishment of bare 
surfaces. Geomorphic 
processes exert a 
strong and 
unidirectional control on 
organisms, filtering 
community composition 

Fluvial BEs: alluvial bar 
formation 

Salt marsh and mangrove 
BEs: tidal mudflat 
formation 

Coastal dune BEs: beach 
accretion 

 

Recruitment 

Germination and 
sprouting on open bare 
sediments; 
seedling/resprout 

Common: rapid root anchoring; clonal 
growth from drifting debris and 
propagules; seedling tolerance to 
submersion and sediment burial 

 

Biogeomorphic Few years to few 
decades 

Population 
establishment; 
engineer plants control 
geomorphology and 
respond to changes in 
geomorphic 
environment; overall 
strong feedbacks 
between biota and the 
physical environment 

Common: sediment 
accretion within and 
downstream/downwind 
vegetation patches 

Fluvial BEs: pioneer 
vegetated islands and 
benches 

Salt marsh BEs: tussocks, 
hummocks, vegetated tidal 
mudflat 

Mangrove BEs: vegetated 
tidal mudflat 

Coastal dune BEs: coppice 
dunes, hummocks, 
foredune, parabolic dune 

 

Dominance of engineer 
plants; facilitation for 
some other taxa; taxa 
exclusion; resource 
grab uptake in a more 
and more stabilizing 
habitat 

Common: high growth rate; rapid 
underwater shoot extension; tolerance 
to sediment burial and prolonged 
submersion; control of aboveground 
and belowground biomass allocation; 
changes in stem and root morphology 
and physiology in sediment deposit; 
shallow rooting; stem buoyancy  

Fluvial BEs: allocation to belowground 
biomass and branch sacrifice during the 
dry season; adaptation to 
hydrodynamics forces: high bending 
stability, flexible stems, narrow leaf 
shape, muti-stemmed resprouting from 
roots and shoots; brittle twig bases 

Salt marsh BEs: aerenchyma tissue for 
transferring oxygen from the 
atmosphere to submerged roots; 
tolerance to salt: succulence improving 
water retention, salt exclusion at the 
roots; salt excretion with glands.  

Mangrove BEs: adaptations to long 
submersion in salty water: aerenchyma 
tissue for transferring oxygen from the 
atmosphere to submerged roots; 
pneumatophores; salt excretion and 
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exclusion; salt sequestration into leaves 
periodically sheded; adaptation to 
hydrodynamics forces: spreading 
horizontal roots, prop and stilt roots, 
kneed roots 

Coastal dune BEs: anatomical 
adaptation to sediment abrasion 

 

Ecological Few decades to few 
centuries 

Older ecological 
succession (post-
pioneer to mature 
stabilized stands); BE 
dominantly structured 
by biotic interactions 

Fluvial BEs: vegetated 
floodplains and mature 
islands 

Salt marsh BEs: raised 
vegetated tidal mudflat 

Mangrove BEs: raised 
vegetated tidal mudflat 

Coastal dune BEs: 
stabilized parabolic and 
plain vegetated dunes 

 

Plant succession 

Increase of biotic 
interaction (e.g. 
competition and 
positive interactions) 
such as for example 
symbiosis) 

Pedogenesis  

Common: development of competitive 
traits (e.g. high size) to access 
resources more efficiently and 
reproduce in a stabilized environment 

 817 



 27 

Figure legends 818 

Figure 1. Global distribution of distinct fluvial and coastal biogeomorphic ecosystems 819 

(BEs). (a): River abundance by ecoregion defined from low (light blue) to high (dark 820 

blue) (Abell et al., 2008), photo: J. Steiger; (b): salt marshes distribution (UNEP 821 

WCMC, 2013), photo: T. Balke; (c): mangroves distribution (Giri et al., 2011), photo: 822 

T. Balke; (d): coastal dunes distribution (Martínez et al., 2004), photo: J.A. Stallins. 823 

Figure 2. Conceptual model of biogeomorphic succession (sensu Corenblit et al., 824 

2007, 2009a). Interactions between the physical (squares) and biological (circles) 825 

compartments are shown for each phase (inspired from Odling-Smee et al., 2003). 826 

Arrows indicate an interaction with its intensity schematized by the size of line. The 827 

influence of engineering plants on the physical compartment is represented by a dark 828 

color within the squares. Physical changes related to early stages of the 829 

biogeomorphic phase correspond to sediment accretion and topographical raise; 830 

those associated with late stages of the biogeomorphic phase and to the ecological 831 

phase to changes in physicochemical properties of the soil.  832 

Figure 3. Criteria related to the geomorphic setting and the nature of its relation with 833 

plant traits that a certain ecosystem has to satisfy in order to be identified as a 834 

biogeomorphic ecosystem (BE). Criterion 1: pioneer plants developed specific 835 

responses to the geomorphic environment (response traits); criterion 2: the 836 

geomorphic and physicochemical environment is modulated by engineer plants 837 

(effect traits); criterion 3: geomorphic changes under plant control feed back to 838 

organisms (feedback traits).  839 

Figure 4. Exposure gradients to hydrogeomorphic and aerodynamic disturbances in 840 

fluvial and coastal biogeomorphic ecosystems (BEs). Hydrogeomorphic disturbance 841 

is represented in terms of water level variations for all the ecosystems and has 842 

different impacts depending on the specific biogeomorphic succession phase 843 

(represented in the line at the bottom of each ecosystem). The correspondence with 844 

the model of biogeomorphic succession (Fig. 2) is shown at the bottom of the figure. 845 

846 
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Figures 847 

Figure 1.  848 
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Color fig.  850 

851 



 29 

Figure 1. 852 
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Figure 2. 854 
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Figure 3.  857 
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Figure 4. 860 
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