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We introduce a simple technique for disjunctive machine scheduling problems and show that this method

can match or even outperform state of the art algorithms on a number of problem types. Our approach

combines a number of generic search techniques such as restarts, adaptive heuristics and solution guided

branching on a simple model based on a decomposition of disjunctive constraints and on the reification of

these disjuncts.

This paper describes the method and its application to variants of the job shop scheduling problem (JSP).

We show that our method can easily be adapted to handle additional side constraints and different objective

functions, often outperforming the state of the art and closing a number of open problems.* Moreover, we

perform in-depth analysis of the various factors that makes this approach efficient. We show that, while most

of the factors give moderate benefits, the variable and value ordering components are key.

Key words : scheduling, combinatorial optimization

1. Introduction

Scheduling problems have proven to be fertile research ground for constraint program-

ming and other combinatorial optimization techniques. Numerous such problems occur in

industry, and whilst relatively simple in their formulation - they typically involve only

Sequencing and Resource constraints - they remain extremely challenging to solve.

The most efficient methods for solving disjunctive scheduling problems like Open shop

and Job shop scheduling problems are usually dedicated local search algorithms, such as

* We provide extended results of those already published in Grimes et al. (2009), Grimes and Hebrard (2010, 2011)
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tabu search (Nowicki and Smutnicki (1996, 2005)) for job shop scheduling and particle

swarm optimization (Sha and Hsu (2008)) for open shop scheduling. However, constraint

programming often remains the solution of choice. It is relatively competitive (Beck (2007),

Watson and Beck (2008), Malapert et al. (2008)) with the added benefit that optimality

can be proven.

The best constraint programming (CP) models to date are those based on strong infer-

ence methods, such as Edge-Finding (Carlier and Pinson (1989), Nuijten (1994)), and spe-

cific search strategies, such as Texture (Fox et al. (1989)). Indeed, the conventional wisdom

is that many of these problems are too difficult to solve without such dedicated techniques.

After such a long period as an active research topic (over half a century since the seminal

work of Johnson (1954)) it is natural to expect that methods specifically engineered for

each class of problems would dominate approaches with a broader spectrum.

We show that this is not always the case. Our empirical study reveals that the com-

plex inference methods and search strategies currently used in state-of-the-art constraint

models can often, surprisingly, be advantageously replaced by a conflict-directed search

strategy using the weighted degree heuristic (Boussemart et al. (2004)) on a simple model

where unary resources are decomposed into a clique of pairwise disjunctions, hence without

dedicated filtering algorithms.

Moreover, since this method does not use specific propagation methods, it can be applied

without modification to a wide range of problems, i.e., all those that can be represented

by a disjunctive graph. Therefore, with only minor adjustments, it can efficiently handle

variants of the job shop scheduling problem involving side constraints such as maximal

time-lag or sequence dependent setup times constraints. Similarly, changing the objective

function, be it makespan minimization or minimizing penalties associated with early/late

completion of jobs, does not seem to hinder its efficiency.

This paper integrate results from a series of publications. However, novel contributions of

this paper include: a full comparison with a standard CP scheduling model implemented in

IBM ILOG CP Optimizer (Laborie (2009)), a state-of-the-art commercial solver; updated

results for JSP/OSP (the algorithm in our earlier publication did not contain solution

guided value ordering); analysis of the impact of the different components of our algorithm;

and new analysis of the behavior of constraint weighting on the different problem types.
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In Section 2 we discuss the disjunctive graph representation of the unary resource

scheduling problem. We introduce our basic model in Section 3, which is suitable to all

problems that can be represented using a disjunctive graph, and we describe the different

components of our search algorithm. Then we provide compelling empirical proofs of the

benefits of our method compared with IBM ILOG CP Optimizer, and with state-of-the-art

exact and approximate methods for some sample variants of the job shop scheduling prob-

lem in Section 4, extending results previously published in Grimes et al. (2009), Grimes

and Hebrard (2010, 2011).

Finally, Section 5 provides a new analysis of the behavior of our algorithm to develop

understanding of why it is effective on a number of problem types of this nature. In

particular we provide a detailed evaluation of the different components in our algorithm,

identifying those that are key to the performance, and we analyse the constraint weights

produced on sample instances of the different problem types.

2. Disjunctive Scheduling

Disjunctive scheduling problems can be generally defined as the problem of scheduling n

jobs J = {J1, ..., Jn}, on a set of m unary resources R = {R1, ...,Rm}. A job Ji consists

of a set of tasks T = {t1, ..., tk}, where each task has an associated processing time and

an associated resource on which it must be processed. A resource (also referred to as a

machine) is exclusive and can process only one task at any time point.

These problems are commonly represented with a disjunctive graph (Roy and Sussman

(1964)) G= (N,D,A), where N is a set of nodes standing for tasks, D is a set of directed

arcs standing for precedences, and A is a set of bidirectional (dashed) arcs standing for

disjunctive constraints. The length of the arc is the duration of the task on the arc’s tail.

A solution to the scheduling problem is an acyclic graph where all bidirectional arcs

are replaced with directed arcs. The makespan, Cmax, of the scheduling problem is the

length of the critical path from the source node to the sink node, i.e. the longest path

from the source to the sink. To find the optimal solution, one therefore needs to direct the

bidirectional arcs such that the critical path is minimized.

We introduce a sample job shop scheduling problem to illustrate the disjunctive graph.

We define a task as a triple 〈i, pi,m〉 where i is an index for the task, pi its processing time

and m the machine it must be processed on. The sample problem involves three machines,
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and the following three jobs: [〈1,21,2〉, 〈2,53,1〉, 〈3,34,3〉], [〈4,21,1〉, 〈5,71,2〉, 〈6,26,3〉] and

[〈7,12,3〉, 〈8,42,1〉, 〈9,31,2〉]. Figure 1 presents the disjunctive graph representation of this

problem, along with a sample graph of an optimal solution. The critical path of the optimal

solution is: “Source” → 4 → 2 → 8 → 9 → “Sink”, which gives optimal Cmax of 147

(=0+21+53+42+31).

Source  Sink 

21  53 

21  71 

12  42 

26 0 

0 

0 

34 

31 

1  2  3 

4  5  6 

7  8  9 

(a) Disjunctive Graph

1 

4 

7 

2  3 

5  6 

8  9 

Source  Sink 

21  53 

21  71 

12  42 

26 0 

0 

0 

34 

31 

(b) Optimal makespan

Figure 1 Disjunctive Graph and optimal solution for sample 3x3 JSP.

2.1. Extensions

Using disjunctive graphs, one can easily express job shop and open shop problems. In both

cases, some tasks share a common unary resource, which is represented as a clique of

bidirectional arcs (in A). In the former problem, jobs are predefined sequences of tasks,

represented as a path of directed arcs (in D). In the latter problem, jobs need to be

sequenced, but any order is possible, so one can use a clique of bidirectional arcs, as is

done for resources in both cases.

We consider the following additional constraint types which occur in many real-world

scenarios. Firstly, maximal time lag constraints impose an upper bound on the time allowed

between a task finishing and the next task of the same job starting. These can be expressed

in the disjunctive graph using arcs of negative length. This type of constraint arises in

many situations, for example in the chemical (Rajendran (1994)), steel (Wismer (1972)),

and pharmaceutical industries (Raaymakers and Hoogeveen (2000)) to name but a few.

Secondly, there may be a setup time between two consecutive tasks for each machine,

which is dependent on the order with which the two tasks are processed. This is referred

to as the sequence dependent setup times constraint. Problems of this kind can be found

in the semiconductor industry (Ovacik and Uzsoy (1997)).
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Moreover, observe that temporal CSPs (Dechter et al. (1991)) can be relatively straight-

forwardly represented by disjunctive graphs. Therefore, the proposed approach is likely to

be suited to this class of problems as well.

2.2. Constraint Programming notations

A constraint network is defined by a triplet P = (X ,D,C) where X is a set of variables, D
maps each variable x to finite sets of values D(x) and C is a set of constraints. A constraint

C defines a relation, i.e. a set of allowed tuples of values, over a sequence of variables.

More formally, a constraint C over [x1, . . . , xn] is a subset of the cartesian product of the

domains (C ⊆
∏n

i=1D(xi)). Given a tuple τ we denote τ [i] the value of the ith element of

τ .

Moreover, we denote min(x) (resp. max(x)) the minimum (resp. maximum) value cur-

rently in the domain D(x) of x. The constraint C is bounds consistent (BC) iff, for

each variable xi in its scope, there exist two tuples τ1, τ2 ∈ C such that τ1[i] = min(xi),

τ2[i] = max(xi) and for all j ∈ [1, . . . , n], min(xj)≤ τ1[j]≤max(xj) and min(xj)≤ τ2[j]≤
max(xj).

2.3. Traditional Constraint Programming approach (“Heavy Model”)

We first provide a brief overview of some of the main inference techniques and search

heuristics developed for the non-preemptive machine scheduling problem. Modeling this

type of problem as a constraint optimization problem (COP) is quite straightforward: the

variables are the tasks, their domains are the possible starting times of the task, and the

constraints specify relations between the tasks, e.g. no two tasks sharing a resource can

overlap. The objective function is a criteria for deciding what the best schedule should be,

e.g. minimize Cmax.

2.3.1. Unary Resource Constraint Propagation Algorithms Let ti represent task i.

The time-table propagation rule (Le Pape (1994)) identifies time periods for which a

resource must be used by a task. It computes the required resource usage for each time

point k, maintaining a set of binary variables X(ti, k) which take the value 1 iff ti must use

the resource at time point k. Since resources are unary, the possible start time of a task

tj sharing a resource with ti may be updated when conflicting with a time point where ti

must use the resource.

One of the most popular filtering techniques for the unary resource constraint is known

as Edge-Finding (Carlier and Pinson (1989), Nuijten (1994)). Let T denote a set of tasks
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sharing a unary resource, Ω denote a subset of T , and let ti � Ω (respectively ti � Ω)

denote that ti must start before (resp. after) the set of tasks Ω, for ti /∈ Ω. Edge-Finding

involves detecting that a task must be scheduled first or last in the set of tasks (Ω∪ ti). In

other words, it infers precedences between ti and each task in Ω. These precedences can

then be used to prune the possible start times of the involved tasks.

The complement to the above is the “Not First, Not Last” filtering technique which

detects that a task ti /∈ Ω cannot be scheduled first or last in the set of tasks Ω ∪ ti, in

which case the domain of ti is updated accordingly (Baptiste and Le Pape (1996)).

The Shaving filtering technique (Carlier and Pinson (1994), Martin and Shmoys (1996))

updates the task time windows by assessing the earliest and latest start times. For each

unassigned task ti, at each node, it temporarily assigns ti a starting time (either est i or

lst i) and propagates the assignment using the filtering algorithms (Edge-Finding, etc.). If

this results in a failure, it updates the relevant domain bound. The process iterates until

a fixed point is reached. This can be viewed as a form of Singleton Bounds Consistency.

There are many variations of the constraints above , as well as further filtering tech-

niques such as the balance constraint (Laborie (2003)). The reader is pointed to Baptiste

et al. (2001), Laborie (2003) for further details on inference techniques for constraint-based

scheduling, and the dissertation of Viĺım (2007) for details and improvements to unary

resource filtering techniques in particular.

2.3.2. Variable and Value Ordering Heuristics It is common to branch on precedences

between two tasks sharing a resource. An unresolved pair of tasks ti, tj is selected and the

constraint sti + pi ≤ stj is posted on the left branch whilst stj + pj ≤ sti is posted on the

right branch.

Most heuristics are based on the identification of critical tasks. The branching scheme

Profile introduced in Beck et al. (1997) (which is an extension of the ORR/FSS heuristic

(Sadeh and Fox (1996))) involves selecting a pair of critical tasks sharing the same unary

resource and ordering them by posting a precedence constraint on the left branch. The

criticality is based on two texture measurements, contention and reliance (Sadeh (1991)).

Contention is the extent to which tasks compete for the same resource over the same time

interval, reliance is the extent to which a task must use the resource for given time points.

The heuristic determines the most constrained resources and tasks. For each task on

each resource, the probability of the task requiring the resource is calculated for each
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time period. This probabilistic profile is referred to as the individual demand curve. The

contention is based on the aggregated demand over all tasks on the resource. At each

node, the resource and the time point with the maximum contention are identified by the

heuristic, then a pair of tasks that rely most on this resource at this time point are selected

(provided the two tasks are not already connected by a path of temporal constraints).

Once the pair of tasks has been chosen, the order of the precedence has to be decided. For

that purpose, a number of randomized value ordering heuristics have also been proposed

by Beck et al. (1997), such as the centroid heuristic. The centroid of a task on a resource is

based on the individual demand curve for the task on the resource, and is computed for the

two critical tasks. The centroid of a task is the point that divides its probabilistic profile

equally. If the centroids are at the same position, a random ordering is chosen. Finally, we

note that a similar contention based approach has been proposed by Laborie (2005), based

on the detection and resolution of minimal critical sets (MCS).

3. Light Weighted Approach (LW)

In this section, we describe the basic CP model and the search strategies that we propose.

We consider as input a disjunctive graph and an objective function and define a constraint

model. Unlike the standard CP approach, the model does not take further advantage of

the problem structure, such as cliques of disjunctions corresponding to common resources.

The search strategy relies to a large extent on methods developed for generic constraint

programming, such as dichotomy, restarts, solution guided value ordering, and weighted

degree variable ordering. However some of these methods have been slightly adapted to

properties of disjunctive scheduling problems. Moreover we shall see that, in some cases,

small adaptations for a specific variant of disjunctive problem may be useful.

Let G = (N,D,A) be a disjunctive graph. We denote
−−→
l(e) the integer labelling an arc

e ∈D, similarly, we denote 〈
−−→
l(e),
←−−
l(e)〉 the pair of integers labelling an arc e ∈ A. Finally

let K be some integer standing for an upper bound on the total makespan Cmax.

• For each task ti ∈N , we introduce an integer variable sti ∈ [0, . . . ,K] standing for the

start time of this task.

• For each directed arc (ti, tj)∈D we introduce a precedence constraint sti +
−−−−−→
l((ti, tj))≤

stj.

• For each arc (ti, tj) ∈ A we introduce a Boolean variable bij which represents the

relative ordering between ti and tj. A value of 0 for bij means that task ti precedes task tj,
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whilst a value of 1 stands for the opposite ordering. The variables sti, stj and bij are linked

by the following constraint: bij =

0⇔ sti +
−−−−−→
l((ti, tj))≤ stj

1⇔ stj +
←−−−−−
l((ti, tj))≤ sti

3.1. Solving Method

We first describe the methods and strategies used by the solver to either find a solution

of this model or prove that none exists, given a constraint model as shown above,. In

particular we detail the type of constraint propagation, variable and value heuristics as

well as some additional features of the strategy.

Then, in Section 3.2, we show how this is used in the context of our general method.

3.1.1. Constraint Propagation We maintain bounds consistency on the constraint net-

work. All constraints have a fixed arity and can be made BC in constant time by applying

simple rules. In particular, achieving BC on a precedence sti + pi ≤ stj can be done by

setting the value of min(stj) to max(min(stj),min(sti) + pi) and conversely max(sti) to

min(max(sti),max(stj)− pi). Given a disjunctive constraint on sti, stj and bij, there are

two cases. First, if the domain of bij is a singleton, the constraint is now a precedence, hence

the procedure explained above applies. Otherwise, we detect if the domain of bij should

be reduced. This is the case if min(sti) + pi >max(stj), or if min(stj) + pj >max(sti), in

which case the value of bij must be 0 or 1, respectively. Otherwise, it can be shown that

every value in the domains of sti, stj and bij are bounds consistent.

Applying BC on this constraint network enforces a very basic level of consistency. It

is denoted arc-B-consistency in Baptiste and Le Pape (1995), and shown to be less effi-

cient than more complex propagation methods such as Edge-Finding, albeit using different

search strategies than the one proposed in this paper. Given a problem defined by a dis-

junctive graph (N,D,A), achieving BC on the COP is sufficient to ensure that, for any

task ti, min(sti) is the length of the longest directed path between the source and ti in the

graph (N,D). Similarly, max(sti) is equal to the length of the maximum allowed makespan

minus the length of the longest directed path between ti and the sink in the graph (N,D).

For a job shop problem with n jobs and m machines, this model involves nm(n− 1)/2

Boolean variables (and as many ternary disjunctive constraints). Constraint propagation

works as follows: when the domain of a Boolean variable bij, or of an integer variable sti

changes, for instance because of a decision or because establishing BC on a constraint
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tightened its bounds, every constraint involving this variable is triggered and put on a

stack. At each step we pick a constraint in this stack and achieve BC on it in constant

time, possibly triggering further constraints. In the worst case, each constraint may shave

the domains of the integer variable by 1. Therefore, this process is guaranteed to reach

a fixed point in time O(Cmax ∗ nm(n − 1)/2). However, it rarely reaches this bound in

practice.

3.1.2. Variable Ordering In our model, we simply branch on the Boolean disjunct

variables, which precisely simulates the strategy of branching on precedences discussed

earlier, and thus significantly reduces the search space. We use the domain/weighted-

degree heuristic (Boussemart et al. (2004)) which chooses the variable with minimum ratio

of domain size to sum of weight of neighboring constraints, initialized to its degree. A

constraint’s weight is incremented by one each time the constraint becomes unsatisfied

during constraint propagation.

However, at the start of the search, this heuristic is completely uninformed since every

Boolean variable has the same domain size and the same degree (i.e. 1). We therefore used

the domain size of the two tasks ti, tj associated to every disjunct bij to alleviate this issue.

The domain size of task ti (denoted dom(ti)) is the number of possible starting times of

ti, i.e. dom(ti) = (lsti− esti + 1) (we assume that domains are discrete).

With regard to the weighted component of the heuristic, there are a number of ways

to incorporate failure information. We focused on the following two methods. In the first,

we use the weight (w(i, j)) on the Boolean variable alone, i.e. the number of times search

failed while propagating the constraint between sti, stj and bij. The heuristic then chooses

the variable minimizing the sum of the tasks’ domain size divided by the weighted degree:

dom(ti) + dom(tj)

w(i, j)
(1)

Our second method uses the weighted degree associated with the task variables instead

of the Boolean variable. Let Γ(ti) denote the set of tasks sharing a resource with ti. We

call w(ti) =
∑

tj∈Γ(ti)
w(i, j) the sum of the weights of every ternary disjunctive constraint

involving ti. Now we can define an alternative variable ordering as follows:

dom(ti) + dom(tj)

w(ti) +w(tj)
(2)
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We refer to the two heuristics above as Tdom/Bwt and Tdom/Twt respectively, where

Tdom is the sum of the domain sizes of the tasks associated with the Boolean variable,

and Bwt (Twt) is the weighted degree of the Boolean (associated tasks resp.). Ties were

broken randomly.

The relative light weight of our model allows the search engine to explore many more

nodes, thus quickly accruing information in the form of constraint weights. It is important

to stress that the behaviour of the weighted degree heuristic is dependent on the modeling

choices. Indeed two different, yet logically equivalent, sets of constraints may distribute

the weights differently.

3.1.3. Value Ordering Our value ordering is based on the solution guided method

(SGMPCS) proposed for JSPs (Beck (2007)). This approach uses previous solutions as

guidance for the current search, intensifying search around a previous solution in a similar

manner to the tabu search algorithm of Nowicki and Smutnicki (2005). In SGMPCS, a

set of elite solutions is initially generated. Then, at the start of each search attempt, a

solution is randomly chosen from the set and is used as a value ordering heuristic (i.e.

where possible each selected variable is assigned the value it took in the chosen solution).

When an improving solution is found, it replaces the solution in the elite set that was used

for guidance.

The logic behind this approach is its combination of intensification (through solution

guidance) and diversification (through maintaining a set of diverse solutions). Note that

this is a generic technique that can be applied to both optimization and satisfaction prob-

lems (Heckman (2007)). In the latter case, partial solutions are stored and used to guide

subsequent search.

Interestingly, Beck found that the intensification aspect was more important than diver-

sification for solving JSPs. Indeed, for the instances studied, there was little difference in

performance between an elite set of size 1 and larger elite sets (although too large a set

did result in a deterioration in performance). We therefore use an elite set of 1 for our

approach, i.e. once an initial solution has been found this solution is used, and updated if

improved, throughout search.

Furthermore, up until the first solution is found, we use a value ordering working on

the principle of best promise (Geelen (1992)). The value zero for bij is visited first iff

the domain reduction directly induced by the corresponding precedence (sti + pi ≤ stj) is
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less than that of the opposite precedence (stj + pj ≤ sti). We use a static value ordering

heuristic for breaking ties, based on the tasks’ relative position in their jobs. For example,

if tj is the fourth task in its job and ti is the sixth task in its job, then the value zero for

bij sets the precedence stj + pj ≤ sti.

3.1.4. Additional Features The following additional features are used during

dichotomic search and during branch and bound search. We use a geometric restarting

strategy (Walsh (1999)) which is a sequence of search cutoffs of the form s, sr, sr2, sr3, . . .

where s is the base and r is the multiplicative factor. In our approach we defined the cutoff

in terms of failures, where the base was 256 failures and the multiplicative factor was 1.3.

We also incorporate the nogood recording from restarts strategy of Lecoutre et al. (2007),

where nogoods are generated from the final search state when the cutoff has been reached.

In other words, a nogood is stored for each right branch on the path from the root to the

search node at which the cutoff was reached.

In order to make the results reproduceable, we implemented the cutoff for each

dichotomic step in terms of propagations since the vast majority of constraints are the

same (ternary disjuncts). The observed propagation speed for a subset of problems was

approximately 20 000 000 calls to a constraint propagator (achieving BC on a disjunctive

or precedence constraint) per second, the cutoff was then calculated by multiplying this

by 30 (as this would generally result in a time cutoff of 30 seconds).

3.2. General Method

The general method (“LW ”) used on all problem types is given in Algorithm 1. The

procedure DisjunctiveGraph returns a disjunctive graph as well as a set of constraints

to link a distinguished variable representing the objective to the rest of the network. For

instance, when the objective is the makespan, the objective variable is simply constrained

to be larger than or equal to the completion time of every task.

For the earliness/tardiness cost objective we use a set of Boolean variables constrained

to be true if and only if the last task of each job is early, and another such set standing

for lateness. Moreover, we have a weighted sum constraint to link the objective variable to

a sum of terms, each involving such a Boolean variable, the start time of the last task of

a job, and the constant penalty associated with earliness or lateness.

Computing the disjunctive graph is straightforward for all considered variants of the

JSP, except for the JSP variant involving no-wait constraints (NW-JSP) where there is no
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time lag allowed between a task finishing and the next task of the job starting . Indeed,

in this case, we have shown that it is possible to reduce this graph by merging the nodes

corresponding to the tasks of a single job (Grimes and Hebrard (2011)), and it was this

model that was used for the NW-JSP instances.

Algorithm 1: LW (Problem: P, Var Order: varh, Val Order: valh, Cutoff: t1, t2, t3))

start ← time.now; lwP ← Model(DisjunctiveGraph(P))

(bestsol, lb, ub) ← Initialize(lwP)

dicho lb ← lb

while dicho lb < ub − 1 do

obj ← (dicho lb + ub)/2

result ← Solve(lwP,varh,valh,bestsol,obj,t2)

if result.sat then ub ← result.obj; bestsol ← result.solution

else if result.unsat then dicho lb ← lb ← obj

else dicho lb ← obj

if (lb = ub − 1) then return (true, ub, bestsol )

else return BnbSolve(lwP,varh,valh,bestsol,ub,lb,t3 + start − time.now)

Algorithm 2: Initialize(Problem: lwP, Cutoff: t1)

ub ← Initub(lwP)

if (P.type = tljsp) then ub ← Jtlgreedy(lwP)

result ← Solve(lwP,varh,valh,bestsol,ub,t1)

if result.sat then return (result.solution, Initlb(lwP), result.obj)

else return (∅, Initlb(lwP), ub)

3.2.1. Initialization The function Initialize (outlined in Algorithm 2) initializes the

lower and upper bounds. For makespan minimization, the lower bound was set to the maxi-

mum job/machine duration, while the initial upper bound was obtained with a randomized

insertion method called 1000 times for most problem types. However, this simplistic method
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is not guaranteed to produce a feasible solution for problems involving time lag constraints,

namely the NW-JSP and the variant of the JSP involving general time-lag constraints

(TL-JSP) . The upper bound for these two problem types was set to the trivial upper

bound of the sum of the durations of all tasks, i.e. start each job only after the preceding

job has finished. The lower bound for minimization of earliness/tardiness penalties was

simply set to 0, while the upper bound was computed as the sum of maximum earliness

costs for each job, plus the cost of each job finishing late based on a makepsan computed

in the same way as for makespan minimization.

For the upper bound we added two further steps based on observations of search behav-

ior. Firstly, the initial upper bound on job shop problems with time-lags is extremely poor.

Indeed, time lag constraints make it difficult to find a feasible solution even if no restriction

is put on the makespan. Moreover, we observed that for a few large instances, when it is

not given an initial upper bound, our method may take a long time to converge for the

general time-lag variant of the job shop. To remove this issue we implemented a procedure

to initialize the upper bound that greedily explores the set of jobs J (Grimes and Hebrard

(2011)), this procedure is referred to as Jtlgreedy in Algorithm 2 and is only performed for

instances of type TL-JSP.

The second observation was that the search method generally works considerably better

when a solution, even one of relatively poor quality, is used to guide the value selection.

To this end we perform an extremely short run with our standard search method to find a

solution with objective value less than or equal to the initial upper bound. The time limit

for this (t1 in Algorithm 2) was set to approximately 3 seconds.

The function Solve in Algorithm 1 always refers to the constraint method described in

Sections 3.1.1, 3.1.2, 3.1.3 and 3.1.4. It takes as input a problem, the variable heuristic,

value heuristic, best solution found thus far, the maximum objective value allowed, and a

time limit (t2 for dichotomic search). The value heuristic is only used if no solution has

been found thus far (i.e. bestsol= ∅).

Observe that, except for the computation of initial bounds for TL-JSP and ET-JSP, the

constraint network given to the function Solve is completely determined by the disjunctive

graph and the objective function. In particular, it is blind to particular structures such as

cliques of disjunctive constraints corresponding to resources or even to the variant of JSP

that is being solved.
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3.2.2. Dichotomic Search There are two phases to our search strategy: a dichotomic

search phase, followed by branch-and-bound search if optimality hasn’t been proven.

In the dichotomic search phase, we repeatedly solve the decision problem with an addi-

tional constraint bounding the objective value by ub+dicho lb
2

, thus converting the instance

to a satisfaction problem (i.e. one merely searches for any solution, not the best solution).

The solve method has three stopping conditions: a solution is found (update the upper

bound ub with the objective value of the solution and store the new solution as bestsol),

it is proven that no solution exists for this objective value (update the lower bound, lb,

and the dichotomic search lower bound dicho lb), or the time limit was reached (update

only the dichotomic search dicho lb as there may be a solution for this upper bound on

the objective value).

3.2.3. Branch & Bound The function BnbSolve performs branch-and-bound search if

optimality has not been proven during the dichotomic search phase. This takes additional

inputs of the current upper bound and proven lower bound, and runs for the remainder

of the time (where t3 is an overall time limit). However, the key point is that the search

strategy employed in BnbSolve is identical to that in Solve, i.e. the same variable/value

heuristics, restarting strategy, etc. are used throughout.

4. Comparison with the State of the Art

We evaluated the model described in Section 3 on a number of disjunctive scheduling

problem types. The aim of the evaluation was twofold. Firstly, in this section we show that

the approach outperforms a state-of-the-art traditional CP method on most problem types,

is extremely close to the best dedicated techniques on several benchmarks, and is often

much more efficient than one would expect from a relatively basic method. Secondly, in

Section 5, we provide insight into the behavior of the algorithm by analyzing the different

factors at work.

We implemented our approach in Mistral (Hebrard (2008)). All reported experiments

were performed on an Intel Xeon 2.66GHz machine with 12GB of RAM on Fedora 9, unless

otherwise stated. Each algorithm run on a problem had an overall time limit of 3600s.

There were 10 runs per instance.

In order to provide a direct comparison for our method on all problem types, we imple-

mented a standard CP model in IBM ILOG CP Optimizer v12.5, a state-of-the-art com-

mercial CP solver. We adapted a model for the JSP from the CP Optimizer distribution
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to all other variants. It uses the dedicated constraints for unary resource, setup times,

precedence and “equalities” in the case of no-wait instances (respectively, IloNoOverlap,

IloTransitionDistance, IloEndBeforeStart, IloStartAtEnd). The inference level for

the IloNoOverlap constraint is set to IloCP::Extended. CP Optimizer features a sophis-

ticated generic default search strategy. This heuristic uses information from decision

”Impact” (Refalo (2004)), randomized restarts and Large Neighborhood Search (LNS Shaw

(1998)), however, the exact details are not published. We used a single-thread ver-

sion and we randomized each run by using a different random seed. Moreover, we also

considered a variant where we allowed CP Optimizer to also branch on the construct

IloIntervalSequenceVar, representing permutations of tasks in a unary resource, still

using the black box strategy.

Due to the number of benchmarks our primary method of comparison is the average

percentage relative deviation (APRD) per problem set. The PRD is given by

PRD=
CAlg−CRef

CRef

∗ 100

where CAlg is the objective value found by Alg, and CRef is the best objective value found

for the instance over all comparison methods.

The same hardware, number of randomized runs, and time limit were used for CP

Optimizer as for LW . For each problem type, we chose the best of the two CP Optimizer

strategies, based on lowest APRD of the best solution found over the instances tested.

However, it should be noted that on most problem types the results were quite similar for

both strategies. Similarly, we tested both variable heuristics Tdom/Bwt and Tdom/Twt

for LW and present the results for the best per problem type.

Detailed results of our approach on each problem variant are available at http://4c.

ucc.ie/~dgrimes/JSSP/jssp.htm.

4.1. Problem Types

We first provide a brief description of the problem types tested (unless otherwise stated,

the objective function is makespan minimization):

• Open Shop Scheduling (OSP): Tasks of the same job or running on the same machine

cannot overlap.

• Job Shop Scheduling (JSP): Identical to the OSP with the exception that the ordering

of tasks in a job is predefined.
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• Job Shop Scheduling with Sequence Dependent Setup Times (SDS-JSP): A JSP with

the additional constraint that there is a setup time for each task on a machine which is

dependent on which preceding task was performed on the machine.

• Job Shop Scheduling with Time Lags (TL-JSP): A JSP with the additional constraint

that there is a maximum time lag allowed between a task of a job finishing and the next

task of the job starting.

• No-Wait Job Shop Scheduling (NW-JSP): A special case of the JTL where the max-

imum time lag is always 0, i.e. a task of a job must start immediately after the preceding

task in the job has finished.

• Job Shop Scheduling with Earliness/Tardiness Costs (ET-JSP): A JSP with the objec-

tive function of earliness/tardiness cost minimization, where each job has an associated

due date and cost for each time unit the job finishes early/late.

4.1.1. Benchmarks There are three sets of OSP instances which are widely studied in

the literature, 60 instances, denoted tai-∗, of Taillard (1993); 52 instances, denoted j-∗,
of Brucker et al. (1997); and 80 instances, denoted gp-∗, of Guéret and Prins (1999). All

instances involve “square” problems, i.e. where the number of jobs and machines are equal.

The instances range in size (in n×m format) from 3×3 to 20×20.

There are a large number of JSP benchmarks, stretching back to the 3 ft-∗ instances

proposed by Fisher and Thompson (1963). The other benchmarks we consider here are: 40

instances of Lawrence (1984) (denoted la-∗), 5 instances proposed by Adams et al. (1988)

(denoted abs-∗), 10 instances proposed by Applegate and Cook (1991) (denoted orb-∗), 4

instances proposed by Yamada and Nakano (1992) (denoted yn-∗), 20 instances proposed

by Storer et al. (1992) (denoted swv-∗), and finally 70 instances of Taillard (1993) (denoted

tai-∗). Instances range in size from 6×6 to 50×20.

The SDS-JSP benchmarks we consider are those proposed by Brucker and Thiele

(1996). These instances were generated by adding setup times to a subset of the job shop

instances from Lawrence (1984). The problems in the set t2-ps∗ correspond to the job

shop instances la01-15, problems in the set t2-pss∗ are variations of t2-ps∗ where an

alternative setup-time distribution was used. Instances range in size from 10×5 to 20×5.

The TL-JSP instances that have been studied in the literature, as presented in Caumond

et al. (2008), were generated by adding time lag constraints to well known JSP benchmarks.

In particular we tested on forty Lawrence (1984) instances, two instances of Fisher and
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Thompson (1963), and four flow shop instances of Carlier (1978). In all these instances, the

time lags are defined, for each job, by a factor (β ∈ {0,0.25,0.5,1,2,3,10}) of the average

duration of tasks in the job. The la instances range in size from 10×5 to 30×10, while the

four flow shop instances, denoted car-∗, range in size from 10x6 to 8x9.

The NW-JSP instances are 82 of the JSP instances described above (all instances

except Taillard), with the no-wait time lag constraint added, plus the four Carlier flow

shop instances.

There are two sets of ET-JSP instances which have been proposed. The first benchmark

consists of 9 sets of problems, each containing 10 instances. These were generated by Beck

and Refalo (2003) using the random JSP generator of Watson et al. (1999). Three sets of

JSPs of size 10×10, 15×10 and 20×10 were generated, each set containing ten instances.

For each JSP instance, three ET-JSP instances were generated with different due dates

and costs. The costs were uniformly drawn from the interval [1, 20]. The due dates were

calculated based on the Taillard (1993) lower bound (tlb) of the base JSP instance, and

were uniformly drawn from the interval:

[0.75 x tlb x lf, 1.25 x tlb x lf ]

where lf is the looseness factor and takes one of the three values {1.0, 1.3, 1.5}. Thus for

each problem size, there are 30 instances (10 for each looseness factor). Jobs do not have

release dates in these instances.

The second benchmark is taken from the genetic algorithms literature (Morton and

Pentico (1993)). There are 12 instances, split into sets jb and ljb, with problem size

ranging from 10×3 to 50×8. Jobs do have release dates in these instances, furthermore

earliness and tardiness costs of a job are equal.

4.2. Comparison with CP Optimizer

In Table 1, we compare LW and CP Optimizer (denoted CPO in tables and figures) on

all instances of each problem type in terms of APRD and ability to prove optimality. The

APRD was calculated for both the best objective value from the 10 randomized runs on

an instance (best), and the average objective value over these runs (avg) for LW and

CP-Optimizer (Cref was the best found between LW and CP Optimizer). For optimality

proofs, results are given in terms of number of instances for which proofs of optimality

were obtained on at least one run (atleast1 ), and on all ten runs (every) for the instance.
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In terms of APRD, the results obtained with CP Optimizer are extremely good in many

cases. Indeed it found several new best results (NW-JSP instances swv16 through swv20,

ET-JSP instances ljb2, ljb9 and ljb10, as well as numerous TL-JSP instances). The

results suggest that CP Optimizer scales better. It is more efficient on data sets involving

larger instances, such as swv or the larger tai instances for JSP, whereas LW tends to be

best on smaller instances. This is very significant on ET-JSP data sets jb (maximum size

15x5) and ljb (maximum size 50x8). Although LW was relatively good on the former set,

and in particular proving optimality in 85% of the runs, it was far from CP Optimizer in

terms of APRD on the latter set of six instances (26.2 versus 2.1 for APRD of best objective

found per instance). Part of this observation might be explained by the different time

complexity of reaching a fix point on a resource constraint during propagation. Dedicated

filtering algorithms can run in O(n logn) Viĺım (2007) whereas the decomposition uses a

quadratic number of constraints and the worst case time complexity also linearly grows

with the makepan. However, in practice, the decomposition is inherently incremental and

the worst case analysis is very far from the typical behavior. We suspect that the better

scaling may actually be better explained by the use of Large Neighborhood Search by CP

Optimizer. Overall, however, JSP was the only problem type where LW had worse APRD

than CP Optimizer.

Table 1 Direct APRD and Proven Optimality Comparison: LW vs CP Optimizer

Problem #inst.
APRD Opt

LW CPO LW CPO
Best Avg Best Avg atleast1 every atleast1 every

OSP 192 0 0 0.00 0.01 192 192 127 127
JSP 152 1.14 1.81 0.08 0.54 67 63 66 58

ET-JSP 102 1.59 4.88 2.52 11.5 75 73 34 33
SDS-JSP 25 0 0.45 0.27 0.61 13 12 1 1
TL-JSP 287 0.33 1.21 0.70 1.40 198 172 80 69
NW-JSP 86 0.59 2.01 1.18 2.22 41 38 1 1

The results of LW are even more impressive in terms of instances where optimality was

proven, solving 586 of the 844 instances on at least one run. In comparison, CP Optimizer

only proved optimality on 309 instances. This may be partly due to strategies, such as LNS,

used by CP Optimizer. Such hypothesis is difficult to corroborate because of the black-

box nature of CP Optimizer.. However, similar behavior has already been observed with

older versions (such as Ilog Scheduler), or when comparing comparable models in Choco

in the case of OSPs (Grimes et al. (2009)). Notice that we do not give an initial lower
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Figure 2 Average runtimes on instances where optimality was proven on all ten runs.

bound to the CP Optimizer model. However, this cannot explain the observed gap. Indeed,

straightforward constraint propagation on precedence and unary resource constraints is

sufficient to obtain the same bounds as those given to the LW approach.

We plot the average runtime for instances where optimality was proven on every run in

Figure 2. Of the 550 such instances for LW , 494 were solved to optimality in less than one

minute on average (note that the y-axis is in log scale), and 380 of these required less than

one second on average.

CP Optimizer only solved 172 instances to optimality in under one second and 251 in

under one minute, of the 287 instances where it proved optimality on every run. Further-

more, 157 of these 287 instances required no proof as the trivial lower bound was the

optimal value, compared to 132 of the 584 instances requiring no proof for LW . Overall,

LW closed 3 open instances of SDS-JSP, 187 open instances of TL-JSP, 3 open instances

of ET-JSP (and found a number of improving solutions).

One influencing factor in the ability to prove optimality is the restarting strategy. The

default method in CP Optimizer is a geometric strategy with a base, s, of 100 failures, and

factor, r, of 1.05. This would mean a much more gradual increase in the cutoff compared

to that used by LW . In order to test the impact of the restarting strategy, we reran CP
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Figure 3 Average runtime for 192 OSP instances using same restarting strategy.

Optimizer with the same restart settings as those used in LW , on a subset of the problem

types (192 OSP instances and 25 SDS-JSP instances).

The results showed only a minor improvement for the OSP instances, where optimality

was proven for three further instances, and no further instances were solved to optimality

in the SDS-JSP instances. Figure 3 is a scatter plot of average runtime per instance for

LW versus CP Optimizer with the same restarting strategy (CPO res256 ), and illustrates

that most of the instances where the latter failed to prove optimality in one hour, were

solved in less than one second by LW .

Although the inference used by LW is of course much weaker, we believe that the suc-

cess in proving optimality can be explained by the weighted-degree heuristic. The heuristic

focuses search on the critical part of the constraint network, identified through the repeated

involvement in failures, which is key for generating proofs. Moreover, whereas CP Opti-

mizer must essentially go through the same computations whenever it restarts or when the

upper bound is improved, a significant part of the work is cached in the LW approach. In

particular, the weights learned by the heuristics are still relevant and, as we show later, are

used to focus search on roughly the same area (even though this evolves during search).

Overall, if the LW approach is more efficient on the tested benchmarks, it does not seem

to scale as well as CP Optimizer. However, if (as we believe) this is for a large part due to
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the use of LNS steps by CP Optimizer, it suggests that a method based on LNS, but using

LW when solving a subproblem may be promising. Indeed, LW is extremely efficient on

small instances and the size of the subproblems does not necessarily grows linearly with

the size of the problem.

4.3. State-of-the-art Systematic and Metaheuristic Comparison Methods

Each variant of JSP has been the focus of significant research work. For the subsequent

comparison, we used the best known values reported in the literature for the following

complete and incomplete methods:

• OSP : The best systematic method is a dedicated CP approach of Malapert et al.

(2008), implemented in the solver Choco. This method contains a number of dedicated

filtering techniques for the open shop problem, and was the first method able to solve all

192 instances to optimality in less than an hour. The best metaheuristic approach for this

problem type is a particle swarm optimization proposed by Sha and Hsu (2008).

• JSP : Metaheuristic approaches have proven to be the most successful on JSPs, in par-

ticular the well-known tabu search method i-TSAB of Nowicki and Smutnicki (2005). The

current best metaheuristic method is a tabu search with path-relinking recently proposed

by Peng et al. (2014), which improved the best-known solutions on 49 of 205 well-known

instances studied. The SGMPCS approach of Beck (2007), discussed earlier in Section

3.1.3, has shown best performance of systematic methods proposed to date. It combines

the standard strong filtering techniques with solution-guided value ordering.

• SDS-JSP : The systematic method we compare with is a CP approach of Artigues

and Feillet (2008) which computes solutions to the traveling salesman problem (TSP) with

time windows induced by the setup times on a machine in order to get better bounds. The

metaheuristic comparison is a hybrid genetic algorithm (GA) with local search introduced

by González et al. (2008).

• TL-JSP : The general TL-JSP has only recently received attention in the literature

(most methods have been proposed for the special case, NW-JSP, where all time lags are

zero). Caumond et al. (2008) introduced a memetic algorithm, which is a combination of

population based search and local search with an emphasis on using problem specific knowl-

edge. Artigues et al. (2011) proposed a CP branch and bound method using dichotomic

search and the branching scheme of Torres and Lopez (2000).
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• NW-JSP : van den Broek (2009) proposed a Mixed Integer Programming (MIP) for-

mulation of the problem incorporating the alternative graph representation (Mascis and

Pacciarelli (2002)), immediate selection rules, and a new job insertion heuristic to initial-

ize the upper bound. A large number of metaheuristic approaches have been proposed in

recent years for the NW-JSP, most decompose the problem into sequencing and timetabling

components. The current best method is a local search technique (OJILS2 ) proposed by

Bürgy and Gröflin (2012) incorporating a job insertion heuristic based on their approach

to the optimal job insertion problem.

• ET-JSP : Danna and Perron (2003) proposed complete (“unstructured large neigh-

borhood search” uLNS) and incomplete (“structured large neighborhood search method”

sLNS) methods, incorporating MIP-based large neighborhood search (Shaw (1998)).

We report a summary of the APRD results comparing LW and CP Optimizer to the

best dedicated complete and metaheuristic methods on all problem types in Table 2. The

reference used to compute the PRD is the best objective value obtained by either LW ,

CP Optimizer, or the comparison dedicated approaches. Note that we only present results

for a subset of instances as the dedicated methods didn’t provide results for all instances

for some problem types. Moreover, except for LW , CP Optimizer, and the best complete

methods on OSPs and JSPs, the following results where not obtained on the same machines

nor necessarily with the same time limit.

Table 2 APRD comparison with the State of the Art

Problem #inst.
LW CPO SOA SOA

Systematic Heuristic
Best Avg Best Avg Best Ref Best Ref

OSP 175 0 0 0 0.01 0 Malapert et al. (2008) 0.04 Sha and Hsu (2008)
JSP 115 1.49 2.18 0.48 1.01 0.81 Beck (2007) 0.01 Peng et al. (2014)

ET-JSP 42 3.85 16.14 6.27 34.15 274.4 Danna and Perron (2003) 100.46 Danna and Perron (2003)
SDS-JSP 15 0.04 0.56 0.19 0.52 2.06 Artigues and Feillet (2008) 0.14 González et al. (2008)
TL-JSP 27 0 0.04 0.06 0.08 6.00 Artigues et al. (2011) 15.60 Caumond et al. (2008)
NW-JSP 52 2.16 4.47 2.74 4.41 - van den Broek (2009) 0.18 Bürgy and Gröflin (2012)

The results show that both CP Optimizer and LW are competitive with the state of

the art on most problem types. Indeed they generally outperformed the best systematic

methods, and were only worse than the best metaheuristic methods on problems of type

JSP and NW-JSP. We do not present results on NW-JSP for the systematic method of

van den Broek as there was not sufficient overlap in results given. However, we note that

this method proved optimality on 13 more instances than LW , albeit with the proofs of

optimality for these instances taking over 21 hours on average.
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5. Analysis of LW method
5.1. Component Analysis

In this section we assess the relative importance of the different components of our algo-

rithm to its overall performance. The motivation for this is twofold. Firstly, the results

provide further insight into the behavior of the LW method, which could be of use to other

researchers considering a similar approach. Secondly, the results provide insight into the

problems themselves, which can also clarify why certain components of our approach are

more suited to one type of problem than another.

For each problem type we compared the default method with the following variations

on the default setting:

• Variable Ordering: Tdom, Bwt, and Twt alone; and the defaults Tdom/Bwt or

Tdom/Twt.

• Value Ordering: Promise and lexical (for the job shop problem and its variants, this is

the static heuristic as described in Section 3.1.3). The default used solution guided value

ordering.

• Without nogood recording from restarts (noNgd). The default used nogood recording

from restarts.

• Dichotomic Search: None versus 3 or 300 second cutoffs (noDs/Ds3s/Ds300s). The

default used a 30 second cutoff for dichotomic search.

• Restarting: None versus Luby (Luby et al. (1993)) restarting strategy

(noRestart/Luby). For the latter, the scale factor was 4096 failures. The default used the

geometric restarting strategy.

For each variant of an algorithmic component, all other components used the default

settings (for example Luby combined the Luby restarting strategy with the default variable

heuristic for the problem type, solution guided value ordering, nogood recording from

restarts, 30 second cutoff for each dichotomic step, and random tie breaking).

5.1.1. Experimental Setup and Benchmarks There were ten runs per instance with

an overall time limit of twenty minutes per run on an instance. A subset of ten benchmarks

were randomly selected for each problem type. However, the selection process was biased so

as to contain a number of difficult instances (based on the results of the previous sections),

and to have problems of varying size.
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The algorithms were compared in terms of APRD of average objective values, where

Cref was the best objective value found on the instance over the different variants; and in

terms of proven optimality. (More detailed analysis can be found in Grimes (2012).) For

ET-JSPs the sample contained five of the instances generated by Beck and Refalo (2003)

and five of the instances from Morton and Pentico (1993). The APRD for the latter was

calculated relative to the normalized objective as described in the previous section, and

the overall results for ET-JSPs are averaged over the two sets.

The results for APRD are given in Figure 4, while Figure 5 shows the performance in

terms of number of runs where optimality was not proven. For clarity, we have restricted

the APRD to be within 15%. The ET-JSP results for noRestart, Twt and, in particular,

Tdom had much larger APRDs, with the latter failing to improve on the initial (extremely

poor) upper bound for some of the Beck-Refalo instances.

Tdom

Twt

Bwt

Tdom/Twt
Tdom/Bwt

Promise

LexVal

noDs

Ds3s

Ds300s
noRestart

Luby

noNgd

0 5 10 15

OSP
JSP
SDS−JSP
ET−JSP
TL−JSP
NW−JSP

Figure 4 Average Percent Relative Deviation.

A peak in the curve for a given non-default value of a component indicates a particularly

suboptimal choice. For example, the curve for JSP shows that the four following parameters

are the most important, in that order: using the information about constraint weights;
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using the information about task domain size; using restarts; and guiding search with the

previous best solution.

The rankings are relatively consistent in terms of the key algorithmic factors across the

different problem types. The weighted component of the variable heuristic was generally

most important, as evidenced by the poor performance of Tdom, which was worst overall

on four of the six problem types and the worst of the variable heuristic variations on one

other. Although all variations found extremely good, if not optimal, solutions on the OSPs,

Figure 5 reveals that the variable ordering heuristic (Tdom/Bwt) was key as the other

variations of the variable heuristic failed to prove optimality on all instances.

Tdom

Twt

Bwt

Tdom/Twt
Tdom/Bwt

Promise

LexVal

noDs

Ds3s

Ds300s
noRestart

Luby

noNgd

0 20 40 60 80 100

OSP
JSP
SDS−JSP
ET−JSP
TL−JSP
NW−JSP

Figure 5 Number of runs where optimality was not proven.

Interestingly, for problems involving time lag constraints, the ranking of the components

was similar for the general case but quite different for the no-wait case. The most obvi-

ous difference is that the weighted degree component of the variable heuristic was much

less important than the (tasks) domain size for NW-JSP. Similarly, solution guided value

ordering and restarting appear to have much less influence on this problem type compared

to the others. Only minor gains were found in general with the other factors, such as

dichotomic search and nogood recording.
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Finally, we investigated the importance of the initial lower and upper bounds computed.

Figure 6 presents averages per problem type, together with the average of the best objec-

tives value found by LW . Note that we do not include the results for ET-JSPs as the lower

bound was always 0, while the average upper bound was nearly two orders of magnitude

greater than the average best objective value found by LW .

We found that the initial lower and upper bounds were not particularly strong on average,

indeed the upper bounds used for TL-JSPs, NW-JSPs and ET-JSPs were quite poor. This

only impacted the performance of LW (without using the greedy heuristic for improving

the upper bound) on the problem type TL-JSP, where it failed to improve on the initial

solution for some of the largest instances (Grimes (2012)).

JSP

OSP

SDS−JSP

TLJSP

NWJSP

0 1000 2000 3000 4000

Init UB
LW−best
Init LB

Figure 6 Radial plot of average initial lower and upper bounds, and average best LW objective for different

problem types.

Overall these results show that the variable heuristic is the key factor in our algorithm,

although the relative importance of the two components of the heuristic varies depending

on the problem type. Furthermore, it is clear that our algorithm could be improved further

by fine tuning the various parameters for the different problem types. However, the goal

of this work was to illustrate that a relatively simple generic method can be successfully

applied to scheduling problems without the need for parameter tuning for each specific

problem type.
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5.2. Weight analysis

We generated weight profiles on a sample of problems for each problem type. The experi-

mental setup involved running branch and bound search with a 30 second cutoff. Weights

were stored after either the cutoff was reached or the problem was solved. The purpose

of these experiments is to provide insight into the behaviour of search on the different

problem sets and to ascertain whether there was a correlation between search performance

and the level of discrimination amongst the variable weights.

We used the Gini coefficient (Gini (1912)) to characterize the weight distribution, which

is a metric of inequality, used for instance to analyse distribution of wealth in social science.

The Gini coefficient is based on the Lorenz curve, mapping the cumulated proportion of

income y of a fraction x of the poorest population. When the distribution is perfectly fair,

the Lorenz curve is y = x. The Gini coefficient is the ratio of the area lying between the

Lorenz curve and x= y, over the total area below x= y.

In simplistic terms, a low Gini coefficient for the weight distribution means the weights

are spread across many variables while a high coefficient would mean that the weights are

concentrated on a small subset of variables. In the latter case, this means that there were

a small number of variables which were repeatedly the cause of failure, i.e. the weights

identify the bottleneck search variables in the problem.

Let us first consider search trees for unsatisfiable instances. In an ideal situation, search

converges immediately toward a given set of variables from which a short proof of unsat-

isfiability can be extracted. In this case, the Gini coefficient of the weight distribution

typically increases rapidly and monotonically. In Figure 7 we plot the Gini coefficient of

the proofs for an SDS-JSP instance; a random binary CSP instance with 100 variables,



Grimes and Hebrard: A Conflict-Directed Approach for Shop Scheduling Problems
28 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

●●

●●

GueretPrins

Taillard

Brucker

0.2 0.4 0.6 0.8 1.0

Figure 8 Boxplot representation of Gini coefficient of weight increment distribution for largest OSPs of the three

sets.

a domain size of 15, 250 binary constraints of tightness 0.53 uniformly distributed; and

a pigeonholes instance, which is an academic problem where all variables and values are

symmetrically equivalent.

After each geometric restart, the Gini coefficient is computed and plotted against the

current number of explored nodes. Note that the Gini coefficient is low at the start, as the

weighted degree of all variables is simply the number of constraints involving the variable.

We observe first that, as expected, the weight distribution is evenly spread amongst all

variables throughout search on the pigeonholes problem (due to the symmetry amongst

variables). The Gini coefficient for the random CSP illustrates that slightly greater discrim-

ination is offered by the weights, albeit the weight is still spread amongst a large proportion

of the variables. The behavior of the Gini coefficient is quite different for the SDS-JSP

instance, where it quickly increases before stabilizing at a high value. This indicates that

the weight is accruing on a small subset of variables.

5.2.1. Weight profiles for OSPs We next analyzed the weight profiles generated on

OSPs with the heuristic Tdom/Bwt, comparing the weight increment received by each

variable using the Gini coefficient. The problems tested were the 20 largest instances from

both Taillard (tai15-∗, tai20-∗) and Gueret-Prins sets (gp09-∗, gp10-∗), and the 26 largest

Brucker instances (j6per-∗, j7per-∗, j8per-∗). Boxplots of the results, in terms of the Gini

coefficient of the weight increments, are shown in Figure 8.

We see that the Taillard and Gueret-Prins instances always yielded a Gini coefficient of

greater than 0.83. The Brucker instances, on the other hand, had Gini coefficients ranging

from 0.22 to 0.88, with a median value of 0.58. This means that there was a relatively small

set of variables which were identified as the primary sources of conflict for the Taillard and



Grimes and Hebrard: A Conflict-Directed Approach for Shop Scheduling Problems
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 29

2 4 6 8 10 12 14 16

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

gp10_6
j6per0_0
j8per10_0
j8per0_2
j8per0_1

Restart

G
in

i o
f w

ei
gh

t i
nc

re
m

en
ts

Figure 9 Evolution of weight increment distribution across restarts for sample OSPs (gp∗ is Gueret-Prins instance,

j∗per∗ is Brucker instance).

Gueret-Prins problems, whereas there were fewer clearly defined bottleneck variables in

most of the Brucker instances. This matches the results with LW , where all Taillard and

Gueret-Prins instances were solved in under 5 seconds, compared to 100s of seconds for

proving optimality on some Brucker instances.

However, there is a caveat that should be noted. Since weight is distributed by finite

increments, when the number of failures is low with respect to the number of variables,

it cannot be fairly distributed and we obtain an artificially high Gini coefficient. As the

number of failures increase, the Gini coefficient of the weighted degrees and the weight

increments converge.

Figure 9 illustrates the evolution of the distribution of weight increments across restarts

for a sample of OSPs. These instances were chosen as there were sufficient failures to be of

interest. The results again show that the heuristic found it more difficult to identify bottle-

neck variables in the Brucker instances than in the Gueret-Prins instance. The important

point is that there was a sharp decline in the Gini coefficient on all Brucker instances over

the first three restarts (approximately 1000 failures). This refutes the hypothesis that the

results in Figure 8 were due to a greater number of failures encountered on the Brucker

instances.

Focusing on the instances gp10 6 and j8per0 2, we first note that search effort was

similar on both instances (∼50K/60K failures). Analysis of the weight profiles on these

two instances further corroborates the findings of Figure 9. Here only 33% of variables
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received any weight increment during search on gp10 6 , compared to 85% of the variables

in j8per0 2.

5.2.2. Weight profiles for the JSP and its variants The results on the OSPs suggest

that the weight discrimination is the reason for the good performance of Tdom/Bwt.

We tested this hypothesis further on variants of the JSP, generating weight profiles with

both Tdom/Bwt and Tdom/Twt. The benchmarks tested were a sample of ten Lawrence

instances la06-15, as these have SDS-JSP, TL-JSP, and NW-JSP variants, i.e. the same

base JSP is used for each variant. Of particular interest is the weight discrimination on

the NW-JSPs, as Tdom/Bwt performed relatively poorly on these problems.

Figure 10 shows the boxplots of the Gini coefficients for the ten instances of the different

variants. We include two sets of SDS-JSPs (denoted ps-∗ and pss-∗ in our earlier exper-

iments, here sds1 and sds2 respectively), and two sets of TL-JSPs (for time lag β = 0,

1, denoted jtl0, jtl1 respectively in the figure). Weight profiles for the base JSPs are not

included as these were solved in under 0.1 seconds in most cases, encountering few failures.

The clearest pattern observable in the figure illustrates the difference between the distri-

bution of weights for the two heuristics. The Gini coefficients of the Bwts were consistently

much higher than those of the Twts, while there was greater variation in the Gini coeffi-

cients of the Twts across instances for each variant except on the NW-JSP instances which

were consistently low.

This is to be expected as the Twt of a Boolean variable is the sum of the weights on the

two tasks sharing the disjunct. A task variable with high weight will contribute this high

weight to the Twt calculation of all Booleans sharing a disjunct with this task. Therefore

the weight will be spread over more Booleans than with Bwt.

However, the results show little correlation between search performance and the Gini

coefficients in these experiments as Tdom/Twt here performed much better (both in terms

of proving optimality and objective found) than Tdom/Bwt on both sets of SDS-JSP

instances and on the NW-JSP instances (although the opposite was the case on the two

TL-JSP sets). Therefore a high Gini coefficient does not seem to be sufficient to guarantee

good performance.

6. Conclusion

In this paper we introduced a new approach for solving disjunctive scheduling problems,

combining relatively simple inference with a number of generic CP techniques such as
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Figure 10 Gini coefficients of Twt increment (T∗) and Bwt increment (B∗) for different variants of sample

Lawrence instances.

restarting, weighted degree variable ordering, and solution guided value ordering. We took

a minimalistic approach to modeling the problem, simply decomposing the unary resource

constraints into primitive disjunctive constraints. In comparison, most CP techniques

model the unary resource constraint as a global constraint, devising specialized filtering

algorithms for the constraint.

We demonstrated the benefits of our approach on a variety of problems, and in so

doing we have refuted the conventional wisdom that problem-specific heuristics and, in

particular, problem-specific inference methods are necessary to achieve good performance

on problems of this nature. The advantages of using a weighted degree based heuristic for

these problems, and indeed in general, is twofold: it can identify critical variables without

(a) costly calculations at each node and (b) costly inference methods.

We have further shown that our basic method can be easily adapted to handle a num-

ber of side constraints (setup times and maximum time constraints) and the objective of

minimizing the earliness/tardiness costs. This is important as these side constraints and

the alternative objective have proven troublesome for traditional CP methods due to their

impact on the dedicated inference methods. Since our method is more search intensive

than inference intensive, it suffers less from these issues.

However, our method cannot be considered to be completely generic as domain specific

knowledge was incorporated to good effect in certain cases. Firstly, the variable heuristic

was improved by adding information regarding the domain sizes of the tasks, and in some

cases weight information of the tasks. Secondly, our method for solving the NW-JSP was

improved by using a model specific to the problem based on the simple observation that

each task in a job is functionally dependent on the other tasks of the job. Thirdly, the

addition of a dedicated metaheuristic for finding good initial upper bound also improved
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performance on the TL-JSPs. These results show that there is still room for improvement

through the combination of generic techniques with problem-specific information.
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