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Problem Definition

This problem concerns hypergraph dualization and generalization to poset dualization.
A hypergraph H = (V, E) consists of a finite collection E of sets over a finite

set V , i.e. E ⊆ P(V ) (the powerset of V ). The elements of E are called hyperedges,
or simply edges. A hypergraph is said simple if none of its edges is contained within
another. A transversal (or hitting set) of H is a set T ⊆ V that intersects every edge of
E . A transversal is minimal if it does not contain any other transversal as a subset. The
set of all minimal transversal of H is denoted by Tr(H). The hypergraph (V, Tr(H)) is
called the transversal hypergraph of H. Given a simple hypergraph H, the hypergraph
dualization problem (Trans-Enum for short) concerns the enumeration without rep-
etitions of Tr(H).

The Trans-Enum problem can also be formulated as a dualization problem
in posets. Let (P,≤) be a poset (i.e. ≤ is a reflexive, antisymmetric, and transitive
relation on the set P ). For A ⊆ P , ↓ A (resp. ↑ A) is the downward (resp. upward)
closure of A under the relation ≤ (i.e. ↓ A is an ideal and ↑ A a filter of (P,≤)). Two
antichains (B+,B−) of P are said to be dual if ↓ B+∪ ↑ B− = P and ↓ B+∩ ↑ B− = ∅.
Given an implicit description of a poset P and an antichain B+ (resp. B−) of P , the
poset dualization problem (Dual-Enum for short) enumerates the set B− (resp. B+),
denoted by Dual(B+) = B− (resp. Dual(B−) = B+). Notice that the function dual is
self-dual or idempotent, i.e. Dual(Dual(B)) = B.
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Trans-Enum is a particular case of Dual-Enum. Indeed, consider P be the
poset (P(V ),⊆) for some set V . Then for every dual set (B+,B−) of P , we have

B− = Tr(B+) = Dual(B+), or equivalently B+ = Tr(B−) = Dual(B−) with E =
{V \ E | E ∈ E} where E ⊆ P(V ).

Now we ask the following question: For which posets Dual-Enum can be re-
duced to Trans-Enum? To do so, we introduce the notions of duality gap, convex
embedding and poset reflexion.

Let (P,≤ P ) and (Q,≤Q) be two posets and f : P → Q an injective reflection,
i.e. for all x, y ∈ P, f(x) ≤Q f(y) implies x ≤P y. Notice that the reflection f preserves
incomparability i.e. if x and y are incomparable in P then f(x) and f(y) are incompa-
rable in Q. Therefore, for every dual set (B+,B−) of P , Dual(f(B+)) contains f(B−).
The difference between the size of Dual(f(B+)) and the size of f(B−) is a positive
integer, called the duality gap. We speak about weak duality when the gap is strictly
positive, strong duality otherwise.

Duality gaps are important in enumeration problems because they provide an
upper bound on the difference between the number of enumerated solutions and the
number of solutions of the original problem.

Key Results

Trans-Enum has been intensively studied in the last two decades, and several results
show that it is equivalent to many problems in computer science area (see the paper
by Eiter and Gottlob [3]). The question whether Trans-Enum admits an output-
polynomial time algorithm is still open. In fact, despite the number of papers on
Trans-Enum, the best known algorithm is the one by Fredman and Khachiyan [8]
which runs in time O(nlog(n)) where n is the size of the hypergraph plus the number of
minimal transversals. Others results on complexity can be found in [5; 14; 6; 12; 11].
For general posets, it is shown in [7] that the dualization over the products of some
posets can be done with the same complexity as Trans-Enum. Recently, Nourine and
Petit [16] have investigated dualization problems in general posets for which the duality
gap is bounded by a polynomial.

Strong Duality

The following characterization theorem of the zero gap, is a reformulation of a known
result in [15; 10], where the poset Q is the powerset for some set.

Theorem 1. Let (P,≤P ) and (Q,≤Q) be two posets. Then the duality gap is zero iff
there exists a map f : P → Q such that f is a bijective embedding, i.e. for all x, y ∈ P
f(x) ≤Q f(y) iff x ≤P y.

Many instances of problems have such a property, for example frequent item-
sets, monotone boolean functions, minimal keys, inclusion dependencies or minimal
dominating sets [15; 10; 13]. Nevertheless, the bijective embedding between two posets
does not always exist. In the following we give a relaxation of the bijection embedding
in order to capture some polynomial reductions between enumeration problems.

Weak Duality

Let (P,≤P ) and (Q,≤Q) be posets. A function f : P → Q is a convex embedding if for
all x, y ∈ P and z ∈ Q, x ≤P y iff f(x) ≤Q f(y) and f(x) ≤Q z ≤Q f(y) implies there
exists t ∈ P such that f(t) = z.
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The following result can be seen as a relaxation of the bijective embedding given
in Theorem 1.

Proposition 1. Let (P,≤P ) and (Q,≤Q) be two posets and f : P → Q a convex em-
bedding. Then there exist two antichains B+

0 , B−0 of Q such that P \{⊥P} is isomorphic
to Q \ (↓ B+

0 ∪ ↑ B−0 ), where ⊥P is the bottom of P if it exists. Furthermore, the duality
gap is bounded by | B+

0 | + | B−0 |.

Complexity

For strong duality, [15; 10] points out how the result of Fredman and Khachiyan [8] can
be re-used to devise an incremental quasi-polynomial time algorithm, called Dualize

and Advance, for some pattern mining problems. For weak duality, whenever the du-
ality gap remains polynomial in the size of the problem and (Q,≤Q) isomorphic to
(P(E),⊆) for some set E, the Dualize and Advance algorithm can be re-used with
the same complexity if the following assumptions hold:

1. The reflexion f of (P,≤) to (P(E),⊆) and its inverse, is computable in polynomial
time.

2. Given two elements x, y ∈ P , checking x ≤ y is polynomial time.

Applications

The hypergraph dualization is a crucial step in many applications in logics, databases,
artificial intelligence and pattern mining [11; 3; 8; 4; 15], especially for hypergraphs, i.e.
boolean lattices. The main application domain concerns pattern mining problems, i.e.
the identification of maximal interesting patterns in database by asking membership
queries (predicate) to a database. In the rest of this section, we give two examples of
pattern mining problems related to Dual-Enum and weak duality.

Frequent conjunctive queries

We consider the problem statement defined in [9]. Let R = {R1, . . . , Rn} be a database
schema, D the domain of R and sch(R) = {Ri.A|Ri ∈ R, A ∈ Ri}. A (simple) con-
junctive queries Q over R is of the form πX(σF (R1 × . . . × Rn)) (πX(σF ) for short)
where X ⊆ sch(R) and F a conjunction of equalities of the form Ri.A = Rj.B or
Ri.A = c with Ri.A,Rj.B ∈ sch(R) and c ∈ D. Let Qr be the set of all possible
conjunctive queries over R. For a given database d over R, we note Adom(d) ⊆ D
the active domain of d and Q(d) the result of the evaluation of Q against d. We
note F the finite set of all possible selection formula over R and Adom(d), i.e.
F = {{A,B} | A 6= B,A ∈ R, B ∈ R ∪ Adom(d)}.

Let Q1, Q2 be two conjunctive queries over R. Q1 is contained in Q2, denoted
Q1 ⊆ Q2, if for every database d over R, Q1(d) ⊆ Q2(d). Q1 is diagonally contained
in Q2, denoted Q1 ⊆∆ Q2, if Q1 is contained in a projection of Q2, i.e. for instance
Q1 ⊆ πX(Q2) The frequency of πX(σF ) in d is defined by |πX(σF )(d)|. A query πX(σF )
is frequent in d with respect to a given threshold ε if |πX(σF )(d)| ≥ ε. The frequency
is anti-monotonic with respect to ⊆∆ [9].

Proposition 2. Let Q1 = πX1(σF1) and Q2 = πX2(σF2) be two queries of Qr. Then
Q1 ⊆∆ Q2 iff X1 ⊆ X2 and F2 ⊆ F1. Equivalently, Q1 ⊆∆ Q2 iff X1 ∪ (F \ F1) ⊆
X2 ∪ (F \ F2).
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From Proposition 2, f : Qr → P(R ∪ F) with f(πX(σF )) = X ∪ (F \ F )
is a bijective embedding. Thus Qr ordered under ⊆∆ is a boolean lattice and The-
orem 1 can be applied. It is interesting to consider the subclass of Qr restricted to
consistent queries, i.e. queries for which there exists at least one database such that
their evaluations return values different from zero. For instance, σ(B = 1 ∧ B = 2) or
σ(A = B ∧ A = 1 ∧ B = 2) are not consistent. Let us consider the set QC ⊂ Qr of all
consistent queries.

Lemma 1. Let Q1 = πX1(σF1) and Q2 = πX2(σF2) be two queries of Qr such that
Q1 ⊆∆ Q2. Then Q2 is consistent implies Q1 is consistent.

Notice that the restriction of f to QC is still a convex embedding, but no longer
bijective. More interestingly, the associated duality gap is not polynomial. Indeed,
B+

0 = ∅ but B−0 has a size exponential in the size of R∪Adom(d) since the number of
selections of the form σ(A1 = A2 ∧ . . .∧An−1 = An ∧A1 = v ∧An = v′) is exponential
in the number of attributes.

Rigid sequences

Let us consider sequences with or without wildcard (denoted ?), see e.g. [1]. Let Σ be
an alphabet and ? /∈ Σ. A rigid sequence s[n] is a word of size n of (Σ ∪ {?})∗ such
that s[1] 6= ? and s[n] 6= ?. The set of all rigid sequences of size at most n are denoted
by Σn

R and the empty sequence by ε. Let s[l], t[k] ∈ Σn
R. We consider the following

classical (prefix and factor) partial orders on rigid sequences.

• s vf t, if there exists j ∈ [1..k] such that for every i ∈ [1..l], either s[i] =
t[j + i− 1] or s[i] = ? (factor).

• s vp t, if for every i ∈ [1..l], either s[i] = t[i] or s[i] = ? (prefix).

The following theorem shows that the duality gap between the dualization in
prefix posets of rigid sequences and Trans-Enum is bounded by a polynomial in n
and | Σ |.

Theorem 2. [16] Let f : (Σn
R\{ε},vp)→ (P({1, . . . , n}×Σ),⊆) be a function defined

by f(s) = {(i, s[i]) | s[i] 6= ?, i ≤ n}. Then f is a convex embedding with B+
0 = {{(i, x) |

x ∈ Σ, i ∈ [2..n]}} and B−0 = {{(1, x), (1, y)} | x, y ∈ Σ, x 6= y}∪{{(1, x), (i, y), (i, z)} |
x, y, z ∈ Σ, y 6= z, i ∈ [2..n]}.

Proposition 3. [16] There is a poset reflection f : (Σn
R,vf )→ (Σn

R,vp) with a duality
gap bounded by a polynomial in n.

Using Theorem 2 and Proposition 3 we conclude that the duality gap between
the dualization in factor posets of rigid sequences and Trans-Enum is bounded by a
polynomial the size of Σ and n [16].

Open Problems

1. The challenging question is to find an output-polynomial time algorithm for Trans-
Enum.

2. Lattices are a particular class of posets. For example, the dualization over product
of chains can be done with the same complexity as Trans-Enum which is equiva-
lent to dualization in boolean lattices. For distributive lattices class which contains
boolean lattice and the product of chains, the dualization is open.
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3. Many connections have to be done between Trans-Enum and graph theory prob-
lems, such as minimal dominating sets [13].

4. Many problems in data mining can be formulated as dualization in posets, e.g.
frequent subgraphs or frequent subtrees. An interesting direction is to identify posets
for which the dualization is equivalent to Trans-Enum.

URLs to Code and Data Sets

Program Codes and Instances for Hypergraph Dualization can be found on the Takeaki
Uno’s webpage at http://research.nii.ac.jp/~uno/dualization.html. Some pat-
tern mining problems, reducible to Trans-Enum with strong duality, can be found on
the iZi webpage at http://liris.cnrs.fr/izi/.
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