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Chronos: a NoSQL System on Flash Memory for
Industrial Process Data

Brice Chardin · Jean-Marc Lacombe ·
Jean-Marc Petit

Abstract Within Électricité de France (EDF) hydroelectric power stations,
IGCBoxes are industrial mini PCs dedicated to industrial process data archiv-
ing. These equipments expose distinctive features, mainly on their storage sys-
tem based exclusively on flash memory due to environmental constraints. This
type of memory had notable consequences on data acquisition performance,
with a substantial drop compared with hard disk drives. In this setting, we
have designed Chronos, an open-source NoSQL system for sensor data manage-
ment on flash memories. Chronos includes an efficient quasi-sequential write
pattern along with an index management technique adapted for process data
management. As a result, Chronos supports a higher velocity for inserted data,
with acquisition rates improved by a factor of 20 to 54 over different solutions,
therefore solving a practical bottleneck for EDF.

Keywords database · flash memory · NoSQL system · data historian

1 Introduction

At EDF, a worldwide leading energy company, process data produced in power
stations are archived for various analysis applications and to comply with
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Fig. 1 The original IGCBox (left) and the TinyBox version (right)

legal archiving requirements. Such data consist of timestamped measurements,
retrieved for the most part from process data acquisition systems.

Power stations generate large amounts of data for thousands of measure-
ment time series, with sampling intervals ranging from 40ms to a few seconds.
This data is aggregated in soft real-time – without operational deadlines –
at the plant level by local servers. This archived data – past, but also cur-
rent values – are used for various applications, including devices monitoring,
maintenance assistance, decision support, compliance with environmental reg-
ulation, etc.

IGCBoxes (cf. figure 1) are a practical example of such applications. These
industrial inexpensive mini PCs are distributed over hydroelectric power sta-
tions to archive industrial process data from a few days to two years. These
equipments expose distinctive features, mainly on their storage system based
exclusively on flash memory for its endurance in an industrial environment
(due to environmental constraints such as vibrations, temperature variations
and humidity). The consumer electronics flash memories (CompactFlash) cho-
sen for IGCBoxes had notable consequences on insert performance, with a
substantial drop compared with hard disk drives [1].

Indeed, conventional DBMSs lack specific optimization for low to mid-level
flash memories, especially with write-intensive workloads. In this setting, we
have designed Chronos, an open-source NoSQL system for industrial process
data management on flash memories1. Chronos exploits flash memories good
random read performance which allows an append-only approach for inser-
tions. Specifically, we identified an efficient quasi-sequential write pattern on
the targeted devices and built Chronos around this design. Chronos also in-
cludes index management techniques optimized for typical process data man-
agement workloads. Experimental results show an improvement by a factor of
4 to 18 compared with other solutions, including the one currently in produc-
tion on IGCBoxes.

Paper Organization

In Section 2, we first describe EDF access patterns and how flash memories can
be used efficiently in this context via a quasi-sequential write pattern. We then

1 http://lias-lab.fr/~bchardin/chronos
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sensor id timestamp value metadata
3 2014-01-21 09:00:00 17.62 good
1 2014-01-21 09:00:10 5.43 good
2 2014-01-21 09:00:11 -58.46 bad
1 2014-01-21 09:00:12 11.07 good
1 2014-01-21 09:00:18 13.94 good
3 2014-01-21 09:00:20 -8.32 good

Table 1 EDF process data

discuss how this write mechanism is integrated in our NoSQL system, Chronos.
In Section 3, we describe Chronos optimizations for process data, especially
an adapted B-tree split algorithm. Performance is discussed in Section 4, with
a complexity analysis and experimental results. Related works are presented
in Section 5, followed by a conclusion.

2 Write patterns on flash memories

Since insertions have been identified as the main bottleneck, we first clarify
insertion patterns at EDF in this section. We then identify an efficient write
access pattern on flash memories, followed by a discussion on its integration
within Chronos.

2.1 EDF access patterns

At EDF, process data consist of a sensor id, a timestamp, a measured value
and some metadata. Table 1 gives an example of such data, with the metadata
being a simple description of the quality of the sample: whether the sensor
was in a good or bad state. Such metadata can usually be more thorough, and
include for example a secondary timestamp (the time of acquisition by the
system, as opposed to the timestamp provided by the sensor), a bit array to
describe the state of the sensor or the network, etc.

These tuples can be split in two parts: the key (i.e. the concatenation of
the sensor id and the timestamp), and the value (i.e. the concatenation of the
measured value and its metadata), which allows us to consider some general
hypotheses on the workload, without loss of generality with respect to EDF
context.

Order Keys are inserted with increasing timestamps. While these timestamps
should be globally increasing, clock synchronization is not perfect; the follow-
ing – weaker – hypothesis is therefore used: for each sensor id, insertions occur
with increasing timestamps.

Using the following order (1), the insertion workload is then made of mul-
tiple concurrent streams – typically one for each sensor id – with ordered keys.
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We assume a total order on sensor id.

(idx, timestampx) ≤ (idy, timestampy)⇔
(idx < idy) ∨ (idx = idy ∧ timestampx ≤ timestampy) (1)

Hypothesis 1. The sequence of inserted keys (key0, key1, ..., keyi) can be split
into a finite number N of subsequences so that keys are strictly increasing
within each.
In other words, there exists a function f : N 7→ [0, N ] such that:

∀(i, j) ∈ N× N, f(i) = f(j) ∧ i < j ⇒ keyi < keyj

No overlap Insertions are supposed to occur in empty intervals of the ta-
ble. For a subsequence of k insertions (keyi, valuei)0≤i<k, supposed ordered
(keyi < keyi+1), the table initially holds no tuple whose key is in the range
[key0, keyk−1].

In EDF context, this is true for new insertions, where the timestamp is
the current date (and the table does not contain any data for the sensor id
after this date). In Table 1, following insertions should have a timestamp above
’2014-01-21 09:00:18’ for sensor 1, ’2014-01-21 09:00:11’ for sensor 2 and
’2014-01-21 09:00:20’ for sensor 3. Valid intervals for future insertions are
then:

] (1, 2014-01-21 09:00:18), (2, 2014-01-21 09:00:11) [ for sensor 1,
] (2, 2014-01-21 09:00:11), (3, 2014-01-21 09:00:00) [ for sensor 2,
] (3, 2014-01-21 09:00:20), (+∞) [ for sensor 3.

Hypothesis 2. Let (key0, key1, ..., keyk−1) be a subsequence of k ordered
keys to be inserted. Initially, the table does not hold any key in the interval
[key0, keyk−1].

To sum up, we generalize EDF access patterns as insertions of k key-value
pairs (keyi, valuei)0≤i<k with keys strictly increasing (keyi < keyi+1), and no
keys in the interval [key0, keyk−1] belong to the table beforehand. Several of
such insertion sequences can occur concurrently. At EDF, other data accesses
are primarily retrieval operations, mostly based on range queries, i.e., analyze
the values of a sensor between two specified timestamps.

2.2 Write spatial locality for FTL-based devices

The insertion pattern identified in the previous section is inherently sequential
for each sensor ID. However, the large number of sensors that has to be sup-
ported (several thousands) makes this pattern unsuitable for flash memories.
In this section, we discuss how flash memories can be written to efficiently, to
later design our DBMS around it.
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As the Flash Translation Layer (FTL) enclosed in flash devices is usually
proprietary and undocumented, studies have been conducted to identify pre-
ferred write access patterns. uFLIP [2] for instance is a component benchmark
designed to quantify the behavior of flash-memories when confronted to defined
I/O patterns. Some of these patterns relate to locality and increments between
consecutive writes. Their results confirm that localizing random writes greatly
improves efficiency and large increments lead to performance which could be
even worse than random writes. This result is supported by a study of log-
structured file systems for flash-based DBMS [3], as these file systems tend
to write large data blocks in sequence. Experimental results validate potential
benefits, with performance improved by up to x6.6.

In [4], Birrell et al. identify a strong correlation between the average latency
of a write operation and the distance between writes, as long as this distance
is less than the size of two flash blocks. They conclude that write performance
varies with the likelihood that multiple writes will fall into the same flash
block, which is a manifestation of an underlying block or hybrid-mapping
FTL. As a result, a fine-grained mapping is mandatory for high performance
flash memories, but we believe that such a mapping can be efficiently managed
by the host in an additional indirection layer, distinct from the FTL.

We first propose to quantify the effect of spatial locality on FTL-based
devices, by introducing a notion of distance between consecutive writes. In
our experiments, the average write duration for each distance d is evaluated
by skipping |d|−1 sectors between consecutive writes. This metric can be neg-
ative to discriminate between increasing and decreasing address values. From
the results of previous works, we conjecture a usual behavior where, up to a
distance dmax, the average cost of a write operation cost(d) is approximately
proportional to d.

To validate this assumption, we measured the effect of distance on a vari-
ety of flash devices2345. Although individual write durations are erratic, their
average value converge when this access pattern is sustained. While our as-
sumption is not verified for all devices, figure 2 shows that this property holds
for a flash-based SSD2 and two USB flash drives34.

Scattered writes (ie. d ≥ dmax) are typically 20 to 100 times slower than
sequential writes for flash memories with a block-mapping FTL [2]. Conse-
quently, and because of this proportional performance pattern, reducing the
average distance between consecutive writes can significantly improve effi-
ciency, even if strict sequential access (d = 1) is not achieved. Our optimization
focuses on these quasi-sequential access patterns, skipping as little sectors as
possible.

2 SSD Mtron MSD SATA3035-032.
3 Flash chip HYNIX HY27UG088G5B with an ALCOR AU6983HL controller.
4 Kingston DataTraveler R500 64 Go.
5 Kingston SD card SD/2GB B000EOMXM0.
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Fig. 2 Influence of distance on write duration
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Fig. 3 Access patterns illustration

In the remainder of the paper, only positive distances – increasing addresses
– are considered. Additionally, the addressable space is assumed to be circular,
in order to avoid handling edges differently.

2.3 Quasi-sequential writes

To improve I/O performance, an indirection layer converts any write pattern
into a quasi-sequential pattern (cf. figure 3). This is achieved by redirecting
write operations to free sectors that minimize the distance between consecutive
writes. Consequently, sectors holding valid data and free sectors are mixed on
the flash memory. Addresses of free sectors are stored to form a pool of sectors
available for writing: the sector minimizing the distance with the previous
write is selected for each write operation.
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Fig. 4 Write redirection overview

To describe our quasi-sequential write algorithm, we represent the flash
memory as an ordered set of physical sectors. The indirection layer redirects
read and write operations and provides logical sectors to applications. The
amount of logical sectors is lower that the amount of physical sectors since a
pool of free – physical – sectors is set aside to redirect write operations.

To write – actually to overwrite – a logical sector, data is assigned to a
free sector adjacent to the previous write. The previously associated physical
sector is reclaimed and added to the pool of free sectors. Figure 4 illustrates
how logical writes are assigned to physical locations, when writing successively
on logical sectors 0, 3 and 0. Consequently, physical sectors containing obsolete
data are immediately freed and can be overwritten. As the size of the pool
remains constant, this optimization does not require garbage collection. Yet,
as an independent and internal mechanism, the FTL might still use garbage
collection to handle flash erasures.

The average distance of the quasi-sequential access pattern is determined
exclusively by the proportion of pool sectors, regardless of the logical write
access pattern. As we consider devices whose write latency is proportional to
this average distance, the amount of pool sectors can be adjusted to obtain an
expected efficiency [5]. Still, increasing the pool size requires additional flash
memory space.

As a potential downside, sequential reads are also transformed into random
reads. However, this behavior is not an issue for flash devices, as random reads
are as efficient as sequential reads [2].

2.4 Integration in Chronos

In previous work [5], data retrieval required a non-volatile address translation
table to maintain logical-physical addresses associations. With a DBMS, this
address translation table could be made volatile as only a table identifier is
needed within each data block to rebuild the database after a crash.
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input: data
1 address ← list.pop()
2 flash.write(address, data)
3 return(address)

Algorithm 1: nameless_write

input: address, data
1 list.erase(address) /* remove the

address from the list of free
sectors if present */

2 flash.write(address, data)

Algorithm 2: write

input: address
1 data ← flash.read(address)
2 return(data)

Algorithm 3: read

input: address
1 list.insert(address)
2 flash.trim(address) /* if supported

by the device */

Algorithm 4: trim

To integrate this write pattern in Chronos, we settled for the nameless
writes interface [6] as an abstraction of flash memory accesses. This interface
was originally designed to let SSDs choose the location of a write internally, by
assigning a location for the data during a nameless write operation. However,
in Chronos, this layer is not integrated in the device, but is used to manage
write redirection within the DBMS.

The nameless writes interface includes four basic operations. The main
write operation allows this abstraction to choose the physical location of the
data, which is returned by the access method:
address ← nameless_write(data)

In-place writes are still allowed (when the physical location is provided by
Chronos), as well as reading:
write(address, data)
data ← read(address)

To reuse sectors with nameless writes, those have to be freed beforehand,
using a trim command. If the flash device supports it, this operation can
optionally indicate that data stored at this location are obsolete.
trim(address)

Since our target device class has good quasi-sequential write and random
read performance, the nameless write operation is designed to result in quasi-
sequential writes. This interface therefore maintains the set of free sectors in
a data structure (based on binary trees) with three operations:

– pop to retrieve the physical location of the next sector to write to, with a
O (1) complexity,

– insert to add a free sector to this set, with a O (log n) complexity,
– erase to remove a sector from this set, with a O (log n) complexity.

Algorithms 1, 2 and 4 show the interactions between this data structure
and the flash memory access abstraction.

With nameless writes, physical locations have to be stored by Chronos. A
B-tree is used to index data blocks, therefore keeping the association between
key intervals and physical addresses for the corresponding data. However,



Chronos: a NoSQL System on Flash Memory for Industrial Process Data 9
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Fig. 5 Chronos architecture

nameless writes are not compatible with B+trees whose leaves are chained
with references to the following leaf – optimization made for range queries –
as, on each leaf insertion or modification, its new physical location leads to
the modification of the whole tree by recursion.

This abstraction isolates the selection of physical locations from other com-
ponents of Chronos. With minor modifications, it is possible to replace the
write sector selection algorithm by another solution – for example pure se-
quential writes with a garbage collection mechanism –, or even to let the
device make this decision, as suggested in the original article [6].

3 Chronos principles

Chronos is a NoSQL system designed to manage process data on flash memory.
It is generalized as a software library providing an ordered key-value store, but
optimized for access patterns described in Section 1. Chronos interacts with
the flash memory using the nameless write interface presented previously to
improve write performance.

Figure 5 gives an overview of this architecture. Chronos allows an appli-
cation to manage tables and cursors on these tables, and interacts with the
device through the file system. To improve performance, the preferred access
for flash memories is by using a raw file system, which provides a direct access
to the block interface of the device.

In this section, we first introduce a common technique to speed up data
acquisition using write cursors and present its integration within Chronos. We
then describe our proposition to improve B-trees split algorithm in our context,
followed by discussions on their impact on disordered keys and durability.

3.1 Write cursors

In Chronos, write cursors relate with the concept of fence keys [7]. On any
node of the B-tree, these fence keys are local copies of minimum and maximum
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possible key values, specifically lower and upper boundary keys stored in parent
nodes in the B-tree. Negative and positive infinity are represented with special
fence values. At the leaf level, to which write cursors are associated with,
fence keys define a possible key range for new key-value pairs. Once opened,
a cursor can then be used to insert pairs whose keys belong to its associated
leaf, without searching the B-tree from the root. This behavior is especially
useful in EDF context, where consecutive inserted keys are associated with
the same leaf.

To validate an insertion using cursors, fence keys are stored with the volatile
memory representation of leaves. Although these boundaries can be modified
by concurrent accesses (such as, typically, the deletion of the tuple associated
with a boundary), this stored interval is always a lower bound of the leaf’s
validity interval. Checking this interval does not result in false positive an-
swers, but negative answers – inserted key does not belong to this interval –
require an update of the leaf’s fence keys before rejecting the insertion. This
mechanism allows efficient key-value pairs insertion in this validity interval,
without searching the B-tree from the root.

3.2 B-tree insert algorithm optimization with respect to EDF access patterns

With these cursors, consecutive insertions attempt to write the same leaf as
the previous operation. Other NoSQL systems such as Berkeley DB [8] already
include this kind of optimization; however, splitting a node still requires a top-
down search from the root to add the median key in the parent node. Moreover,
this operation leaves both new nodes half full. In EDF context, no new insert
operation should occur for the node holding lower keys – i.e. past timestamps
– according to special access patterns identified previously. Figure 6 illustrates
how a standard B-tree behaves with respect to insertions of ordered keys.

Consequently, the fill factor of the tree – i.e. the ratio between useful data
and reserved space – can be improved by a factor of two: when a node is
split, instead of dividing it in two nodes of equal size, Chronos only allocates
a new node containing the highest key. This optimization is practical only if
new insertions follow this highest key. Otherwise, the node is split at the last
inserted key, in order to match the favorable case for future insertions.

Figure 7 illustrates this mechanism for leaves split operations. The resulting
B-tree is more compact with the adapted split algorithm, with a fill factor close
to 1.

This adapted algorithm does not guarantee that nodes are at least half
full. For instance, in the worst case scenario where keys are inserted in reverse
order, each leaf contains only one tuple. Consequently, to avoid almost empty
nodes in the higher levels of the tree, this mechanism is only applied for leaves.
The standard split algorithm is used for higher levels. Determining how many
levels of the tree (currently one: only leaves) should use the adapted algorithm
is a prospect for improvement.
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Fig. 7 Chronos split algorithm

To avoid searching the tree from the root during a node split, in-memory
node representations maintain a pointer to the parent node. These pointers
are thus never stored on the flash memory. To simplify pointer management,
when a node is kept in main memory, his parent also is, recursively up to the
root. At the lowest level, leaves are only kept in memory if a read or write
cursor is attached.

This mechanism makes up for the lack of chained references between leaves,
to process range queries efficiently – without searching the tree from the root
to find successive leaves.

Algorithm 5 details insertions of key-value pairs in leaves. In the favorable
split case, tuples associated with lower keys are moved to a new leaf written
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input : leaf, key, value
output: error code

1 if key ≤ leaf.lower_bound or key ≥ leaf.upper_bound then
2 return(out of range)

3 leaf.keys.add(key) /* keys are kept in sorted order */
4 leaf.values.add(value)
5 if leaf is overfull then
6 if key = max(leaf.keys) then /* favorable case */
7 split_key ← key
8 new_leaf ← {tuples <k,v> ∈ leaf : k < split_key}
9 leaf ← {tuples <k,v> ∈ leaf : k ≥ split_key} /* update the leaf, which

then only contains the latest pair */
10 leaf.lower_bound ← split_key
11 address ← nameless_write(new_leaf)
12 leaf.parent.insert_left(split_key, address) /* if necessary, split

internal nodes recursively */
13 else /* unfavorable case */
14 split_key ← min({keys k ∈ leaf.keys : k > key})
15 new_leaf ← {tuples <k,v> ∈ leaf : k ≥ split_key}
16 leaf ← {tuples <k,v> ∈ leaf : k < split_key}
17 leaf.upper_bound ← split_key
18 address ← nameless_write(new_leaf)
19 leaf.parent.insert_right(split_key, address) /* if necessary, split

internal nodes recursively */

20 return(ok)

Algorithm 5: Inserting a key-value pair in a leaf

on the flash memory, with a fill factor of 1. The old leaf then only contains a
single tuple, the latest. In the unfavorable case, higher keys are moved, with
an undefined fill factor.

3.3 Disorder

Network latency can introduce a bounded disorder in insertions, that is to say
that the position of each tuple in the insertion stream can be slightly different
from its position in an ideal stream. We suppose this disorder lower than an
upper bound ε.

Let timestamps of inserted tuples be timestampi, with i the insertion order:

∀(i, j), j < i− ε⇒ timestampj < timestampi

Consequently, a window of size ε is enough to reorder incoming tuples. This
reordering is performed within write cursors using a buffer. The value of ε has
to be chosen with care as inserted tuples that do not meet this upper bound
require the cursor to be reopened and therefore decrease performance. As a
result, the size of the reordering window is a compromise between performance
and the amount of data lost on power failure (buffered data is lost).
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N number of key-value pairs in the tree
N ′ number of key-value pairs in the tree after k insertions
F average size of internal nodes (in keys)
L average size of leaves (in keys)
h height of the tree
h′ height of the tree after k insertions
A number of leaves
A′ number of leaves after k insertions
B number of internal nodes
B′ number of internal nodes after k insertions

Table 2 Notations

3.4 Durability

Chronos does not handle transactions to improve performance. In our con-
text, data is lost regardless of transactional capabilities when the system is
unavailable since sensors only have limited local storage. However, persistence
is mandatory for historical data.

Chronos keeps leaf nodes associated with opened cursors and their ances-
tor nodes in volatile memory. For internal nodes, which are not required to
rebuild the table, data durability is not impacted. Leaves however contain
original data, which is lost on failure – even though part of this data can be
recovered from previous versions of leaves kept on flash memory. Data from the
reordering window are especially lost during failure. Usually, data loss affect
recent insertions and are bounded, by cursor, by the size of a leaf and of the
reordering window: L+ ε.

In Chronos, since tuples are not split between multiple physical sectors,
rebuilding the table only requires a table identifier to be stored in a header
within each sectors holding leaf data. This operation however requires scanning
the whole flash memory, which can be expensive for large databases. Moreover,
erased data can be unintentionally retrieved during recovery. It could however
be possible to define checkpoints to store a version of the index. A recovery
operation would then only need to scan sectors written subsequently. The
integration of data recovery within Chronos is a prospect for improvement.

4 Performance

4.1 Complexity analysis

For process data management typical workloads, Chronos makes a point of
minimizing flash memory accesses. These accesses can be quantified, and turn
out to be close from an optimal solution – without data compression. Although
flash memory is the limiting factor, CPU utilization is also estimated, in order
to identify a possible limitation in scalability.

Given a tree with nodes of average size F – each node holds F keys – and
leaves of average size L – each leaf holds L key-value pairs. This tree holds a
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total of N key-value pairs. We then insert k key-value pairs (keyi, valuei)0≤i<k

successively in this tree, with increasing indices i. Notations are given in table
2.

Hypothesis 1 (1′). Key-value pairs are inserted with keys strictly increasing.

key0 < key1 < · · · < keyk−1

Hypothesis 2 (2′). Initially, the table does not hold any key in the interval
[key0, keyk−1].

As a result of hypothesis 1 and 2, these insertions match the favorable case
of our write algorithm. Consequently, the fill factor for leaves is always 1. As
for internal nodes, average number of keys per node is supposed to remain
constant; this simplifying assumption has limited impact since internal nodes
are at least half full.

Hypothesis 3. Average sizes for leaves and nodes L and F remain constant.

4.1.1 Flash memory access

For typical workloads, Chronos writes almost exclusively sectors filled with
new data (leaves of the B-tree). The rest (internal nodes and nodes accessed
during the opening of the cursor) make up for a small fraction of written data.
Indeed, we prove that k insertions lead to about k/L nameless write operations.

Property 1 After k insertions,
k

L(F − 1)
nodes and

k

L
leaves are added to the

tree.

Proof. Initially, the tree’s height is h, and it holds A leaves and B nodes such
that:

h = logF

(
N

L

)
A =

N

L
B =

h∑
i=1

N

LF i

After k insertions, the amount of key-value pairs stored in the tree is N ′ =
N + k, whose height is now h′, with A′ leaves and B′ nodes such that:

h′ = logF

(
N ′

L

)
A′ =

N ′

L
B′ =

h′∑
i=1

N ′

LF i

h′ − h = logF

(
N ′

L

)
− logF

(
N

L

)
= logF

(
N ′

N

)

A′ −A =
N ′

L
− N

L
=
k

L
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B′ −B =

h′∑
i=1

N ′

LF i
−

h∑
i=1

N

LF i
=

h′∑
i=h+1

N ′

LF i
+

h∑
i=1

N ′

LF i
−

h∑
i=1

N

LF i

=

h′∑
i=h+1

N ′

LF i
+
k

L

h∑
i=1

1

F i
(2)

yet,
h′∑

i=h+1

N ′

LF i
=

N ′

LFh+1

1− 1

Fh′−h

1− 1

F

 =
N ′

LFh+1

1− 1

F logF (N′
N )

1− 1

F


=

N ′

LFh+1

1− N

N ′

1− 1

F

 =
N ′

LFh+1

 k

N ′

1− 1

F


=

k

LFh+1

 1

1− 1

F

 (3)

additionnally,
h∑

i=1

1

F i
is a geometric series:

h∑
i=1

1

F i
=

1

F

1− 1

Fh

1− 1

F

 (4)

From (2), (3) and (4):

B′ −B =
k

LFh+1

 1

1− 1

F

+
k

LF

1− 1

Fh

1− 1

F


=

k

LF

 1

Fh

1− 1

F

+
1− 1

Fh

1− 1

F

 =
k

LF

 1

1− 1

F


=

k

L(F − 1)

To sum up,

h′ − h = logF

(
N ′

N

)
A′ −A =

k

L
B′ −B =

k

L(F − 1)

After k insertions, the tree thus holds
k

L(F − 1)
additional nodes and

k

L
additional leaves.
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Property 2 For k insertions,
kF

L(F − 1)
+ ε flash memory sectors are written,

with ε ≤ logF

(
N

L

)
.

Proof. When inserting new data using an opened cursor – our hypotheses
imply that the cursor initially opened stays valid –, a flash memory write
operation only occurs during the split of a node or a leaf (cf. algorithm 5).
The number of writes therefore equals the number of new elements in the tree.

From property 1, for k insertions,
k

L(F − 1)
nodes and

k

L
leaves are added

to the tree.

k

L(F − 1)
+
k

L
=

kF

L(F − 1)

Disregarding cursor opening and closing phases, the number of flash mem-

ory sectors written thus amounts to
kF

L(F − 1)
.

The only nodes from the initial tree that could have been updated are
those accessed during the cursor’s opening, that is h nodes – among which
some might not have been modified.

Consequently, the total number of flash memory sectors written is at most
kF

L(F − 1)
+ logF

(
N

L

)
.

In practice, F � 1, so F/F−1 ' 1 – that is to say the tree is mainly made of
leaves6. Chronos therefore writes a new sector every L(F−1)/F ' L insertions
on average.

4.1.2 Processor utilization

Property 3 The amortized complexity of an insertion in CPU cycles is con-

stant, in O
(
1 +

F

L

)
.

Proof. Opening and closing a cursor are usual B-tree search operations, with
a complexity of O (log(N)) and O (log(N ′)) = o(k) [7], which disappear in the
amortized complexity.

Disregarding these two phases, computational complexity comes from the
following basic operations:

– appending a key-value pair to a leaf, in O (1),
– splitting a leaf, in O (F + L) – without split recursion,
– splitting a node, in O (F ) – without split recursion.

6 For instance, for our benchmark (cf. Section 4.2), with 17 bytes tuples (among which 12
are the key), and 4096 bytes sectors, L = 240 and F = 256, then 99.6% of the tree is made
of leaves.
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For leaves splitting, only the following operations (from algorithm 5) have
a significant computational complexity, our hypotheses matching the favorable
case:

– operation 7 in O (L): copy (part of) the leaf content,
– operation 11 in O (F ): insert a key in parent node.

Complexity is comparable for internal nodes, in O (2F ) = O (F ).

From previous results,
k

L(F − 1)
nodes and

k

L
leaves are split in total –

including recursions – for k insertions. Total computational complexity C then
amounts to:

C = k ×O (1) +
k

L(F − 1)
×O (F ) +

k

L
×O (F + L)

= O

(
k

(
1 +

1

L
+
F

L
+
L

L

))
= O

(
k

(
1 +

F

L

))
Therefore:

C

k
= O

(
1 +

F

L

)

In this complexity, only cursors open and close operations are conditioned
by N , which is neglected when k, the amount of insertions, becomes large
enough.

4.2 Benchmark

Many benchmarks have been defined for relational database management sys-
tems for years, like TPC-C or TPC-H [9,10]. Nevertheless, to the best of
our knowledge, none of them are designed for process data management. The
idea of comparing these systems with an existing benchmark – designed for
RDBMS – seems natural. However, in the context of industrial data at EDF,
it is impractical to use one of the Transaction Processing Performance Council
benchmarks for the following reasons:

– Chronos is not ACID-compliant, and do not support transactions.
– Insertion is a fundamental operation. This type of query is executed in real-

time, which prevent using benchmarks that batch insertions, like TPC-H.
– Chronos is designed to handle time series data. It is mandatory that the

benchmark focuses on this type of data for results to be relevant.

Benchmarks for data stream management systems, like Linear Road [11]
have also been considered; but continuous queries are not part of typical work-
loads at EDF [12].

We have therefore defined a simple benchmark inspired by the scenario of
nuclear power plants data management. In this context, data generated by
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sensors distributed on the plant site are aggregated by a daemon communicat-
ing with the DBMS. For insertions, the benchmark simulates this daemon and
pseudo-randomly generates data to be inserted. This workload fits IGCBoxes
use case, where updates are rare and deletions are forbidden.

This data is then accessible for remote users, which can send queries to
update, retrieve or analyze this data. After the insertion phase, this benchmark
proposes a simple yet representative set of such queries.

The full specifications of this benchmark are given in [13] along with a
more thorough analysis of different solutions; this paper focuses on Chronos
performance. To sum up, this benchmark defines 12 kinds of queries: insertion
(Q0), update (Q1), raw data extraction (Q2), aggregate calculation (Q3, Q4,
Q5 and Q6), data filtering (Q7 and Q8), analysis on multiple time series (Q9
and Q10) and most recent value extraction for all time series (Q11). These
queries are evaluated on two kinds of data: analog values (QX and QX.1) and
boolean values (QX.2).

Inserted data amounts to 500M (500,000,000) tuples for each data type
– analog and boolean – which sums up to 11.5 GB without compression and
timestamps stored on 8 bytes. These tuples are divided between 200 time series
(100 for each data type). 1M updates for each data type are then queried
against the database; followed by up to 1K (1000) SFW queries – 100 for R9
and R10, 1 for R11.1 and R11.2 – with different parameters. Date parameters
for queries R2 to R8 are generated to access 100K tuples on average. R9 and
R10 involve all analog time series, therefore each execution access 10M tuples
on average.

This benchmark is used to compare the performance of Chronos with two
solutions used in this context at EDF: the RDBMS MySQL 5.5 and the data
historian InfoPlus.21 version 2006.5. We also evaluate the NoSQL system
Berkeley DB version 5.2, whose access methods and usage are comparable
with Chronos. MySQL and Berkeley DB have been tuned to improve their
performance [13], especially by disabling transactions. On the other hand, In-
foPlus.21 and Chronos are designed for this application, and did not need any
significant adjustment.

4.3 Experimental results

Experiments have been conducted on a server with a Xeon Quad Core E5405
2.0GHz processor, 3GB of RAM and three 73GB 10K Hard Disk Drives with a
RAID 5 Controller. The same benchmark is then executed with a single USB
flash drive7 as the mass storage system.

Since Chronos and Berkeley DB both have a simple data retrieval API,
queries can be classified in 4 categories:
– Insertions (with ordered keys),
– Updates (with random keys),

7 Kingston DataTraveler R500 64 Go
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Table 3 Query execution time on hard disk drives

Query Execution time (in s)
(amount) InfoPlus.21 MySQL Berkeley DB Chronos

Q0.1 (×500M) 8 003 24 672 2 850 236
Q0.2 (×500M) 7 086 24 086 3 116 222
Q1.1 (×1M) 16 763 12 240 9 032 8 402
Q1.2 (×1M) 16 071 13 088 9 349 8 523
Q2.1 (×1K) 268 410 693 1 263
Q2.2 (×1K) 215 285 655 1 018
Q3.1 (×1K) 207 187 531 1 214
Q3.2 (×1K) 167 182 533 995
Q4 (×1K) 210 193 537 1 216
Q5 (×1K) 189 186 514 1 115
Q6 (×1K) 189 192 513 1 091
Q7 (×1K) 234 234 508 1 059
Q8 (×1K) 231 278 506 1 055
Q9 (×100) 1 641 1 710 4 878 4 878
Q10 (×100) 1 689 7 661 4 978 4 899
Q11.1 (×1) 9.5× 10−4 1.15 2.75 1.06
Q11.2 (×1) 2.8× 10−4 1.13 4.81 0.90

– Range queries,
– Key search (to retrieve a single key-value pair).

Data historians (InfoPlus.21) and RDBMSs (MySQL) performance how-
ever vary according to the type of range query. We therefore specify 4 addi-
tional sub-categories for range queries:
– Raw data extraction,
– Aggregate queries (count, min, max, average, sum),
– Filtered values (using thresholds),
– Analysis of multiple series.

4.3.1 On hard disk drives

Table 3 reports execution times with each system on hard disk drives. For
instance, line 1 means that executing Q0.1 500M times took 8 003 seconds for
InfoPlus.21, 24 672 seconds for MySQL, 2 850 seconds for Berkeley DB and 236
seconds for Chronos. Figure 8 then gives an overview of processing capacities,
expressed in tuples processed per second. Table 4 and Figure 9 summarize the
average processing capacity for each system by category of queries.

As illustrated in Figure 9, Chronos can sustain over 2M insertions per sec-
ond, that is 13× better than Berkeley DB (168K), 33× better than InfoPlus.21
(67K) and 107× better than MySQL (21K)8. This first phase of the benchmark
is exclusively composed of insert operations (no data is updated or deleted).
Therefore, invalid sectors can only occur on index nodes update, which rep-
resent at most 0.4% of the data on disk. Consequently, the quasi-sequential
pattern is comparable with a pure sequential access performance-wise, which

8 MySQL is CPU bound for insertions on hard disk drives, all other queries and systems
combinations are I/O bound.
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Table 4 Processing capacity on hard disk drives

Average processing capacity (in tuples per second)
Query type InfoPlus.21 MySQL Berkeley DB Chronos
Insertions 66519 20512 167950 2185448
Updates 61 79 109 118
Raw data 419125 297390 148486 88704
Aggregates 523257 532162 190329 89291
Filtering 430125 393531 197239 94608
Multiple series 600725 357663 202943 204563
Current values 231203 88 29 103

is efficient on both HDDs and flash memories. Insert operations also benefit
from the fill factor optimization.

Accessing single tuples, i.e, non range queries, (updates and current values
extraction) involve random accesses for every solution, which then exhibit
comparable performance – with the notable exception of InfoPlus.21 which is
optimized for current values extraction [13].

As for range queries (Q2.1 to Q10, c.f. Figures 8 and 9), Chronos reads
the hard disk drives randomly, while other solutions read sequentially. Con-
sequently, Chronos is on average 1.7× slower than Berkeley DB, that is 3.9×
slower than MySQL and 4.5× slower than InfoPlus.21. On account of these
random reads, performance is naturally improved with flash memories.

4.3.2 On flash memory

Table 5 reports execution times with each system on flash memory. Figure 10
then gives an overview of processing capacities, expressed in tuples processed
per second. Table 6 and Figure 11 summarize the average processing capacity
for each system by category of queries.

As illustrated in Figure 11, Chronos can sustain 900K insertions per second,
that is 20× faster than Berkeley DB (45K), 47× faster than MySQL (19K)
and 54× faster than InfoPlus.21 (17K).

Updates however are especially slow for every solution, where sustainable
workloads range from 1 to 18 updates per second. With the USB flash drive
used in this experiment, random writes are inefficient, which explains this
result – moreover, in Chronos current implementation, updates do not use
nameless writes, i.e., updates are in-place.

With flash memories, updates significantly deteriorate performance for sub-
sequent queries (Q2.1 and Q2.2), which is distinctive of their internal garbage
collection mechanisms. Disregarding this behavior, Chronos range queries per-
formance is improved by a factor of 3.9× compared with hard disk drives. Sim-
ilarly, Berkeley DB process these queries 5.3× faster. For comparison, MySQL
and InfoPlus.21 are only 6% and 44% faster, respectively.

For range queries (Q2.1 to Q10, c.f. Figures 10 and 11), Chronos can pro-
cess on average 386K tuples per second, that is 1.2× slower than MySQL
(449K), 1.9× slower than InfoPlus.21 (714K), and 2.1× slower than Berkeley
DB (816K).
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Table 5 Query execution time on flash memory

Query Execution time (in s)
(amount) InfoPlus.21 MySQL Berkeley DB Chronos

Q0.1 (×500M) 34 412 26 468 10 887 638
Q0.2 (×500M) 26 849 25 444 11 137 493
Q1.1 (×1M) 820 011 229 096 53 690 109 450
Q1.2 (×1M) 731 862 251 751 56 397 94 506
Q2.1 (×1K) 341 1 066 2 839 420
Q2.2 (×1K) 201 272 1 744 231
Q3.1 (×1K) 103 168 104 260
Q3.2 (×1K) 93 160 102 228
Q4 (×1K) 104 171 102 261
Q5 (×1K) 97 170 101 254
Q6 (×1K) 96 171 101 254
Q7 (×1K) 205 227 101 258
Q8 (×1K) 202 288 101 252
Q9 (×100) 1 993 1 722 1 000 2 554
Q10 (×100) 1 989 7 497 1 001 2 485
Q11.1 (×1) 9.9× 10−4 0.31 0.39 0.37
Q11.2 (×1) 2.7× 10−4 0.38 0.69 0.39

Table 6 Processing capacity on flash memory

Average processing capacity (in tuples per second)
Query type InfoPlus.21 MySQL Berkeley DB Chronos
Insertions 16576 19271 45411 898949
Updates 1 4 18 10
Raw data 395384 230728 46282 335498
Aggregates 1016055 595613 980504 398751
Filtering 491427 393875 990099 392211
Multiple series 502261 357053 999500 396979
Current values 235690 293 201 263

For range queries, the disparity between the various solutions is signifi-
cantly reduced compared with hard disk drives. Consequently, Chronos fares
significantly better on flash memory with respect to other solutions both for
insertions and extractions.

To sum up, Chronos on flash memories is more than an order of magnitude
faster for insertions compared with other solutions, while providing comparable
performance for range queries. In particular, this behavior allows Chronos to
better fulfill the requirements of IGCBoxes.

4.3.3 Analysis in IGCBoxes context

For IGCBoxes mid-term (two years) data archiving, data are acquired and
extracted at least once, but can also be queried locally at the plant level.
However, the extraction/insertion ratio remains low – typically between 1 and
2. With this workload, Chronos stands out with performance 4× to 18× higher
than other solutions. For example, if each tuple is extracted 1.5 times on
average – unsing range queries –, Chronos can sustain a workload of 220K
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tuples per second on insertion, while Berkeley DB can only sustain 42K tuples
per second, 18K for MySQL and 16K for InfoPlus.21. Figure 12 shows highest
sustainable workloads, depending on this extraction/insertion ratio. For this
reason, Chronos is competitive despite its lower performance for extractions,
with better performance than other solutions while the extraction/insertion
ratio remains under 16.

A real-world experimentation has been conducted on a test platform at
EDF Hydraulic Engineering Center in Grenoble, France, with 2nd generation
IGCBoxes9. The historical data management library has been modified for
Chronos, and compared with the current solution based on MySQL – which
includes several optimizations such as batch insert statements.

Under heavy workloads with up to 15K insertions per second from 4000
sensors, the performance of the acquisition system has been improved by a
factor of 9.4× with Chronos compared with the solution currently in produc-
tion.

5 Related work

In [14], Shafer et al. describe specialized storage requirements for numeric time
series and give an overview of suitable data management systems. However,
these solutions do not focus on efficient insertions nor do they take into ac-
count flash memories distinctive features. While Chronos does not meet every

9 AMD Geode 500MHz, 2GB CompactFlash storage device.
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requirement listed in this paper, it could, like Berkeley DB for the distributed
data store Voldemort [15], provide a low level data management layer to build
such a system.

Chronos quasi-sequential approach is inspired by flash log-structured file
systems such as JFFS [16] or LogFS. However, these file systems target flash
chips and are not suitable as is for flash memories that include FTL. Be-
sides, log-structured file systems (including general-purpose file systems such
as NILFS [17]) have a background garbage-collection mechanism that might
interfere negatively with the insertion workload.

The Append and Pack [18] approach for instance writes data sequentially
(append). Reclamation (pack) is performed by moving least recently updated
data to the head of the log. To avoid moving static data, two logs hot and cold
are differentiated depending on update frequency: reclamation (pack) moves
data to the cold log, while writing (append) is performed on the hot log.

Compared with previous such approaches to log writes on flash memories
(IPL [19], PDL [20] and Append and Pack [18]), our contribution does not
require garbage collection mechanisms to reclaim contiguous flash memory re-
gions. Moreover, IPL and PDL significantly decrease read performance, while
our algorithm only has a negligible impact for this operation. In compensa-
tion, our algorithm requires a good amount of free sectors to be gathered on
the device in order to write quasi-sequentially. Such distribution might occur
less frequently as the device becomes full. Chronos RAM consumption is also
significantly higher, which prevents its usage in devices where this resource is
scarce.

As for indexation, FD-tree [21] is a set of ordered series. Each series consti-
tute a level, beginning with level L0 stored in RAM with a B-tree; lower levels
(L1, L2, etc.) have their capacity increased by a constant ratio n compared
with the level above them. When a level is full, it is merged with the level
above which leads to sequential writes. However, merging two levels at the
bottom of the tree can be especially expensive and block other accesses until
its completion.

Contrary to conventional indexes, lazy-adaptive trees (LA-tree) [22] do not
propagate updates to leaves. Each node has an associated buffer on flash mem-
ory to store its updates, which contains pending operations for this node or
its descendants. Reclaiming a buffer consists in pushing its operations towards
the bottom of the tree, until eventually reaching leaves.

FD-tree and Lazy-adaptive tree (LA-tree) aim at improving write perfor-
mance for indexes on flash memories. They are however designed for conven-
tional workloads and do not take into account EDF specific insertion pattern.

Get Tracked [23] is a triple store to manage RFID measurements with high
insertion rates. This DBMS maintains 15 clustered B+trees for each possible
index order and aggregation level, with optimization techniques for each index.
Rather, Chronos maintains a single clustered index on (Sensor ID, Timestamp,
Value) similar to their index on (Reader ID, Timestamp, Electronic Product
Code) for RFID data, which was optimized by reserving spare pages for each
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reader ID to insert future data. Their technique leads to multiple batch writes
on the device to update the index with new records. Only a large batch size
would provide acceptable performance on flash memory, a the cost of increased
RAM consumption and amount of data lost on failure. Chronos achieves a
single sequential write access pattern for this kind of index, while keeping the
batch size as small as possible (4 KB).

Nameless writes [6] are a generic flash memory abstraction, allowing the
isolation of index management and flash memory management. For instance,
flash memories where quasi-sequential writes are not efficient could also be
used, provided an efficient write pattern is found (and random reads are still
fast).

High-end SSDs also provide good random write performance, in exchange
for more RAM and processing power [24,25]. However, these designs provide
homogeneous performance across the entire flash memory, which is not re-
quired by most applications. By adding a software layer, Chronos provides
good write performance on low-cost devices.

Additionally, latest SSDs evaluations [26,27] show that sequential writes
and random writes have similar performance and sequential reads perform
significantly better than random reads. Because the nameless writes abstrac-
tion relies on sequential writes and random reads, Chronos will not perform
optimally on these devices. Yet, other optimizations introduced in this paper
– dedicated to process data management workloads – are unrelated to access
patterns and still applicable.

6 Conclusion

Chronos is a simple NoSQL system, suitable for industrial process data man-
agement on flash memories, and optimized towards insertions. By design,
Chronos has some limitations which can prevent it from being used in other
contexts: data durability is only guaranteed to some extent, and data accesses
– both insertions and extractions – are based on range queries.

Experimental results confirm however the efficiency of optimizations in-
cluded in Chronos: quasi-sequential writes on flash memory, node split algo-
rithm adaptation and using write cursors for insertions. Indeed, Chronos offers
the highest performance among benchmarked solutions for insertions. In com-
pensation, these optimizations lower extraction performance, especially since
this operation requires random reads on the device. This downside is signif-
icant with hard disk drives, but reasonable with flash memories. Chronos is
therefore a competitive solution when insertions make up an extensive part of
the workload.

In Chronos, the data layout is optimized towards writing (quasi-sequential
writes) at the cost of reading performance (random reads). Making this com-
promise adjustable to meet applications requirements – especially when data
is read more frequently – is a prospect for improvement.
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