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Abstract. Network anomaly detection relies on intrusion detection sys-
tems based on knowledge databases. However, building this knowledge
may take time as it requires manual inspection of experts. Actual detec-
tion systems are unable to deal with 0-day attack or new user's behavior
and in consequence they may fail in correctly detecting intrusions. Unsu-
pervised network anomaly detectors overcome this issue as no previous
knowledge is required. In counterpart, these systems may be very slow
as they need to learn tra�c's pattern in order to acquire the necessary
knowledge to detect anomalous �ows. To improve speed, these systems
are often only exposed to sampled tra�c, harmful tra�c may then avoid
the detector examination. In this paper, we propose to take advantage of
new distributed computing framework in order to speed up an Unsuper-
vised Network Anomaly Detector Algorithm, UNADA. The evaluation
shows that the execution time can be improved by a factor of 13 allowing
UNADA to process large traces of tra�c in real time.

1 Introduction

Nowadays, networks su�er from many di�erent failures and attacks like, for
example DOS, DDOS, network scanning, port scanning, spreading of worms
and viruses which can damage them. In order to prevent these damages, network
administrators rely on intrusion detection systems (IDS). Two main types of IDS
are largely dominant, signature-based IDSs and behavior-based IDSs.

Behavior-based IDSs detect all the operations which deviate from a known
normal behavior whereas signature-based IDSs detect only known attacks for
which they possess a signature. Therefore these two techniques rely on previ-
ous knowledges. Building new signatures and new models of normal behaviors
take time as it requires manual inspection of human experts. It implies that
signatures-based IDSs may not be aware of new attacks and behavior-based
IDSs of new users' behaviors, as a result they may launch many false negatives
or false positives.

In order to overcome these knowledge-based IDSs' issues, researchers focuse
their attention on detectors which rely on no previous knowledge: the unsuper-
vised network anomaly detectors. These systems aim at detecting anomalous
�ows, i.e rare �ows that possess di�erent patterns from normal �ows. They rely
on the two following hypothesis:



Hypothesis 1 Intrusive activities represent a minority of the whole tra�c [18]

Hypothesis 2 Intrusive activities's pattern is di�erent from normal activities'
patterns [17]

Therefore the central premise of anomaly detection is that intrusive activity
is a large subset of anomalous activity [17]. To detect anomalous �ows,these
detectors often rely on machine learning techniques (MLTs) which can be either
"supervised�, label data are then required to identify patterns, or "unsupervised�,
no previous knowledge is required to discover data's patterns.

Unsupervised network anomaly detector exploits unsupervised MLTs to iden-
tify �ows which have rare patterns and are thus anomalous. However, detecting
anomalies may then be time-consuming as these systems need to dive deeply
in the �ows' features to identify their patterns, therefore they can hardly meet
IDS's real time requirements. To solve this issue, existing detectors may process
only sampled data which implies that harmful tra�c may be not processed and
so not detected [4]. To overcome this limitation,we propose in this paper to take
advantage of a new distributed computing system to deploy an unsupervised
network anomaly detector on a large cluster of servers.

The remainder of this paper is organized as follows. Section 2 presents related
works. Section 3 presents UNADA, an unsupervised network anomaly detector
which has been previously proposed by our team. Section 4 presents the imple-
mentation and validation of UNADA over a large cluster of servers in terms of
computational time and scalability. The possible future works are then discussed
and we conclude in Section 6.

2 Related Works

The problem of unsupervised network anomaly detection has been extensively
studied in the last decade. Existing systems generally detect anomalies others.
For that purpose, many techniques can be used such as multi resolution Gamma
modeling [7], Hough transform [12], the Kullback-Leibler (KL) distance [13],
however, two main techniques are largely dominant in this area: principal com-
ponent analysis [16] [14] (PCA) and clustering methods [6] [19].

PCA identi�es the main components of the normal tra�c, the �ows distant
from these components are considered anomalous. The pioneering contribution
in this area was published by Lakhina et al. [16]. PCA based detectors' main
drawback is that they they don't allow to retrieve the original tra�c features
of the anomalous tra�c. This di�culty is overcame in [14] by using random
projection technique (sketches): the source IP addresses of the anomalies can
then be identi�ed.

Most of unsupervised network anomaly detector rely on clustering techniques,
[6] [19] are some relevant examples. Clustering algorithm group similar �ows in
clusters, to determine similarities between �ows distance function like lie out-
side the clusters are rare �ows and are then �agged as anomalous. UNADA falls



within the clustering-based detectors and presents several advantages w.r.t. ex-
isting network anomaly detectors. First, it works in a complete unsupervised way,
so it can be plugged to any monitoring system and works from scratch. Secondly,
it combines the notions of subspace clustering and evidence accumulation (EA)
and can so overcome the curse of dimensionality [10]. Finally, UNADA is highly
parallelizable and can so be easily implemented over a large cluster of nodes to
process large amount of tra�c in a small amount of time. These unsupervised
detectors have to dive deeply in the collected tra�c in order to identify patterns.
As a result, they often rely on techniques which time complexity is not linear
which prevents them from being scalable and real-time.

Closely related to our work is Hashdoop [11]. Hashdoop is a generic frame-
work, based on the MapReduce paradigm, to distribute the computing of any
unsupervised network anomaly detector in order to speedup the detection. In
Hashdoop, the tra�c is collected in time-bins which are then cut in horizontal
slices: all the tra�c from or to a same IP address must lie in the same slice.
Many detectors are then launched in parallel, each processes the tra�c of one
slice, the obtained results are then aggregated. The authors claim that their
framework is generic, but they only validate it on very simple detectors based
on change detection. Furthermore, in Hashdoop, as all the tra�c, from and to a
same IP address must lie in a same slice, this latter may possess a majority of
intruder's tra�c and hypothesis 1 may no longer apply. Therefore no detector
which relies on the hypothesis 1 and so on unsupervised MLTs like UNADA can
be distributed with Hashdoop.

3 The Network Anomaly Detector

UNADA is a network anomaly detector which has already been proposed by
our team in [5]. UNADA works on single-link packet-level tra�c captured in
consecutive time-slots of �xed length ∆T and runs in three main steps: the
change detection, the clustering and the EA step.

The �rst step aims at detecting anomalous slots by detecting change in the
tra�c. To this end, multi-resolution �ow aggregation is applied on the tra�c at
each time slot. It consists in aggregating packets at di�erent level from �ner to
coarser-grained resolution in "�ows�. There is 8 aggregation levels, each level li
(i ∈ [1, 8]) is de�ned by a mask (/32, /24, /16, /8) and the IP address (IPx)
on which the mask is applied which can be be either the IP source (IPsrc) or
the IP destination (IPdst). For each level, the tra�c is represented by a set
Y = {y1, ..., yf , ...yF } where each element yf is considered as a "�ow� and F is
the total number of �ows. In this context, a �ow yf is a subset of the original
tra�c having the same IPx/mask. For each level li, multiple time series Zli

t are
then computed, each time series considers a simple metric t such as number of
bytes, number of packets, number of IP �ows. One point for each time series is
built by slot. Then, a generic change detection algorithm is applied on each time
series at each new time slot. If the detection algorithm launches an alarm, it



implies that there is a change in the tra�c pattern probably due to anomalous
activities: this slot requires a deeper inspection and is then �agged.

The second step aims at extracting anomalies from the �agged slots thanks
to a subspace clustering algorithm. It takes as input the tra�c Y = {y1, ..., yF }
extracted from the �agged slots and aggregated according to the level which
has raised the alarm. Each �ow yf can be described by a set of A features in
a vector xf ∈ RA. The set of vectors of every �ow is denoted by a normalized
matrix X = {x1, , ...xF } representing the features space. Numerous features can
be computed over a �ow yf such as: nDsts (# of di�erent IPdst), nSrcs (# of
di�erent IPsrc), nPkts (# of pkts), nSYN/nPkts, nICMP/nPkts, etc. Any other
attribute sensitive to anomalies can be chosen making UNADA a very �exible
tool. To detect anomalous �ows in Y , a subspace clustering algorithm is applied
to the features space. Each vector of features is considered as a point in the
clustering algorithm and each point isolated from the others and which does
not belong to any cluster is identi�ed an an outlier. In order to identify any
form of cluster, UNADA is based on a density based grid algorithm DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) [8] which takes
two parameters, nmin which represents the minimum number of neighbors a
point must have to be a core point in a cluster and εneighbor which de�nes
the distance of a point's neighborhood.In DBSCAN, a cluster is de�ned as a
area in the data space of higher density. However, DBSCAN su�ers from the
curse of dimensionality, i.e. when the dimensionality increases the points become
increasingly sparse and distance between pairs of points becomes meaningless:
DBSCAN can then hardly identify clusters. To overcome this issue, UNADA is
based on subspace clustering [15] and EA. The subspace clustering consists in
dividing the features space into N many subspaces and performing DBSCAN on
each independently. At the end of this step a clustering ensemble P = {p1, ...pN}
is formed where each each element pi represents the partition obtained on the
ith subspace. As DBSCAN provides better results in low-dimensional spaces, the
dimension of each subspace is set to 2, which gives N = m(m=1)/2 partitions.

The third step of DBSCAN is the EA for outliers identi�cation (EA4O) where
the N di�erent partitions are combined to identify the anomalies. This step
accumulates for each point the level of abnormality it gets in each subspace. In a
subspace, if a point belongs to a cluster its level of abnormality is null, otherwise
its level of abnormality is proportional to its distance with the centroid of the
biggest cluster. A dissimilarity vectorD = {d1, .., dF } is built where each element
df re�ects the accumulated level of abnormality of the �ow yf . In order not to
overwhelm the network administrator with anomalies, only the most pertinent
anomalies are selected. To identify them, the dissimilarity vector is sorted and
an anomaly detection threshold th is de�ned. th is set at the value for which the
slope of the sorted dissimilarity presented a major change. Finally, every �ow
yf with a dissimilarity score df above this threshold is considered as anomalous.
UNADA's pseudo-code is presented in algorithm 1.



Algorithm 1 Steps 2 and 3 of UNADA

1: Initialize:
2: Set nmin and ε
3: Set D the dissimilarity vector to a null F*1 vector
4: for i=1:N do

5: Pi = DBSCAN(X,nmin, εneighbor)
6: UpdateD,∀f ∈ F
7: if ofi ∈ Pi then

8: wi ← n/(n− nmaxi)
9: D(f)← D(f) + d(ofi , C

max
i ) ∗ wi

10: end if

11: end for

12: th = computeTresh(D)
13: Retrieve anomalous �ows F ′ = {f , D(f)>th}

4 Performances Evaluation of UNADA

In this paper, we aim at detecting the anomalies of a Spanish Internet service
provider's core network which is crossed by around 1.2Gbit/s of data. As UN-
ADA requires only the packets' header to detect anomalies, only 64 bits of each
packet is stored. To deal with such a tra�c, UNADA has to process 19,2 Mbit/s,
so 1.6 TeraBytes per day, which makes a huge amount of data.

Fig. 1. UNADA's mean execution time for a 15s time slot

For UNADA's evaluation, the aggregation's level is set to IPsrc/16 and the
time slot 4T to 15 seconds. A slot is made up of around 2.000.000 packets.
Furthermore, the evaluation does not consider the �ows' features computation
time, we assume that a dedicated hardware processes this task upstream. Figure
1 displays UNADA's mean execution time of one slot on a single machine with
16 Gbit of RAM and an Intel Core i5-4310U CPU 2.00GHz. For the local mode,
Spark is not used, as it would slow down UNADA's execution and it takes
advantage of two cores; one is dedicated to the Java's garbage collection and the



second to UNADA . It shows that UNADA's execution time is mainly due to
the clustering step and increases with the number of features.

We analyze 60 slots of tra�c and found many anomalies, most of them were
induced by large point to multipoint tra�c or �ashcrowds which could represent
from 25 to 10% of the total core network tra�c. Furthermore UNADA has de-
tected alpha �ows, accounting for 20% of the whole tra�c, unknown anomalous
�ows detected due to a hight number of ICMP packets and �nally a SYN attack.
Figure 2 depicts one subspace where the SYN attack can be observed, for easier
viewing and diagnosis, the subspace is not normalized. Few outliers and a big
cluster made up of more than 5.000 points can be observed. To improve UN-

Fig. 2. Detection of a Syn attack

ADA's performances in terms of execution time and scalability, it is deployed
on a large cluster of servers. To ease the cluster management and computing
distribution of UNADA, we take advantage of an existing big data tool Spark
1.2.0 [1] which is an open source cluster computing framework developed by the
Apache Software Foundation. Spark displays better performance than the fa-
mous Hadoop tool based on the map and reduce paradigm proposed by Google.
Indeed, for certain computing tasks, Spark can fasten ×100 the execution time
compared to Hadoop [20]. Furthermore, Spark o�ers over 80 high-level operators
that make it easy to build parallel applications. The validation has been per-
formed on the Grid5000 platform [2], a large-scale and versatile testbed which
provides access to a large amount of resources: 1000 nodes, 8000 cores, grouped
in homogeneous clusters. In Spark, a master node runs the main() function of
the application, creates the SparkContext, acquires executors on nodes in the
cluster and then sends tasks to run to the executors. The memory the executors
use, as well as the total number of cores across all executors can be �nely tuned.
UNADA's evaluation is performed on nodes with 8 GB of RAM, two CPUs at



Fig. 3. UNADA's deployment over a cluster of servers with Spark

a frequency of 2.26GHz, each with 4 cores. To deploy UNADA over a cluster of
servers, two Spark's high-level operators are used (see Figure 3):

� the map operator which sends across the di�erent cores of the cluster the
processing of the N subspaces. The clustering and the EA of each subspace
are thus parallelized. The map function returns a dissimilarity vector for
each subspace.

� the reduce operator which aggregates the dissimilarity vector obtained in
each subspace. It simply sums the dissimilarity vector of each subspace to
obtain the �nal dissimilarity vector.

Fig. 4. Execution Time of UNADA



UNADA's deployment has been validated in terms of scalability and execu-
tion time. Figure 4 displays UNADA's execution time according to the number
of features and cores considered. UNADA's execution time for each feature de-
creases until reaching a threshold. Furthermore, the di�erence in execution time
of UNADA with di�erent number of features tends to decrease while adding new
cores, which implies that a high number of features does not prevent from us-
ing the detector. Figure 5 depicts the improvement in UNADA's execution time

Fig. 5. Speedup of UNADA

with di�erent number of cores compared with a local execution of the detector.
The gain in time increases with the number of cores till reaching a threshold .
However, for UNADA with 8 and 12 features, from a certain number of cores
this gain slightly decreases. This decrease may be due to the fact that serial-
izing the data and sending them to the servers of the cluster may take longer
than processing them. Finally, the validation shows that distributing UNADA's
computing can improve signi�cantly the processing time till reaching a speedup
factor of 13.

5 Future Works

The performance improvement provided by Spark lead us to imagine new ways
of detecting anomalies. UNADA detects anomalies over long �xed-length period
of time. As this time-bin has a long �xed length, it does not allow an accurate
analysis over time. As an example some �ows might appear as anomalous simply
because they end at the start of the time-bin, consequently having not enough
packets analyzed. Therefore, our system would bene�t from having a more fre-
quently updated view of the features space. However, because of the algorithm



complexity, we can not perform a clustering over the whole features space more
often. Nevertheless, we can think up several solutions. As proposed in [9], we
could use an incremental version of the DBSCAN algorithm to incrementally
update clusters. When a new packet arrives, it only modi�es the features of
the corresponding �ow within the features space and partially re-compute the
cluters. As a per-packet computation is not realistic, aggregating several packets
before updating the corresponding �ow within the DBSCAN algorithm can be
considered. Furthermore, as incremental DBSCAN does not provide an e�cient
way of updating already clustered points, we also consider updating only points
that are enough di�erent from their previous value. This Incremental version
of DBSCAN, could allow to detect earlier and more e�ciently anomalies. [3]
proposes a GPU based implementation of the DBSCAN algorithm which al-
lows to gain a x100 speed-up factor from a typical CPU based implementation.
Therefore, as UNADA is based on DBSCAN and is, at least, per-subspace par-
allelizable, we can expect good results from a GPU based implementation. This
speed-up factor could let us perform more frequent updates of UNADA results,
moving UNADA closer to real-time e�ciency.

6 Conclusion

Unsupervised network anomaly detectors mainly rely on machine learning tech-
niques which complexity are often hight and which can thus hardly be real time
or deal with large tra�c traces. In this paper, we have proposed to take advan-
tage of new distributed computing systems in order to speed up an unsupervised
network anomaly algorithm. Dividing the features space in subspaces allows UN-
ADA to run in parallel multiple DBSCANs and EA algorithms. Spark's high op-
erators distributes the processing of the subspaces over the servers of the cluster
and aggregates then the result. UNADA's deployment with Spark can improve
the execution time by a factor of 13. This paper is a step forward for detecting
network anomalies in real time on large non sampled tra�c such as the tra�c
of an Internet provider's core network.
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