Juliette Dromard 
email: juliette.dromard@laas.fr
  
Gilles Roudiere 
email: gilles.roudiere@laas.fr
  
Philippe Owezarski 
email: philippe.owezarski@laas.fr
  
Gilles Roudière 
  
Unsupervised Network Anomaly Detection in Real-Time on Big Data

published or not. The documents may come    

Introduction

Nowadays, networks suer from many dierent failures and attacks like, for example DOS, DDOS, network scanning, port scanning, spreading of worms and viruses which can damage them. In order to prevent these damages, network administrators rely on intrusion detection systems (IDS). Two main types of IDS are largely dominant, signature-based IDSs and behavior-based IDSs.

Behavior-based IDSs detect all the operations which deviate from a known normal behavior whereas signature-based IDSs detect only known attacks for which they possess a signature. Therefore these two techniques rely on previous knowledges. Building new signatures and new models of normal behaviors take time as it requires manual inspection of human experts. It implies that signatures-based IDSs may not be aware of new attacks and behavior-based IDSs of new users' behaviors, as a result they may launch many false negatives or false positives.

In order to overcome these knowledge-based IDSs' issues, researchers focuse their attention on detectors which rely on no previous knowledge: the unsupervised network anomaly detectors. These systems aim at detecting anomalous ows, i.e rare ows that possess dierent patterns from normal ows. They rely on the two following hypothesis: Hypothesis 1 Intrusive activities represent a minority of the whole trac [START_REF] Portnoy | Intrusion detection with unlabeled data using clustering[END_REF] Hypothesis 2 Intrusive activities's pattern is dierent from normal activities' patterns [START_REF] Patcha | An overview of anomaly detection techniques: Existing solutions and latest technological trends[END_REF] Therefore the central premise of anomaly detection is that intrusive activity is a large subset of anomalous activity [START_REF] Patcha | An overview of anomaly detection techniques: Existing solutions and latest technological trends[END_REF]. To detect anomalous ows,these detectors often rely on machine learning techniques (MLTs) which can be either "supervised, label data are then required to identify patterns, or "unsupervised, no previous knowledge is required to discover data's patterns.

Unsupervised network anomaly detector exploits unsupervised MLTs to identify ows which have rare patterns and are thus anomalous. However, detecting anomalies may then be time-consuming as these systems need to dive deeply in the ows' features to identify their patterns, therefore they can hardly meet IDS's real time requirements. To solve this issue, existing detectors may process only sampled data which implies that harmful trac may be not processed and so not detected [START_REF] Brauckho | Impact of packet sampling on anomaly detection metrics[END_REF]. To overcome this limitation,we propose in this paper to take advantage of a new distributed computing system to deploy an unsupervised network anomaly detector on a large cluster of servers.

The remainder of this paper is organized as follows. Section 2 presents related works. Section 3 presents UNADA, an unsupervised network anomaly detector which has been previously proposed by our team. Section 4 presents the implementation and validation of UNADA over a large cluster of servers in terms of computational time and scalability. The possible future works are then discussed and we conclude in Section 6.

Related Works

The problem of unsupervised network anomaly detection has been extensively studied in the last decade. Existing systems generally detect anomalies others.

For that purpose, many techniques can be used such as multi resolution Gamma modeling [START_REF] Dewaele | Extracting hidden anomalies using sketch and non gaussian multiresolution statistical detection procedures[END_REF], Hough transform [START_REF] Fontugne | A hough-transform-based anomaly detector with an adaptive time interval[END_REF], the Kullback-Leibler (KL) distance [START_REF] Gu | Detecting anomalies in network trac using maximum entropy estimation[END_REF], however, two main techniques are largely dominant in this area: principal component analysis [START_REF] Lakhina | Diagnosing network-wide trac anomalies[END_REF] [14] (PCA) and clustering methods [START_REF] Celenk | Anomaly detection and visualization using sher discriminant clustering of network entropy[END_REF] [START_REF] Wei | A grid-based clustering algorithm for network anomaly detection[END_REF].

PCA identies the main components of the normal trac, the ows distant from these components are considered anomalous. The pioneering contribution in this area was published by Lakhina et al. [START_REF] Lakhina | Diagnosing network-wide trac anomalies[END_REF]. PCA based detectors' main drawback is that they they don't allow to retrieve the original trac features of the anomalous trac. This diculty is overcame in [START_REF] Kanda | Evaluation of anomaly detection based on sketch and pca[END_REF] by using random projection technique (sketches): the source IP addresses of the anomalies can then be identied.

Most of unsupervised network anomaly detector rely on clustering techniques, [6] [19] are some relevant examples. Clustering algorithm group similar ows in clusters, to determine similarities between ows distance function like lie outside the clusters are rare ows and are then agged as anomalous. UNADA falls within the clustering-based detectors and presents several advantages w.r.t. existing network anomaly detectors. First, it works in a complete unsupervised way, so it can be plugged to any monitoring system and works from scratch. Secondly, it combines the notions of subspace clustering and evidence accumulation (EA) and can so overcome the curse of dimensionality [START_REF] Fahad | A survey of clustering algorithms for big data: Taxonomy and empirical analysis[END_REF]. Finally, UNADA is highly parallelizable and can so be easily implemented over a large cluster of nodes to process large amount of trac in a small amount of time. These unsupervised detectors have to dive deeply in the collected trac in order to identify patterns.

As a result, they often rely on techniques which time complexity is not linear which prevents them from being scalable and real-time.

Closely related to our work is Hashdoop [START_REF] Fontugne | Hashdoop: A mapreduce framework for network anomaly detection[END_REF]. Hashdoop is a generic framework, based on the MapReduce paradigm, to distribute the computing of any unsupervised network anomaly detector in order to speedup the detection. In Hashdoop, the trac is collected in time-bins which are then cut in horizontal slices: all the trac from or to a same IP address must lie in the same slice.

Many detectors are then launched in parallel, each processes the trac of one slice, the obtained results are then aggregated. The authors claim that their framework is generic, but they only validate it on very simple detectors based on change detection. Furthermore, in Hashdoop, as all the trac, from and to a same IP address must lie in a same slice, this latter may possess a majority of intruder's trac and hypothesis 1 may no longer apply. Therefore no detector which relies on the hypothesis 1 and so on unsupervised MLTs like UNADA can be distributed with Hashdoop. [START_REF] Andrade | Gdbscan: A GPU accelerated algorithm for density-based clustering[END_REF] The Network Anomaly Detector UNADA is a network anomaly detector which has already been proposed by our team in [START_REF] Casas | Unsupervised network intrusion detection systems: Detecting the unknown without knowledge[END_REF]. UNADA works on single-link packet-level trac captured in consecutive time-slots of xed length ∆T and runs in three main steps: the change detection, the clustering and the EA step.

The rst step aims at detecting anomalous slots by detecting change in the trac. To this end, multi-resolution ow aggregation is applied on the trac at each time slot. It consists in aggregating packets at dierent level from ner to coarser-grained resolution in "ows. There is 8 aggregation levels, each level l i (i ∈ [START_REF]Apache spark -lightning-fast cluster computing[END_REF][START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF]) is dened by a mask (/32, /24, /16, /8) and the IP address (IPx) on which the mask is applied which can be be either the IP source (IPsrc) or the IP destination (IPdst). For each level, the trac is represented by a set Y = {y 1 , ..., y f , ...y F } where each element y f is considered as a "ow and F is the total number of ows. In this context, a ow y f is a subset of the original trac having the same IPx/mask. For each level l i , multiple time series Z li t are then computed, each time series considers a simple metric t such as number of bytes, number of packets, number of IP ows. One point for each time series is built by slot. Then, a generic change detection algorithm is applied on each time series at each new time slot. If the detection algorithm launches an alarm, it implies that there is a change in the trac pattern probably due to anomalous activities: this slot requires a deeper inspection and is then agged.

The second step aims at extracting anomalies from the agged slots thanks to a subspace clustering algorithm. It takes as input the trac Y = {y 1 , ..., y F } extracted from the agged slots and aggregated according to the level which has raised the alarm. Each ow y f can be described by a set of A features in a vector x f ∈ R A . The set of vectors of every ow is denoted by a normalized matrix X = {x 1 , , ...x F } representing the features space. Numerous features can be computed over a ow y f such as: nDsts (# of dierent IPdst), nSrcs (# of dierent IPsrc), nPkts (# of pkts), nSYN/nPkts, nICMP/nPkts, etc. Any other attribute sensitive to anomalies can be chosen making UNADA a very exible tool. To detect anomalous ows in Y , a subspace clustering algorithm is applied to the features space. Each vector of features is considered as a point in the clustering algorithm and each point isolated from the others and which does not belong to any cluster is identied an an outlier. In order to identify any form of cluster, UNADA is based on a density based grid algorithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] which takes two parameters, n min which represents the minimum number of neighbors a point must have to be a core point in a cluster and ε neighbor which denes the distance of a point's neighborhood.In DBSCAN, a cluster is dened as a area in the data space of higher density. However, DBSCAN suers from the curse of dimensionality, i.e. when the dimensionality increases the points become increasingly sparse and distance between pairs of points becomes meaningless: DBSCAN can then hardly identify clusters. To overcome this issue, UNADA is based on subspace clustering [START_REF] Kriegel | Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering[END_REF] and EA. The subspace clustering consists in dividing the features space into N many subspaces and performing DBSCAN on each independently. At the end of this step a clustering ensemble P = {p 1 , ...p N } is formed where each each element p i represents the partition obtained on the i th subspace. As DBSCAN provides better results in low-dimensional spaces, the dimension of each subspace is set to 2, which gives N = m(m=1)/2 partitions. The third step of DBSCAN is the EA for outliers identication (EA4O) where the N dierent partitions are combined to identify the anomalies. This step accumulates for each point the level of abnormality it gets in each subspace. In a subspace, if a point belongs to a cluster its level of abnormality is null, otherwise its level of abnormality is proportional to its distance with the centroid of the biggest cluster. A dissimilarity vector D = {d 1 , .., d F } is built where each element d f reects the accumulated level of abnormality of the ow y f . In order not to overwhelm the network administrator with anomalies, only the most pertinent anomalies are selected. To identify them, the dissimilarity vector is sorted and an anomaly detection threshold t h is dened. t h is set at the value for which the slope of the sorted dissimilarity presented a major change. Finally, every ow y f with a dissimilarity score d f above this threshold is considered as anomalous.

UNADA's pseudo-code is presented in algorithm 1.

Algorithm 1 Steps 2 and 3 of UNADA 1: Initialize:

2: Set nmin and ε 3: Set D the dissimilarity vector to a null F*1 vector 4: for i=1:N do 5: Pi = DBSCAN (X, nmin, ε neighbor ) 6:

U pdateD, ∀f ∈ F 7: T to 15 seconds. A slot is made up of around 2.000.000 packets. Furthermore, the evaluation does not consider the ows' features computation time, we assume that a dedicated hardware processes this task upstream. We analyze 60 slots of trac and found many anomalies, most of them were induced by large point to multipoint trac or ashcrowds which could represent from 25 to 10% of the total core network trac. Furthermore UNADA has detected alpha ows, accounting for 20% of the whole trac, unknown anomalous ows detected due to a hight number of ICMP packets and nally a SYN attack.

if o f i ∈ Pi then 8: wi ← n/(n -nmax i ) 9: D(f ) ← D(f ) + d(o f i , C max i ) *
Figure 2 depicts one subspace where the SYN attack can be observed, for easier viewing and diagnosis, the subspace is not normalized. Few outliers and a big cluster made up of more than 5.000 points can be observed. To improve UN-Fig. 2. Detection of a Syn attack ADA's performances in terms of execution time and scalability, it is deployed on a large cluster of servers. To ease the cluster management and computing distribution of UNADA, we take advantage of an existing big data tool Spark 1.2.0 [START_REF]Apache spark -lightning-fast cluster computing[END_REF] which is an open source cluster computing framework developed by the Apache Software Foundation. Spark displays better performance than the famous Hadoop tool based on the map and reduce paradigm proposed by Google. Indeed, for certain computing tasks, Spark can fasten ×100 the execution time compared to Hadoop [START_REF] Xin | Shark: SQL and rich analytics at scale[END_REF]. Furthermore, Spark oers over 80 high-level operators that make it easy to build parallel applications. The validation has been performed on the Grid5000 platform [2], a large-scale and versatile testbed which provides access to a large amount of resources: 1000 nodes, 8000 cores, grouped in homogeneous clusters. In Spark, a master node runs the main() function of the application, creates the SparkContext, acquires executors on nodes in the cluster and then sends tasks to run to the executors. The memory the executors use, as well as the total number of cores across all executors can be nely tuned.

UNADA's evaluation is performed on nodes with 8 GB of RAM, two CPUs at The gain in time increases with the number of cores till reaching a threshold .

However, for UNADA with 8 and 12 features, from a certain number of cores this gain slightly decreases. This decrease may be due to the fact that serializing the data and sending them to the servers of the cluster may take longer than processing them. Finally, the validation shows that distributing UNADA's computing can improve signicantly the processing time till reaching a speedup factor of 13.

Future Works

The performance improvement provided by Spark lead us to imagine new ways of detecting anomalies. UNADA detects anomalies over long xed-length period of time. As this time-bin has a long xed length, it does not allow an accurate analysis over time. As an example some ows might appear as anomalous simply because they end at the start of the time-bin, consequently having not enough packets analyzed. Therefore, our system would benet from having a more frequently updated view of the features space. However, because of the algorithm complexity, we can not perform a clustering over the whole features space more often. Nevertheless, we can think up several solutions. As proposed in [START_REF] Ester | Incremental clustering for mining in a data warehousing environment[END_REF], we could use an incremental version of the DBSCAN algorithm to incrementally update clusters. When a new packet arrives, it only modies the features of the corresponding ow within the features space and partially re-compute the cluters. As a per-packet computation is not realistic, aggregating several packets before updating the corresponding ow within the DBSCAN algorithm can be considered. Furthermore, as incremental DBSCAN does not provide an ecient way of updating already clustered points, we also consider updating only points that are enough dierent from their previous value. This Incremental version of DBSCAN, could allow to detect earlier and more eciently anomalies. [START_REF] Andrade | Gdbscan: A GPU accelerated algorithm for density-based clustering[END_REF] proposes a GPU based implementation of the DBSCAN algorithm which allows to gain a x100 speed-up factor from a typical CPU based implementation.

Therefore, as UNADA is based on DBSCAN and is, at least, per-subspace parallelizable, we can expect good results from a GPU based implementation. This speed-up factor could let us perform more frequent updates of UNADA results, moving UNADA closer to real-time eciency.

Conclusion

Unsupervised network anomaly detectors mainly rely on machine learning techniques which complexity are often hight and which can thus hardly be real time or deal with large trac traces. In this paper, we have proposed to take advantage of new distributed computing systems in order to speed up an unsupervised network anomaly algorithm. Dividing the features space in subspaces allows UN-ADA to run in parallel multiple DBSCANs and EA algorithms. Spark's high operators distributes the processing of the subspaces over the servers of the cluster and aggregates then the result. UNADA's deployment with Spark can improve the execution time by a factor of 13. This paper is a step forward for detecting network anomalies in real time on large non sampled trac such as the trac of an Internet provider's core network.

12 :

 12 t h = computeT resh(D) 13: Retrieve anomalous ows F = {f , D(f)>t h } 4 Performances Evaluation of UNADA In this paper, we aim at detecting the anomalies of a Spanish Internet service provider's core network which is crossed by around 1.2Gbit/s of data. As UN-ADA requires only the packets' header to detect anomalies, only 64 bits of each packet is stored. To deal with such a trac, UNADA has to process 19,2 Mbit/s, so 1.6 TeraBytes per day, which makes a huge amount of data.

Fig. 1 .

 1 Fig. 1. UNADA's mean execution time for a 15s time slot

Figure

  

1

  displays UNADA's mean execution time of one slot on a single machine with 16 Gbit of RAM and an Intel Core i5-4310U CPU 2.00GHz. For the local mode, Spark is not used, as it would slow down UNADA's execution and it takes advantage of two cores; one is dedicated to the Java's garbage collection and the second to UNADA . It shows that UNADA's execution time is mainly due to the clustering step and increases with the number of features.

Fig. 3 .

 3 Fig. 3. UNADA's deployment over a cluster of servers with Spark

Fig. 4 .Fig. 5 .

 45 Fig. 4. Execution Time of UNADA

Acknowledgements

This work has been done in the framework of the FP7 ONTIC project (see http://ict-ontic.eu) funded by European Commission under the Seventh Framework Programme. Experiments presented in this paper were carried out using the Grid'5000 testbed, supported by a scientic interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).