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ABSTRACT  

Two new thiol compounds with σ-π-σ structure were synthesized and self-assembled on gold 

substrates. The morphology and the structural characterization of SAMs assessed by infrared 

spectroscopy, contact angle, XPS, electrochemistry and scanning tunneling microscopy (STM) 

show the formation of monolayers. SAMs with a terthiophene (3TSH) core as conjugated system 

are much better organized compared to those with a naphthalene carbodiimide (NaphSH) core as 

demonstrated by the cyclic voltammetry and STM studies. The surface concentration of 3TSH 

and NaphSH is respectively three and six times lower than ordered SAMs of pure alkyl chains. 

A large number of I/V characteristics have been studied either by STS measurements on gold 

substrates or by C-AFM on gold nanodots. Transition Voltage Spectroscopy (TVS) was used to 

clearly identify the transport in these partially organized monolayers. The chemical nature of the 

conjugated system, donor for 3TSH and acceptor for NaphSH, involves an opposite rectification 

associated to the asymmetrical coupling of the molecular orbitals and the electrodes. The 

conductance histograms show that the 3TSH junctions are less dispersed than those of NaphSH 

junctions. This is explained by a better control of the molecular organization in the molecular 

junctions. 

 

 

KEYWORDS. Self-assembled monolayer, σ-π-σ compounds, terthiophene, naphthalene-

1,8:4,5-tetracarboxydiimide, C-AFM, STS. 
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Introduction 

Organic thin films based on Self-Assembled Monolayers (SAMs) are particularly studied and 

envisaged for different applications such as bio compatibility, sensors, control of wetting and 

adhesion, catalysis, nanofabrication, nanoelectronics. In this last field, the use of SAMs made by 

the assembly of thiol compounds on gold is a key concept in a bottom-up approach to build 

active nanoelectronic devices that can switch, rectify, store and retrieve information.1-4 The main 

advantages of these SAMs are that the monolayers are directly connected to a metal electrode, 

are easy to fabricate, handle and can be addressed to measure electrical properties. However 

metal-evaporation based techniques tend to damage molecular layers,5 thus several methods have 

been developed to contact small assemblies of organized molecules without damaging them.6 

The main platforms and techniques investigated are the pioneering Hg-drop technique and the 

similar indium-gallium technique, the scanning probe microscope-based techniques as STM and 

conducting AFM (C-AFM), the soft-contact techniques such as nano-transfer printing or crossed 

wires and various solid-state device-based methods. Recently, the use of C-AFM was combined 

to sub-10 nm gold arrays to control and precisely measure the electronic transport properties 

through hundreds of molecules self-assembled on these nanodots.7-8 This powerful method 

allowing to efficiently perform statistics on thousands of electrical measurements recording a 

single C-AFM picture was first applied to well-organized and structured linear alkyls chains.8 

However to improve the functionality of nano-devices, it is foreseen to develop more complex 

systems that introduce π-conjugated system as previously shown by the fabrication of molecular 

diodes,9-13 switches and memories devices.14-18 However, steric hindrance of the conjugated 

backbone modifies the interactions between molecules within the SAMs and is expected to 

reduce the degree of order within the molecular layer. To study and understand this behavior two 
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thiol-terminated compounds with bulky conjugated systems named 3TSH and NaphSH (Scheme 

1) have been synthesized (see SI) and self-assembled, first on gold substrates to study the 

morphology and the structural characterization of SAMs by infrared spectroscopy, contact angle, 

XPS, electrochemistry and scanning tunneling microscopy (STM), then on gold nanodots to 

assess the electrical properties by C-AFM. The I/V characteristics obtained by C-AFM were 

compared with Scanning Tunneling Spectroscopy (STS) measurements. The STS I-V curves 

were then analyzed by Transition Voltage Spectroscopy (TVS). 

 
 
Scheme 1. Chemical structures of 3TSH and NaphSH. 
  

Experimental section 

Preparation of organic SAM–Au. To perform XPS, IR spectroscopy and cyclic voltammetry, the 

gold substrates were prepared by the resistive evaporation of chromium (7 nm) followed by gold 

(200 nm) on silicon wafers at about 10-7 torr in a cryogenically pumped deposition chamber to 

obtain low roughness surfaces. For STM experiments, Au(111) surfaces on mica were purchased 

from Scientec. The gold nanodots (see SI for the fabrication) were first deprotected from the 

initial SiO2 coating layer using HF then functionalized immediately with the thiol derivatives. 

All glassware used for the formation of monolayers was treated with piranha solution and rinsed 

with a large amount of high purity water (Millipore 18 MΩ.cm). Caution: piranha solution 

reacts violently with most organic materials and should be handled with extreme care. The 
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freshly evaporated gold substrates, annealed or deprotected samples were immersed immediately 

after into a filtered 10-3 M solution of thiol in methylene chloride/ethanol mixture (ratio 1/4 for 

NaphSH and 0.5/9.5 for 3TSH). Dodecanethiol solution (10-3 M) dissolved in pure ethanol was 

used to make reference substrates. After 24 hours in the dark and at room temperature, organic 

SAMs-Au were rinsed carefully with methylene chloride then ethanol to remove the possible 

physisorbed overlayers and dried in a nitrogen stream. The various analyses were performed 

immediately after to avoid any deterioration and contamination of the surfaces. Prior to STM 

analyses, dodecanethiol SAMs on Au(111)/mica were annealed in ethanolic dodecanethiol 

solution at 60 °C for 2 h, followed by annealing in air at ∼100 °C for 2 h. 

Apparatus for Characterizations: XPS data were collected by an Axis Ultra DLD (Kratos 

Analytical) using a monochromatic Al Kα X-ray source (1486.6 eV). Infrared spectroscopy (IR) 

was carried out with a Bruker Vertex 70 spectrometer (MCT detector) equipped with a Pike 

Miracle plate for ATR. Electrochemical measurements were carried out with an EG&G 

potentiostat, model 273A. The values of contact angles with water were measured on 

Dataphysics – OCA15 EC apparatus, equipped with a CCD camera. Ellipsometry measurements 

were performed with a Sentech SE400 ellipsometer with 632.8 nm He-Ne laser at an incidence 

angle of 70° taking n=0.279 and k=3.37 for Au substrate (measured values) and n=1.45 and k=0 

for organic layers. Results are averaged values measured from at least three different points on a 

substrate. STM experiments were carried out at ambient conditions using a Multimode system 

equipped with a Picoamp and a Nanoscope IIIa controller (Veeco/Bruker). The voltage was 

applied to the substrate with respect to the grounded Pt/Ir cut tips. The images were recorded in 

constant current mode, with a typical tunneling resistance Rth ≥100 GΩ. For I(V) measurements, 

the same tip was used. STM results were analyzed and displayed using WSxM software.19 
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Ultraviolet Photoelectron Spectroscopy (UPS) was performed with a Omicron equipment 

(EA125 electron analyzer) and a UV source using the HeI line (21 eV) at normal incidence.20 

Inverse Photo-Emission Spectroscopy (IPES) spectra, giving access to the unoccupied electronic 

states, were recorded at normal incidence in the isochromat mode, detecting photons of around 

9.7 eV. The absorbed current is kept at the order of 0.6 μA to prevent any degradation of the 

molecules. Details of the IPES working principle and experiment setups were described 

previously.21 Conducting atomic force microscopy (C-AFM) was performed under a flux of N2 

gas (Dimension 3100, Veeco), using a PtIr coated tip. More detailed methods are provided in the 

SI. 

Results and discussion 

The combination of alkyl-chains and a π-conjugated system is a key design for the development 

of various molecular components. Thus, two new thiol derivatives (Scheme S1) with either a 

terthiophene or a naphthalene tetracarboxydiimide core enclosed between two linear hexyl 

chains have been synthesized. These aliphatic-aromatic-aliphatic structures (σ-π-σ) bear at one 

end of one alkyl chain a thiol function for the anchoring on gold substrate. The choice of alkyl 

chains with six carbons was driven to limit the coupling of the conjugated system with the gold 

electrode while enabling the transfer of electron through the π-system by tunneling. The two 

conjugated systems were chosen firstly for their different steric hindrance that should impact on 

their self-assembly, then for their opposite electronic nature with a donor or acceptor system for 

3TSH and NaphSH, respectively. In the following, this difference will help to discriminate 

between transport through the organized lattice or through defects in the SAMs.  
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Theoretical calculations based on density functional methods have been performed for the thiols-

terminated compounds in the gas phase using the Gaussian 98 software.22 Becke’s three-

parameter gradient-corrected functional (Becke3lyp) with polarized 6-31G* basis for all atoms 

was used to optimize the geometry and to compute the electronic structure of the compounds. 

The minimized conformations are presented in figure S1 (in SI). For both compounds the alkyls 

chains are out of plane of the conjugated system due to heteroatoms. Indeed, in the 3TSH 

compound the two sulfurs in position 5 on terthiophene and in NaphSH the nitrogens are 

involved respectively a dihedral angles around 85° (Sthio-C5-S-CH2) and 90° (CCarb-N-CH2-CH2). 

The length of 3TSH between the carbon of the methylene and the sulfur of the thiols groups is 

27.7 Å, and in the case of NaphSH the length is shorter and is 23.2 Å. Concerning the 

conjugated systems, the terthiophene is almost twice as long and its width is smaller than the 

naphthalene tetracarboxydiimide core.  

XPS analysis of SAMs of 3TSH and NaphSH on Au (figure S2 in SI) show on the survey 

spectra the presence of C and S for the terthiophene derivative and C, N, O and S for the 

naphthalene compound in agreement with the chemical structures. The ratio of the different 

elements calculated by the deconvolution of the XPS spectra regions is also in agreement with 

the elemental composition of the compounds (Table S1 in SI). XPS spectra in the S2p region 

(insets in figure S2) displays for NaphSH two peaks with a bonding energy at 162.0 eV and 

163.2 eV corresponding to 2p3/2 and 2p1/2 with a ratio of 2:1 as theoretically determined by spin-

orbit splitting.23-24 Those two peaks are assigned to one specie, i.e., the thiolate (bond sulfur) 

coming from the oxidant addition of the thiol on gold to form a metal-sulfur bond. Similarly for 

3TSH, peaks at 162.0 eV and 163.2 eV show the thiolate link with the gold and the other two 

peaks at 163.8 and 165.0 eV correspond to the other five sulphurs of the compound. Contact 
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angles measured with water droplet on the self-assembled monolayers of 3TSH and NaphSH are 

between 105 and 108° and between 100 to 105°, respectively. As a comparison, SAMs of 

dodecanethiol, made on pure methanol using the same substrates and conditions, exhibit contact 

angles of 110°, in agreement with the literature.25 Thus, contact angles with SAMs of 3TSH are 

slightly better than the NaphSH and very close to the one of dodecanethiol. Thickness of 3TSH 

and NaPhSH SAMs on Au was measured by ellipsometry as ~25.7 Å and ~20.8 Å respectively, 

in good agreement with the molecule length and consistent with a single layer of all-trans 

molecules on Au surface with respective tilts of 22° and 26°. Since the molecules bear alkyl 

chains at both ends, it is not surprising that these values are in a similar range of those of 26-28° 

concerning alkylthiols on Au(111).26 Infrared spectra of thiol derivatives were recorded in carbon 

tetrachloride solution or chemisorbed on gold with single reflection attenuated total reflectance 

(ATR) technique using gold substrate as a mirror (figure S3 in SI). For both compounds, the 

molecules organized as monolayers present different absorption spectra than those dissolved in a 

solution. This is shown for example by an increase in intensity of the symmetric (∼ 2875 cm-1) or 

anti-symmetric (∼ 2955 cm-1) stretching of the CH3 end group compared to the CH2 stretching of 

the aliphatic chains (Symmetric at ∼ 2855 cm-1 and anti-symmetric at ∼ 2925 cm-1). These results 

comparable to those obtained on similar σ-π-σ self assembled monolayers27 with Reflection–

Absorption infrared spectroscopy (RAIRS) techniques can be explained by the surface dipole 

selection rule on metal surfaces that enhances the intensity of the vibrational modes 

perpendicular to the surface and inhibit the electric dipole moment aligned parallel to the plane 

of incidence. Thus, the increase in intensity of the methyl group mode and the decrease of the 

methylene group imply that the two thiol compounds stand almost normal to the substrate 

surface. Similar variations in the conjugated part of NaphSH can be seen and particularly on the 
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carbonyl groups of the imides functions which present in dilute medium higher intensity for 

asymmetrical vibration at 1660 cm-1 than the symmetrical one at 1705 cm-1.28 In condensed 

medium, the intensities are reversed and the symmetrical vibrations are more intense. These 

intensity variations are less pronounced in the terthiophene core (1495, 1431 cm-1) but new 

vibrational modes appear at 1266 or 1100 cm-1 for 3TSH as well as at 1340 cm-1 for NaphSH 

due to the breaking of the symmetry of the molecules chemisorbed on the gold substrates. Thus, 

it can be concluded that the two organic compounds stand almost normal to the surface and are 

not lying down. 

 

Figure 1. Cyclic voltammetry on a gold electrode of millimolar solutions (black curves) of 

references 3THex (left) or NaphHex (right) in CH2Cl2-Bu4NPF6 0.1 mol.L–1 at 100 mV.s-1 or of 

self-assembled monolayers on gold (Blue curves) of 3TSH (left) or NaphSH (right) in CH2Cl2-

Bu4NPF6 0.1 mol.L–1 at 100 mV.s-1. 

Cyclic voltammetry studies of 5,5’’-dihexyl-2,2′:5′,2′′-terthiophene (3THex) and N,N’-

dihexylnaphthalene-1,8-dicarboxyanhydride-4,5-dicarboximide (NaphHex) reference 

compounds (see SI for the chemical structures) presenting no thiol function show respectively 

two reversible oxidation and reduction processes on gold working electrode (black curves in 
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figure 1). The alpha positions locked with the two hexylsulfanyl substituents give to 3THex the 

abilities to remove and re-inject two electrons in the rich electron conjugated system without any 

radical polymerization. In the other case, inductive effect of the four carbonyl electron 

withdrawing units distributed symmetrically around the π-conjugated naphthalene core allows to 

inject reversibly two electrons in the conjugated part. For 3TSH or NaphSH chemisorbed on 

gold, respectively, only one oxidation and reduction reversible wave can be analyzed in a range 

from -1.45 to 0.45 V vs ferrocene (blue curves in figure 1). Outside this window, these reversible 

redox waves completely disappear. Indeed, at lower or higher potential than -1.45V or 0.45V vs 

ferrocene respectively, the desorption of the SAMs proceeds as previously seen for alkane thiol 

SAMs.29-30 The cyclic voltammograms (CVs) of 3TSH or NaphSH self-assembled on gold show 

smaller Epa–Epc compared to those of the 3THex and NaphHex reference compounds in 

solution. This is consistent with the fact that thiol compounds are surface bound (chemisorbed) 

redox species. The intensities of anodic or cathodic peaks for the SAMs are also directly 

proportional to the scan rate (figures S4 and S5 in SI). The surface coverage of 3TSH and 

NaphSH in the SAMs was estimated from the charge measured respectively for its oxidation 

during the anodic sweep or the reduction during the cathodic sweep in an electrolyte free of 

thiols. Values of 2.10 × 10–10 mol.cm–2 (1.3 × 10+14 molecules.cm-2 or about 80 Å2 per molecule) 

for 3TSH SAM-Au and 1.25 × 10–10 mol.cm–2 (7.6 × 10+13 molecules.cm-2 or about 130 Å2 per 

molecule) for NaphSH SAM-Au were obtained. This represents almost three to six times lower 

surface concentrations than ordered pure alkyl chain SAMs with 7.6 × 10-10 mol.cm-2 (ca. 22 Å2 

per molecule).31 It can be explained by steric effects of the conjugated part of the thiol 

compounds that decrease density of molecules and involve less compacity and density in the 

self-assembled monolayers. The NaphSH chemisorbed on gold shows similar redox potential for 
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the first reversible peak than those of the NaphSHex in methylene chloride solution (table S2 in 

SI) showing no interactions between the naphthalene tetracarboxydiimide in the SAMs. In the 

other case, the oxidation peak of the terthiophene in 3TSH SAM-Au shifts by - 95 mV compared 

to those in 3TSHex in solution, this cathodic shift is explained by π-π interactions of the 

conjugated system that ease their oxidation. Moreover, NaphSH SAM exhibits considerably 

more double layer capacitance than the 3TSH SAM in the electrochemical response. Higher 

capacitive currents come from the counter-ion insertion into SAMs during electrochemical 

polarisation .32 Thus, the observation of higher capacitance in the NaphSH SAM shows that this 

monolayer is less compact than the 3TSH SAM. The highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels of the thiol 

derivatives can be determined using the described empirical relationships established : EHOMO = -

(Eox + 4.4) eV and ELUMO = -(Ered + 4.4) eV with Eox and Ered potential values determined in 

solution vs. SCE reference electrode.33  Ferrocene, used as reference in CV experiments in figure 

1, has a potential of 0.48 V vs. SCE in methylene chloride electrolyte.34 Using the formula, the 

HOMO level of terthiophene derivative is determined at -5.31 eV using E°ox = 0.91 V vs. SCE 

(E°ox = 0.43 V vs. ferrocene, see table S2). The LUMO level of naphthalene tetracarbodiimide is 

estimated at - 3.75 eV using E°red = -0.65V vs. SCE (E°Red = -1.13V vs. ferrocene, table S2). 
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Figure 2. STM Images of: a) & b) C12SH SAM-Au (-0.7 V, 2 pA), c) & d) 3TSH SAM-Au (-0.9 

V, 20 pA), and e) & f) NaphSH SAM-Au (-0.9 V, 2 pA & 20 pA respectively) on Au(111) 

evaporated on mica. Inset of d) is a 4.6×4.2 nm² zoom on 3TSH SAM showing hexagonal 

molecular arrangement. Topographic Z scale is 1.5 nm from dark to bright for a), c), d), e) & f), 

and 0.5 nm for b). 

STM images of dodecanethiol (C12SH), 3TSH and NaphSH SAMs on Au(111) on quartz are 

presented in figure 2. Pictures of C12SH SAMs (figure 2a and 2b) are similar to the ones reported 

in the literature35-38 with close-packed organized molecular domains separated by grain 

boundaries. A typical arrangement is (√3 ×√3) R30° hexagonal structure with intermolecular 

distance of ~5 Å. As for C12SH, 3TSH and NaphSH SAMs exhibit “etch pits” in the gold 
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surface typical for thiolate grafting. Adsorption of a single monolayer was further confirmed by 

the depth values of holes induced by a pulse voltage applied between the tip and the surface: 

~22 Å for NaphSH and ~30 Å for 3TSH, i.e. almost similar to the respective molecular length. 

Moreover, concerning 3TSH Au SAMs (see figure 2c and 2d), ordered small molecular areas of 

about 10×10 nm² can be seen all over STM images. However, these arrangements are also 

separated by obviously more disordered zones that prevent from obtaining a molecular resolution 

as clear as for C12SH Au SAMs in figures 2a and 2b. Zoomed image presented in figure 2c inset 

shows that 3TSH molecules are separated by ~5 Å within an hexagonal lattice, like for C12SH. 

Such an organization has already been reported39 for SAMs on gold of terphenyl molecules 

bearing a small alkyl chains. In the same way, long alkyl chain of 3TSH gives the molecules the 

necessary flexibility for their assembly and their ordering via π-π interactions of the conjugated 

system as demonstrated by cyclic voltammetry. Nevertheless, in spite of their similar alkyl 

chains, whatever the STM imaging conditions we could not observe any molecular organization 

for NaphSH SAMs (figure 2e and 2f). In this case, the conjugated part of the molecule may be 

too wide for enabling a close-packed arrangement and/or possible C–H···O=C hydrogen bonds 

may compete with ordering of grafted molecules.40  

To study the electrical transport through SAMs of 3TSH and NaphSH, a statistical analysis on a 

large number of devices is required. Thus, the recently reported new approach that allows to 

measure the conductance of up to a million of junctions in a single C-AFM image was 

investigated.7 Molecular junctions of 3TSH and NaphSH were fabricated on a large array of 

sub-10 nm single crystal Au nanodot electrodes; each nanodot/molecules/tip junction contains 

less than one hundred molecules. An array of gold nanodot electrodes was fabricated by e-beam 

lithography and lift-off technique. Each nanodot is embedded in a highly-doped Si substrate (to 
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insure a back ohmic contact), covered by a SAM of molecules of interest and contacted by the C-

AFM tip (see SI, Figure S6a). The main properties of the nanodots relevant for the molecular 

conductance measurements are briefly recalled: The distance between each nanodot is set to 100 

nm. The estimated nanodot diameter measured from scanning electron microscopy (SEM) and 

high resolution transmission electron microscope (HR TEM) is 8 nm at the interface with Si and 

5 nm at the top surface.7 The height is 7 nm.7 Using the surface coverage determined above by 

electrochemistry on gold, each nanodot junctions contains either ∼25 molecules of 3TSH or ∼ 15 

molecules of NaphSH sandwiched between the top Au nanodot surface and the C-AFM tip. By 

sweeping a C-AFM tip at a given bias (applied on the substrate), current was measured only 

when the tip is on top of the molecular junction since conductance of native SiO2 is below the 

detection limit of our apparatus.8 The loading force of the C-AFM tip is kept very low (1 nN) to 

avoid any deformation of the SAM and the strain-induced modification of their electronic 

properties.41 Figures S6b and S6c (see SI) show typical C-AFM images taken at -0.8 V and +0.8 

V, respectively, for 2280 Au nanodot/NaphSH/C-AFM tip molecular junctions. Using a 

thresholding program,8 the current histograms were constructed and shown in figure 3 for 

voltages -0.8V and +0.8 V. These histograms were well fitted by several log-normal 

distributions. In the framework of a non-resonant tunneling transport through the molecular 

junction, the current is exponentially dependent on the SAM thickness and on the interface 

energetics (i.e. position of the molecular orbitals relatively to the electrode Fermi energy), thus 

any normal distribution of these parameters leads to a log-normal distribution of the conductance 

as already observed in many molecular junctions.5,12-13,18,42-47  
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Figure 3. Histograms of the current for a) C12SH (1639 junctions), b) 3TSH (2993 junctions) 

and c) NaphSH (2280 junctions) molecular junctions on a nanodot electrode at a fixed bias of -



 16 

0.8 V (grey) or +0.8 V (yellow), except for C12SH measured at ±0.4V (Fig. 3a, reprinted 

(adapted) with permission from Ref. 6. Copyright 2012 American Chemical Society). 

Figures 3-a, b and c show the current histograms recorded by the method described above for 

C12SH, 3TSH and NaphSH molecules, respectively. The parameters (mean current and standard 

deviation) of the fitted log-normal distributions are given in table S3 (see SI). For NaphSH 

junctions (figure 3c), at negative voltage, the histogram was decomposed into three peaks 

(labeled HC, MC and LC for "high conductance", "medium conductance" and "low 

conductance", respectively), while at positive voltage, only one peak was observed. The 

populations of the three peaks at -0.8V are ∼42% (955 junctions), ∼43% (983 junctions) and 

∼15% (342 junctions) for the LC, MC and HC peaks, respectively. The repartition was obtained 

by summing the junction counts belonging to each peak and normalizing by the total of 2280 

junctions measured in that case. We note that the HC peak at -0.8 V and the peak at +0.8 V have 

almost the same mean value of 2.3-2.4x10-9 A. Thus, we can infer that about 15% of the 

NaphSH junctions do not show any rectification, while 85% show a weak positive rectification, 

i.e. R+=I+/I- is larger than 1 where I+ is the mean current of the peak at +0.8V (see data in Table 

S3) and I- is the mean current of the peaks at -0.8V. Out of this 85%, 43% (the MC peak) show a 

weak rectification with R+MC = I+/I-MC ∼1.6 and 42% (the LC peak) have a rectification ratio R+LC 

= I+/I-LC ∼3.2. For the 3TSH junctions, the shape of the histograms is quite different compared to 

NaphSH. At both negative and positive voltages, ∼80% of the junctions belong to a main peak. 

The rest appears as a shoulder and a long tail at lower currents. The histogram at -0.8V is shifted 

toward higher currents than at +0.8V, corresponding to a negative rectification, with a 

rectification ratio R-=I-/I+ ∼1.9 (See data in SI, Table S3). This is consistent with our present 
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observation of a better organization in the SAMs for the 3TSH compared to NaphSH. For the 

reference C12SH the histograms are symmetrical (no rectification). The bi-modal distribution on 

figure 3a has been ascribed to the existence of different molecular organization phases for such 

alkylthiol monolayers.6 
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Figure 4. I(V) measurements performed with the same STM tip on a) C12SH, b) 3TSH and c) 

NaphSH. Each curve is an average of five single measurements cycled from -1.5 V to +1.5 V. 

STM settings are a set-point current of 2 pA, and a bias of -0.7 V for a) and c) and +0.7 V for b).  

Local electrical measurements of the SAMs on flat Au(111) deposited on mica have been also 

performed using the STM tip. Results are presented in figure 4. About 70-80% of measured I(V) 

curves exhibit a characteristic behavior related with intrinsic electrical properties of the 

molecules. For C12SH SAM, I(V) curve is rather symmetrical with a low current level (figure 

4a). This rather symmetrical behavior is in agreement with the C-AFM measurements reported in 

Fig. 3a. As done from the C-AFM results, rectification ratios R+=I+/I- or R-=I-/I+ have been 

investigated from the whole STM I(V) curves at ±0.8V. Histograms of rectification ratios of 

3TSH and NaphSH are presented in figure S7 (in SI). The 3TSH exhibits a sharp single 

rectification ratio at negative bias R-=I-/I+ with a mean value at ~7.8. Although the rectification 

ratio I-/I+ is higher than that measured by C-AFM (~1.9), both measurements give a single 

distribution for 3TSH thus indicating rather well controlled electrical properties for 3TSH 

SAMs. Conversely, the rectification ratio R+=I-+/I- of NaphSH SAMs exhibit a wider distribution 

with a mean value 1.3, extending up to about 10 (see Fig. S7, in SI). These values are consistent 

with those determined (see above) from the current distribution measured by C-AFM at ±0.8 V 

(Fig. 3c). For a donor molecule, as 3TSH, a rectifying behavior at negative bias (Figures 3b and 

4b) is expected if the HOMO is asymmetrically coupled to the electrodes (see Figure S8, in SI), 

i.e. if the coupling to the Au electrode ΓAu is larger than to the tip Γtip. Here, the Au-thiol bond 

and the short C6 chain determine ΓAu. It is reasonable assuming the same for both C-AFM and 

STM experiments. The coupling parameter to the STM tip, ΓSTMtip, depends on the C6 chain and 
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the tunnel air gap between the tip and the molecules, thus it is likely that ΓSTMtip < ΓAu leading to 

the observed rectification. In the C-AFM measurements, the tip is gently on contact with the 

molecules, thus ΓCAFMtip increases (no tunnel air gap) compared to ΓSTMtip reducing the 

rectification behavior as observed from C-AFM (R- ∼ 1.9) (Figure 3b) compared to STM (R- ∼ 

7.8) (Figure 4b). Similarly, for an acceptor molecule as NaphSH, a rectification at positive bias 

is expected via the LUMO level asymmetry coupled to the electrodes (Figure S8, SI). However, 

due to the multimodal current distribution in C-AFM (Fig. 3c) and the large distribution of R+ in 

STM, it is more difficult to apply the same discussion as above in this case. A more detailed 

discussion will be given below regarding the electronic structure of these NaphSH SAMs. 

To assess the energy level position of the molecular orbital involved in the electron transport 

through the junction, we analyzed the STS I-V curves by Transition Voltage Spectroscopy 

(TVS). With this approach, the voltage VT at the minimum of the Fowler-Nordheim plot 

(ln(I/(V²) vs 1/V) is proportional to the energy barrier48-49 at the molecule/electrode interface, i.e. 

the energy gap between the Au Fermi energy and the molecular orbital involved in the charge 

transport (see figure S9 in SI). The histograms of transition voltage values extracted from ~100 

(C12SH), ~140 (NaphSH) and ~250 (3TSH) I-V curves are plotted in figure 5. 
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Figure 5. Transition voltage distribution (absolute values) at negative (VT-) and positive (VT+) 

bias for C12SH (a) and b)), 3TSH (c) and d)), and NaphSH (e) and f)). Distributions were fitted 

by Gaussian curves centered at Xc values. VT- distribution for NaphSH SAM is best fitted using 

two Gaussian curves. Full width at half maximum values (FWHM) are also reported.  

For C12SH and 3TSH, transition voltage distributions are narrower and Gaussian fits enable to 

extract a mean voltage value. On the contrary, for NaphSH, distributions are broader, and two 

VT- can be deduced (Figure 5e). For each couple of VT- and VT+ values assuming that the 



 21 

electronic transport occurs through a single molecular orbital, it is possible to calculate the 

position ε0 of that level with respect to the Fermi level using a model proposed by Bâldea:48 

    (Eq. 1) 

The calculated values are given in table I. The VT values (about 1.0V) and the ε0 of ~0.9 eV for 

C12SH are consistent with literature data.7,49-51 Albeit values for 3TSH and NaphSH were not 

previously reported, the VT and ε0 values found here are consistent with the expected lower 

values for π-conjugated molecules as also observed for various phenyl derivatives.49 To check 

which orbital (HOMO or LUMO) is involved in the transport, we used photoemission 

spectroscopy. Indeed, UPS allows determining the HOMO position whereas the LUMO can be 

accessed using IPES (Fig. 6). The HOMO and LUMO positions were extracted measuring their 

onset regarding the Fermi level as proposed in the literature.52 

 

Figure 6. UPS (left) and IPES (right) spectra of 3TSH and NaphSH SAMs on gold. For the sake 

of clarity IPES spectra were offset along the z axis. Estimated values of HOMO and LUMO 
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were determined by the intersection of the tangent to the band (dotted line) with the spectrum 

baseline as indicated by the arrows. To bring out LUMO position, IPES spectra with subtracted 

background signal are plotted in SI (see Figure S10). 

The whole results obtained from STM I(V), CV and UPS/IPES are summarized in Table I. As 

expected the 3TSH has the HOMO closer to the Fermi energy than the LUMO (donor molecule), 

while it is the reverse situation for NaphSH (acceptor molecule). 

 VT- 
(V) 

VT+ 
(V) 

ε0 
(eV) γ HOMO (eV) 

(vs vac.) 
LUMO (eV) 

(vs vac.) 

HOMO 
(eV) 

from CV 
(vs. vac.) 

LUMO 
(eV) 

from CV 
(vs. vac.) 

C12SH - 1.10 0.90 0.86 - 0.04  ~1.00*   

3TSH - 0.44 0.86 - 0.51 - 0.14 -0. 65 ± 0.05      
(-5.50 ± 0.05) 

1.60 ± 0.10       
(-3.30 ± 0.10) 

-5.31  

NaPhSH 

- 0.46 
 
 

- 0.69 

0.55 

0.43 
 
 

0.53 

 0.04 
 
 

- 0.05 

-2.80 ± 0.05 
 
 

 (-7.70 ± 0.05) 

0.40 ± 0.05 
(-4.50 ± 0.05) 

 
1.60 ± 0.05 

(-3.30 ± 0.05) 

 -3.75 

Table I. Transition voltage values, calculated position of the molecular energy level ε0 (from 

Bâldea, Eq. 1), calculated γ (Eq. 2), HOMO/ LUMO positions obtained from UPS/IPES with 

respect to the Fermi level, and into brackets with respect to the vacuum level (taking a work 

function of 4.9 eV for Au), and HOMO/LUMO determined from CV measurements. *For 

C12SH, LUMO position corresponds to the onset of the band tail reported in IPES spectra of 

C18SH in the literature.53 

For the C12SH, the ε0 value (~0.9 eV) is consistent with the onset of the LUMO tail as measured 

in similar Au/alkanethiol systems by IPES,53 and consistent with previous TVS measurements in 

similar Au/C12SH/Au molecular junctions.51 For 3TSH, there is a good agreement between ε0 (-
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0.51 eV) values deduced from TVS analysis and the position of the HOMO measured by UPS (-

0.65 eV), this last value being also in agreement with the CV measurements (ionization 

potentials: IPUPS=-5.55eV, IPCV=-5.3 eV). For NaphSH, since we have two VT- values (figure 5), 

we deduce two values for ε0 (0.43 and 0.53 eV). These two values can be ascribed to the fact that 

the NaphSH SAM is more disordered and these values should correspond to the LUMO for two 

phases with different molecular organization co-existing in the SAM. This disorder is also 

reflected in the C-AFM analysis for which we observe three peaks of conductance negative bias 

(figure 3c) and the larger distribution of the rectification ratio (see discussion above and figure 

S7 in SI). Similarly, the IPES spectrum shows two marked “bumps” emerging distinctly from the 

background in a more pronounced way than for 3TSH SAM and bare Au (Figure 6 and Figure 

S10), with LUMO positions extrapolated at about 0.4 and 1.6 eV. While not strictly comparable, 

the TVS and IPES data are qualitatively in agreement. We deduce only one value of electron 

affinity (EA) from CV measurements (EACV= -3.75 eV) which may be viewed as an average 

value compared to the two values measured by IPES (-3.30 and -4.50 eV).  

From the Bâldea model of TVS, we can also calculate γ, a voltage division parameter 

describing the degree of symmetry or asymmetry of the molecular orbitals in the junction (-0.5 ≤ 

γ ≤ 0.5, γ = 0 being the case of a symmetrical coupling of the molecular orbitals between the two 

electrodes).48,54-55 γ is equal to -0.5 if the molecule is fully coupled with the Au substrate and not 

with the tip, and γ is 0.5 in the opposite situation (see Figure S8 in SI).  

     (Eq. 2) 
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where sign ε0 is “+” for LUMO  and “-“ for HOMO. The values are given in Table 1. Clearly, 

the value γ = -0.14 for 3TSH junctions confirms the asymmetry of this junctions (R- = 7.8 on 

average for STM I-V measurements) with the terthiophene HOMO more coupled to the Au 

substrate than the STP tip (ΓSTMtip < ΓAu). For the C12SH and NaphSH, γ is almost 0. This is 

expected from the symmetrical I-V behavior of the C12SH junctions. For the NaphSH junctions, 

it means that the model is not “accurate” enough to describe the weaker rectification observed 

for the NaphSH junctions (R+ < 3 on average, both from C-AFM and STM measurements).  

To summarize the electrical properties of SAMs assessed by C-AFM and STS, the chemical 

nature of the conjugated system, associated to the asymmetrical coupling of the molecular 

orbitals and the electrodes, involves an opposite rectification. This is explained by the electronic 

transport through the HOMO or the LUMO levels of the 3TSH and NaphSH which have the 

redox properties to be respectively oxidized or reduced (see cyclic voltammetry part). 

Comparing the conductance histograms of the two molecular junctions, those for the 3TSH 

junctions are less dispersed (Figure 3). As mentioned above, ∼80% of the 3TSH junctions belong 

to a main peak, while three distinct peaks are clearly observed for the NaphSH junctions. Such a 

behavior is also confirmed by the transition voltage and rectification ratio distributions - i.e., 

narrower for 3TSH than for NaphSH - obtained from STM I(V) analyses. This feature may be 

related to the better organization of the 3TSH SAMs as observed by high resolution STM images 

(figure 2) or by CVs with π-π interactions between tertiophene units that are not present in 

naphthalene derivative. For instance, it was shown that disordered SAMs of alkylthiols on Au 

lead to junction with higher current than those having a more ordered organization,56 or that 

"gauche" defects in the molecule reduce the electron transfer efficiency through the molecules.57 
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We have also observed8 that a reduced number of peaks (i.e. 2 peaks) for alkylthiol junctions on 

nanodot (single crystal) electrodes compared to alkylthiol junction on substrate Au (poly-

crystalline) electrode (3 peaks) is consistent with the fact that the nanodot size (5-8 nm) is of the 

same order of magnitude as (or even smaller than) the known average size for well-organized, 

close-packed, domains in SAM as measured by grazing-angle X-ray diffraction (coherence 

length of the diffraction peak of about 7 nm for alkyl chain with 18 carbon atoms).58 It is likely 

that the SAMs are more disordered in the case of Au-substrate. In all cases, a decrease of the 

number of peaks is the fingerprint of a better control of the molecular organization in the 

molecular junctions. While all these observations were done for aklylthiols, it is likely that they 

also hold in the present case, supporting the conclusion of a better molecular organization for the 

3TSH junctions. 

Conclusion 

The steric hindrance of the conjugated backbone in SAMs on gold was studied through the 

synthesis and the characterization of 3TSH and NaphSH. The cyclic voltammetry study shows 

clearly π-π interactions between terthiophene cores in SAMs unlike the naphthalene 

carbodiimide cores that present no interactions. The density of 3TSH is twice as large as that of 

NaphSH.  I/V characteristics measured by STS on bulk gold substrate or C-AFM on gold 

nanoplots highlight (i) that the dispersion of the measurements is less important on more 

organized SAMs as 3TSH SAMs, (ii) an opposite rectification explained by the chemical nature 

of the conjugated system and by the asymmetrical coupling of the molecular orbitals and the 

electrodes, and (iii) that more than 80% of the measurements show a transport through an orbital 

of the conjugated system despite a worse organization.  
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Chemical synthesis of 3TSH and NaphSH. 

Synthesis of 5-hexylsulfanyl-5’’-(6-mercaptohexylsulfanyl)-2,2′:5′,2′′-terthiophene (3TSH) 

described previously for bithiophene core1 is outlined in scheme S1. Compound 1 was prepared 

in a one-pot reaction on terthiophene in anhydrous THF with two equivalent of n-butyllithium at 

low temperature and insertion of elemental sulfur to generate the corresponding dithiolates which 

were alkylated with 3-bromopropionitrile. The mono deprotection of one thiolate group of 1 with 

action of 1 equivalent of CsOH and treatment with bromohexane gave 2. At this step, the 3THex 

coming from the complete deprotection was also isolated during column chromatography; it will 

be used as reference compound in the electrochemistry study. The same procedure is followed to 

remove the second cyanoethyl group and the treatment with S-6-bromohexyl ethanethioate2 gave 

3. The final deprotection of thiol group is realized by reduction of the thioester with 

diisobutylaluminum hydride in CH2Cl2 to afford the target 3TSH. 
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Scheme S1. Synthesis of 3TSH. a) 1. n-BuLi/THF, -78°C, 2. S8, 3. NC(CH2)2Br, N2 (42%). b) 1. 
CsOH/MeOH, DMF, 2. 1-Bromohexane, RT, N2 (20% for 3THex and 37% for 2). c) 1. 
CsOH/MeOH, DMF, 2. S-6-bromohexyl ethanethioate, RT, N2 (71%). d) 1. Diisobutylaluminum 
hydride/CH2Cl2, 0°C, N2 2. HCl (81%). 

 

The target N-(6-mercaptohexyl)-N’-hexylylnaphthalene-1,8:4,5-tetracarboxydiimide (NaphSH) 

was synthesized according to the procedure depicted in Scheme S2. Compound 4 was prepared 

as previously described in literature from dibromohexane. The introduction of thioester group 

was done by action of potassium thioacetate on 4 in dry THF. The deprotection of phtalimide 

and thioacetate group was done in a one-pot reaction by using four equivalents of hydrazine 

mono-hydrate in absolute ethanol to give the desired aminothiol. The coupling of 6 with N-

Hexylnaphthalene-1,8-dicarboxyanhydride-4,5-dicarboximide in DMF at 120°C during one night 

gives N-(6-mercaptohexyl)-N’-hexylylnaphthalene-1,8:4,5-tetracarboxydiimide (NaphSH). 
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Scheme S2. Synthesis of NaphSH. e) Potassium phtalimide, Acetone, reflux (47%). f) 
Potassium thioacetate, THF, reflux (57%). g) Hydrazine, EtOH, reflux (32%). h) DMF, 120°C, 
N2 (41%). Chemical structure of NaphHex. 

 

Experimental details: 

All reagents and chemicals were purchased from Aldrich and were used as received. All 

reactions were performed under inert atmosphere using anhydrous solvents which were dried and 

distilled before being used. S-6-bromohexyl ethanethioate,2 N,N’-Dihexylnaphthalene-1,8-

dicarboxyanhydride-4,5-dicarboximide3 and N-Hexylnaphthalene-1,8-dicarboxyanhydride-4,5-

dicarboximide4 were prepared according to procedures described previously. Melting points are 

uncorrected and were obtained from a Stuart SMP3 apparatus. NMR spectra were recorded with 

a Bruker AVANCE DRX 400 (1H, 400 MHz and 13C, 100 MHz). Chemical shifts δ are 

expressed in ppm relative to tetramethylsilane (TMS). UV-Vis spectra were recorded with a 

Perkin Elmer Lambda 650 spectrometer. The mass spectrometry analysis was operated with a 



 35 

Thermo Finnigan Automass in the electron impact mode at 50 or 70 eV ion source energy 

equipped with a quadripolar analyser. Elemental analyses were done at the Microanalyses 

Laboratory at ICSN/CNRS, Gif/Yvette, France. 

5,5’’-Bis(2-cyanoethylsulfanyl)-2,2′:5′,2′′-terthiophene 1. To a solution of 2,2’:5’,2’’-

terthiophene (1.00 g, 4 mmol) in anhydrous THF (25 mL) under N2 at –78°C was added 

dropwise a solution of n-BuLi 2.5 M in hexane (3.4 mL, 2.1 eq.) over a period of 5 min. After 30 

min of stirring at –78°C, elemental sulfur (270 mg, 2.1 eq.) was added in one portion to the 

yellow precipitate obtained. After 30 min of additional stirring at –78°C, the red reaction mixture 

was allowed to warm to room temperature and stirred for 30 min. Then the solution was cooled 

down to 0°C and 3-bromopropionitrile (1.35 g, 2.5 equiv) was added dropwise. The reaction 

mixture was stirred for 1 h at room temperature to give a yellow solution. After addition of a 0.5 

M aqueous solution of HCl (40 mL), the mixture was extracted with CH2Cl2. The organic phases 

were dried over Na2SO4 and evaporated in vacuo. The chromatography on silica gel (eluent: 

CH2Cl2/hexane 1:1 then CH2Cl2) gave 1 as a yellow solid (700 mg; 42% yield). M.p. = 167 - 168 

°C, 1H NMR (CDCl3) δ: 7.14 (d, 2H, 3J=3.7), 7.08 (s, 1H), 7.07 (d, 2H, 3J= 3.7), 3.01 (t, 4H,  

3J=7.1), 2.66 (t, 4H, 3J=7.1). FTIR ν/cm-1: 3063, 2249, 1494, 1454, 1425, 1407, 1318, 1280, 

1219, 1206, 1193, 1163, 1074, 1054, 983, 956, 904, 849, 787. UV/Vis (CHCl3) : λ = 378 nm. EI 

MS (50 eV) m/z (I%): 418 (M+·, 57), 364 (100), 310 (25), 233 (15), 162 (10). Elem. Anal.: 

calculated for C18H14N2S5 (C 51.64%, H 3.32%, S 38.46%), found (C 51.85%, H 3.27%, S 

38.01%). 

5-(2-cyanoethylsulfanyl)-5’’-hexyl-2,2′:5′,2′′-terthiophene 2 and 5,5’’-dihexyl-2,2′:5′,2′′-

terthiophene (3THex). To a solution of 1 (625 mg, 1.5 mmol) in degassed DMF (50 mL) was 
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added dropwise a solution of CsOH·H2O (0.25 g, 1 equiv.) in degassed MeOH (5 mL) under N2 

atmosphere. After additional stirring of 1 H, 1-Bromohexane was added to the red solution. The 

solution then returns to this initial yellow color after 1 H of stirring. Water (100 ml) was added to 

the mixture and the compound was extracted with CH2Cl2 (200 mL) and then washed with water. 

After drying (Na2SO4), the solution was concentrated in vacuo giving a residue which was 

chromatographed on silica gel (CH2Cl2/Hexane (1/1) then CH2Cl2/Hexane (8/2)) to give first 

3THex (142 mg, 20%) and secondly 2 (250 mg, 37%) as yellow solids. 3THex : M.p. = 73 - 74 

°C. 1H NMR (CDCl3) δ: 7.02 (s, 2H), 7.01 (d, 2H, 3J=3.7), 7.00 (d, 2H, 3J=3.7), 2.82 (t, 4H, 

3J=7.3), 1.64 (qu, 4H, 3J=7.2), 1.41 (qu, 4H, 3J=7.2), 1.35-1.23 (m, 8H), 0.89 (t, 6H, 3J=7.0). 13C 

NMR (CDCl3) δ: 139.9, 136.0, 134.5, 133.9, 124.3, 123.7, 38.9, 31.3, 29.4, 28.1, 22.5, 14.0. 

FTIR ν/cm-1: 3061, 2953, 2923, 2870, 2855, 1495, 1459, 1426, 1382, 1314, 1254, 1217, 1200, 

1078, 1050, 986, 852, 783, 729, 721. UV/Vis (CHCl3) : λ = 386 nm. 2 : M.p. = 100 - 102 °C. 1H 

NMR (CDCl3) δ: 7.13 (d, 1H, 3J=3.7), 7.07-7.01 (m, 4H), 7.00 (d, 1H, 3J=3.7), 3.00 (t, 2H, 

3J=7.1), 2.82 (t, 2H, 3J=7.5), 2.66 (t, 2H, 3J=7.1), 1.64 (qu, 2H, 3J=7.4), 1.41 (m, 2H), 1.30 (m, 

4H), 0.89 (t, 3H, 3J=7.0). FTIR ν/cm-1: 3060, 2953, 2923, 2870, 2854, 2249, 1493, 1454, 1425, 

1410, 1380, 1318, 1280, 1200, 1075, 985, 850, 788. UV/Vis (CHCl3) : λ = 384 nm. EI MS (50 

eV) m/z (I%): 449 (M+·, 66), 395 (73), 364 (39), 310 (20), 43 (100). Elem. Anal.: calculated for 

C21H23NS5 (C 56.08%, H 5.15%, S 35.65%), found (C 56.26%, H 5.18%, S 35.64%). 

5-hexyl-5’’-(8-Oxo-7-thianonylsulfanyl)-2,2′:5′,2′′-terthiophene 3. To a solution of 2 (500 

mg, 1.11 mmol) in degassed DMF (15 mL) was added dropwise a solution of CsOH·H2O (217 

mg, 1.3 equiv.) in degassed MeOH (5 mL) under N2 atmosphere. After additional stirring of 1 H, 

thioacetic acid S-(6-bromohexyl) ester2 (0.8 g, 3.33 mmol, 3 equiv.) diluted in degassed DMF 
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(10 mL) was added to the red solution. The solution then returns to the yellow initial color, after 

2 H of stirring DMF was removed under vacuum to give a crude product which was 

chromatographed on silica gel (CH2Cl2/Hexane (7/3) to give a yellow powder (440 mg, 71%). 

M.p. = 70 - 72 °C, 1H NMR (CDCl3) δ : 7.03 (s, 2H), 7.01 (d, 2H, 3J=3.7), 7.00 (d, 2H, 3J=3.7), 

2.86 (t, 2H, 3J=7.3), 2.82 (t, 2H, 3J=7.3), 2.82 (t, 2H, 3J=7.3), 2.32 (s, 3H), 1.66-1.59 (m, 6H), 

1.43-1.40 (m, 6H), 1.30-1.28 (m, 4H), 0.88 (t, 3H, 3J=7.1). FTIR ν/cm-1: 3061, 2951, 2923, 2870, 

2854, 1700, 1495, 1461, 1425, 1380, 1352, 1313, 1265, 1146, 1118, 985, 955, 851, 786. UV/Vis 

(CH2Cl2) : λ = 384 nm. EI MS (70 eV) m/z (I%): 554 (M+·, 100), 469 (25), 395 (66), 311 (20), 

117 (17). Elem Anal: calculated for C26H34OS6 (C 56.27%, H 6.18%, S 34.67%) found (C 

56.49%, H 6.19%, S 34.65%). 

5-Sulfanylhexyl-5’’-(6-mercaptohexylsulfanyl)-2,2′:5′,2′′-terthiophene (3TSH). To a solution 

of 3 (440 mg, 0.80 mmol) in anhydrous CH2Cl2 (15 mL) was added dropwise a solution of 

diisobutylaluminum hydride (228 mg, 2 equiv.) in CH2Cl2 (5 mL) under N2 atmosphere. After 2 

hours, HCl solution (1M, 20 mL) was added to the mixture and the organic layer was isolated, 

washed with water, dried with Na2SO4 and evaporated. The chromatography on silica gel (eluent: 

CH2Cl2/hexane 3:7) gave 3TSH as a yellow solid (330 mg; 81% yield). M.p. = 195 - 197 °C, 1H 

NMR (CDCl3) δ : 7.03–6.98 (m, 6H), 2.81 (t, 4H, 3J=7.3), 2.50 (m, 2H), 1.71-1.59 (m, 6H), 1.43-

1.36 (m, 6H), 1.32-1.23 (m, 4H), 0.88 (t, 3H, 3J=7.0). 13C NMR (CDCl3) δ : 134.1 (2C), 133.9 

(2C), 124.4 (2C), 124.3 (2C), 123.8  (4C), 38.9, 38.8, 33.8, 31.3, 29.4, 29.2, 28.1, 27.8 (2C), 

24.5, 22.5, 14.0. FTIR ν/cm-1: 3060, 2951, 2923, 2871, 2854, 1495, 1461, 1425, 1380, 1313, 

1269, 1217, 1200, 1190, 1078, 1050, 985, 851, 787. UV/Vis (CH2Cl2) : λ = 385 nm (log ε = 
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4.30). EI MS (50 eV) m/z (I%): 512 (M+·, 30), 395 (34), 311 (15), 44 (100). Elem Anal: 

calculated for C24H32S6 (C 56.20%, H 6.29%, S 37.51%) found (C 56.48%, H 6.21%, S 36.88%). 

 

N-(6-bromohexyl)phtalimide (4). Potassium phthalimide salt (1.9 g, 0.5 equiv.) was added in 4 

parts during 6 h to a solution of 1,6-dibromohexane (3.15 mL, 20.5 mmol) dissolved in boiling 

acetone (64 mL). After an additional 24 h reaction time at reflux, the solution was cooled to 

room temperature. The white solid obtained was removed by filtration and the filtrate was 

concentrated under vacuum to give a crude product which was chromatographed on silica gel 

(Hexane/Et2O (6/4) to give 4 as a solid (2.95 g, 47%). M.p. : 55 - 57°C. NMR 1H (CDCl3) δ : 

7.80 (m, 2H), 7.70 (m, 2H), 3.61 (t, 2H, 3J=7.1), 3.36 (t, 2H, 3J=6.8), 1.87–1.79 (m, 2H), 1.71–

1.63 (m, 2H), 1.50–1.42 (m, 2H), 1.37–1.30 (m, 2H). FTIR ν/cm-1: 2960, 2931, 2855, 1769, 

1707, 1614, 1433, 1394, 1358, 1330, 1233, 1213, 1049, 973, 890, 711. 

N-(8-Oxo-7-thianonyl)phtalimide (5). Potassium thioacetate (736 mg, 1 equiv.) was added in 

one portion to a solution of 4 (2g, 6.45 mmol) diluted in freshly distilled THF (20 mL). Then the 

mixture was heated under reflux over 24 hours. After cooling at room temperature, the white 

precipitate was removed by filtration and the solvent evaporated under reduced pressure. The 

crude product was purified by chromatography on silica gel (Hexane/Et2O (6/4)) to give a solid 

(1.12 g, 57%). M.p. : 60 - 61°C. NMR 1H (CDCl3) δ : 7.83 (m, 2H), 7.70 (m, 2H), 3.67 (t, 2H, 

3J=7.3), 2.84 (t, 2H, 3J=7.3), 2.30 (s, 3H), 1.71–1.64 (m, 2H), 1.60–1.52 (m, 2H), 1.44–1.30 (m, 

4H). FTIR ν/cm-1: 2959, 2938, 2855, 1765, 1693, 1680, 1463, 1434, 1397, 1361, 1337, 1117, 

1044, 1012, 993, 957, 904, 716. 

6-aminohexylthiol (6). To a solution of 5 (1g, 3.28 mmol) in ethanol (30 mL) was added 

hydrazine hydrate (0.41 mL, 4 eq.), then the solution was heated under reflux overnight. After 
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cooling to room temperature the solvent was removed under reduced pressure. Methylene 

chloride (20 mL) was added to the crude product and the organic layer was washed 3 times with 

20 mL of water, dried over magnesium sulfate, and concentrated under reduced pressure. The 

colorless oil of the aminohexylthiol 6 was directly used in the following step without further 

purification (141 mg, 32%). 1H NMR (CDCl3) : δ = 2.64-2.70 (m, 4H), 1.72–1.63 (m, 2H), 1.56 

(s, 2H), 1.48 - 1.29 (m, 7H). 

N-(6-mercaptohexyl)-N’-hexylnaphthalene-1,8:4,5-tetracarboxydiimide (NaphSH). A 

solution of 6 (70 mg, 0.525 mmol) and N-Hexylnaphthalene-1,8-dicarboxyanhydride-4,5-

dicarboximide4 (185 mg, 0.525 mmol) in DMF (10 mL) was heated at 120°C under N2 overnight. 

After cooling, a pinkish solid was formed and removed by filtration. This solid was washed 

several times with pentane to give 100 mg (41%) of NaphSH. M.p. = 237 - 238 °C, 1H NMR 

(CDCl3) δ : 8.74 (s, 4H), 4.19 (t, 4H, 3J=7.6), 2.50 (m, 2H), 1.80–1.67 (m, 6H), 1.50-1.40 (m, 

6H), 1.40-1.31 (m, 4H), 0.90 (t, 3H, 3J=7.0). 13C NMR (CDCl3) δ : 162.8 (4C), 130.9 (4C), 126.6 

(4C), 126.5 (2C), 41.0, 40.8, 38.9, 31.5, 29.0, 28.1, 28.0, 27.9, 26.7, 26.6, 22.5, 14.0. FTIR ν/cm-

1: 3061, 2929, 2853, 1704, 1655, 1581, 1454, 1375, 1333, 1246, 1185, 1154, 1077, 971, 890, 

769, 726. UV/Vis (CH2Cl2) : λ = 380 nm (log ε = 4.39), 360 nm (log ε = 4.32), 340 nm (log ε = 

4.07). EI MS (50 eV) m/z (I%): 466 (M+·, 7), 351 (8), 281 (3), 249 (5), 115 (25), 55 (40), 44 

(100). Elem Anal: calculated for C26H30N2O4S (C 66.93%, H 6.48%, N 6.00%, S 6.87%) found 

(C 66.95%, H 6.18%, N 6.01%, S 6.91%). 
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Modelisation 

  

Figure S1. Geometry optimized of NaphSH (left) and 3TSH (right) by the functional density 
method Becke3lyp using Gaussian 98.5 Bases for calculation are 6-31G*. 
 

XPS analysis  

X-ray photoelectron spectroscopy (XPS) was performed with a Kratos Analitical Axis Ultra 

DLD, using an Al Ka source monochromatized at 1486.6 eV. A hemispheric analyzer working at 

pass energy of 50 eV for the global spectrum was used, and 20 eV when focusing on the sole 

core levels.  
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Figure S2. XPS spectra of 3TSH (left) and NaphSH (right) on gold substrates and the insets 
show the S 2p core level. 

 

Table S1. Ratio analysis of the peaks in XPS spectra in monolayers of 3TSH and NaphSH on 
gold. 
 

  % %   % % 
3TSH n found calcd NaphSH n found calcd 

C 24 79.3 80.0 C 26 78.8 78.8 
S 6 20.7 20.0 N 2 5.5 6.0 
    O 4 12.4 12.1 
    S 1 3.3 3.1 

n corresponds to the number of atoms in the chemical structure. 
 

 

IR analysis 

Infrared spectroscopy (IR) was carried out with a Bruker Vertex 70 spectrometer (resolution 2 

cm-1, spectra were collected with 256 scans, MCT detector) equipped with a Pike Miracle plate 

for ATR. 
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Figure S3. IR spectra of 3TSH (left) and NaphSH (right) in carbon tetrachloride solution (blue 
curve) and chemisorbed on gold surface (black curve). 
 

Electrochemical study.  

Cyclic voltammetry was performed in acetonitrile solutions (HPLC grade). Tetrabutylammonium 

hexafluorophosphate (0.1 M as supporting electrolyte) from Sigma-Aldrich was used without 

purification. Experiments in a glovebox were done in Plate material evaluating cell from 

Biologic with a gold working and a platinum wire as counter electrode. An Ag/Ag+ (10 mM) 

electrode checked against the ferrocene/ferricinium couple (Fc/Fc+) before and after each 

experiment was used as reference. The reference electrode was equipped with a non aqueous 

double bridge in order to avoid possible interference with metal cations. Electrochemical 

experiments were carried out with an EG&G potentiostat, model 273A.  
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Figure S4. left: Cyclic voltammograms of 3TSH SAM-Au electrode recorded at different scan 
rates (50, 100, 200 and 400 mV.s–1); right: trace of Ipa as a function of the scan rate of 3TSH 
SAM-Au electrode. All measurements have been made in CH2Cl2-TBAPF6 0.1 mol.L–1. 
Potentials are quoted versus Ferrocene. 
 
 

 
 
Figure S5. left: Cyclic voltammograms of NaphSH SAM-Au electrode recorded at different 
scan rates (30, 50, 100, 200 and 400 mV.s–1); right: trace of Ipc as a function of the scan rate of 
NaphSH SAM-Au electrode. All measurements have been made in CH2Cl2-TBAPF6 0.1 mol.L–

1. Potentials are quoted versus Ferrocene. 
 
 
Table S2. Electrochemical Data (millivolts) of reference compounds in solution (with gold 
working electrode) and thiols derivatives chemisorbed on gold (0.1 M Bu4NPF6 / CH2Cl2; 
potentials vs Ferrocene). 
 E°’ red(2) E°’ red(1) E°’ox(1) E°’ox(2) 
3TSHex in solution   435  560 
3TSH chemisorbed   340  
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NaphtSHex in solution -1550 -1130   
NaphtSH chemisorbed  -1125   
 

C-AFM measurements.  

Nanodot fabrication: The fabrication and detailed characterization of these nanodot arrays have 

been reported elsewhere.6 For e-beam lithography, an EBPG 5000 Plus from Vistec Lithography 

was used. The (100) Si substrate (resistivity = 10-3 Ω.cm) was cleaned with UV-ozone and native 

oxide etched before resist deposition. The e-beam lithography has been optimized by using a 45 

nm-thick diluted (3:5 with anisole) PMMA (950 K). For the writing, an acceleration voltage of 

100 keV was used, which reduces proximity effects around the dots, compared to lower voltages. 

The beam current to expose the nanodots was 1 nA. The conventional resist development / e-

beam Au evaporation (8 nm) / lift-off processes were used. Immediately before evaporation, 

native oxide is removed with dilute HF solution to allow good electrical contact with the 

substrate. Single crystal Au nanodots were obtained after thermal annealing at 260°C during 2 h 

under N2 atmosphere. At the end of the process, these nanodots were covered with a thin layer of 

SiO2 that was removed by HF at 1% for 1 mn prior to SAM deposition. Spacing between Au 

nanodots was set to 100 nm.   

C-AFM measurements: Conducting atomic force microscopy (C-AFM) was performed under a 

flux of N2 gas (Dimension 3100, Veeco), using a PtIr coated tip (same tip for all C-AFM 

measurements). Tip curvature radius was about 30-40 nm, and the force constant was in the 

range 0.17-0.2 N/m. The C-AFM measurements were taken at loading forces of 1 nN. Images 

were acquired with a sweep frequency of 0.5 Hz and the voltage applied on the substrate. 
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Figure S6. (a) Schematic of the nanodot molecular junctions (b) Current image at -0.8V (black 
spot = negative current  and (c) current image at +0.8V (white spot = positive current) of Au 
nanodot/NaphSH/C-AFM tip molecular junctions. 

 

Table S3. Parameters of the fitted log-normal distributions for NaphSH and 3TSH at -0.8 V and 
0.8V. 

NaphSH log I I (A) log σ σ 
LC -9.14 7.2x10-10 0.12 1.3 

MC -8.86 1.4x10-9 0.22 1.6 @ -0.8V 
HC -8.62 2.4x10-9 0.08 1.2 

@ +0.8V -8.64 2.3x10-9 0.25 1.8 
3TSH     

@ -0.8V -8.47 3.4x10-9 0.04 1.1 
@ +0.8V -8.75 1.8x10-9 0.04 1.1 

C12SH     
LC -8.11 7.8x10-9 0.28 1.9 @ -0.4V HC -7.85 1.4x10-8 0.07 1.2 
LC -8.14 7.2x10-9 0.19 1.5 @ +0.4V HC -7.91 1.2x10-8 0.08 1.2 
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Distribution of rectification ratios measured from STM experiments. 

             

 

Figure S7. Log-normal distributions of rectification ratios R = ⎮I-/I+⎮ at ± 0.8 V for 3TSH (a) 
and R = ⎮I+/I-⎮at ± 0.8 V for NaphSH (b). Xc stands for the maximum position of the Gaussian 
fit, and full width at half maximum (FWHM) is reported. 

 
Schematic representation of the electronic transport. 

- Through the HOMO level of the terthiophene derivative. 
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-Through the LUMO level of the tetracarboxydiimide derivative. 

 

Figure S8. Schematic representation of transport properties via the HOMO and LUMO levels of 
organic compounds in an asymmetrically coupled geometry (ΓAu > Γtip).  

 

Typical TVS curves. 
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Figure S9. Top: principle of the transition voltage determination; the transition voltage at the 
minimum of the Fowler-Nordheim plot corresponds to the alignment of the Fermi level with the 
onset of the molecular band tail. Bottom: Typical TVS curves for (a) C12SH junction, (b) 3TSH 
junction and (c) NaphSH junction.  

IPES spectra corrected with the background signal 

 

 

Figure S10. IPES spectra with subtracted background signal. Spectra were shifted along the Y 
axis for the sake of clarity. The onset of the LUMO band tail was determined by the intersection 
between the tangent to the band (dotted line) and the horizontal baseline. 
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