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ABSTRACT

Understanding people’s intention, be it action or thought,

plays a fundamental role in establishing coherent communi-

cation amongst people, especially in non-proactive robotics,

where the robot has to understand explicitly when to start an

interaction in a natural way. In this work, a novel approach

is presented to detect people’s intention-for-interaction. The

proposed detector fuses multimodal cues, including estimated

head pose, shoulder orientation and vocal activity detection,

using a probabilistic discrete state Hidden Markov Model.

The multimodal detector achieves up to 80% correct detec-

tion rates improving purely audio and RGB-D based variants.

Index Terms— Intention Detection, Multimodal Data

Fusion, Human-Robot Interaction

1. INTRODUCTION

Developmental psychology and cognitive neuroscience stud-

ies suggest humans have an inherent tendency to infer other

people’s intentions from their actions. This provides an in-

trinsic ability to understand other people’s minds and plays

a fundamental role in establishing coherent communication

amongst people [1]. Inspired by this, different researchers

have been working on detecting user’s intention for improved

human-machine interaction in general, e.g. [2, 3, 4, 5]. Know-

ing a user’s true intention opens up the possibility to: (1)

understand his/her activity at the earliest (before the activ-

ity is even complete); (2) constrain the space of possible fu-

ture actions and provide context [4]; and (3) correctly under-

stand his/her action, for example, in the event of a motor neu-

ron disorder where actions might not reflect true user’s in-

tention [6]. Consequently, detecting user’s intention has, in

recent years, gained significant attention in Human-Robot In-

teraction (HRI) research. Endowing robots with the ability

to understand humans’ intentions opens up the possibility to

create robots that can successfully interact with people in a

social setting as humans. By observing user’s intention, a
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robot can potentially consider implicit commands and user’s

desires that are not explicitly stated.

In this work, we focus on the specific task of detecting a

user’s intention-for-interaction with a robot. This is very im-

portant especially when considering a non-intrusive assistive

robot. To paint a picture, consider, for example, an assistive

robot that only responds to a user when the user expresses

need but otherwise stows away at the corner of a room observ-

ing the user without any interference. The robot will approach

and interact with the user only when it detects the user’s inten-

tion, mimicking the actions of a domestic helper. To achieve

this, we base our system on studies that report on “how people

manifest their intention to interact with another person” – ori-

enting their head and body toward that person and expressing

their need vocally [1]. Accordingly, we consider three impor-

tant cues: user’s head orientation, anterior body orientation,

and vocal activity. We present a multimodal perceptual sys-

tem for detecting user’s intention-for-interaction with a robot.

The proposed system estimates the user’s head orientation

and shoulder orientation using data acquired from an RGB-

D sensor. The latter is considered as an indicator of the user’s

anterior body orientation. It also determines the user vocal

activity using an android device (a smart phone or a tablet)

placed casually in the vicinity of the user. Then the outputs

from the three systems are fused in a probabilistic Bayesian

filter, a Hidden Markov Model (HMM), to provide a poste-

rior estimate on the user’s intention-for-interaction. Finally,

the user’s intention is detected by thresholding the posterior

estimate. Although the presented perceptual system is based

on a robotic system, it is equally applicable for any generic

human-machine interaction system equipped with an RGB-D

and audio sensor (as demonstrated in section 5).

This paper is structured as follows: This section continues

with related works and highlights our contributions. Section 2

presents the proposed framework in detail. Subsequently, sec-

tions 3 and 4 detail the proposed head and shoulder estima-

tion, and vocal activity detection modules respectively. Fi-

nally, experiments carried out and obtained results are pre-

sented in section 5 followed by conclusions in section 6.



Related Works Recently, various works revolving around

user intention perception have been burgeoning in the HRI

community [6, 4, 7, 8]. The need for understanding people’s

intention mostly stems from early activity detection [5, 7, 9],

context establishment [4, 5], and true intention understanding

in case of confusing actions [6]. Intention can be described

with several aspects, such as the nature of data (monomodal,

multimodal, discret, continuous, etc), the fusion strategy, and

finally the applicative context.

Focusing on the inputs for the intention perception de-

tector, several data channels can be distinguished. First, the

most obvious should be the head pose and eye gaze estima-

tion as demonstrated in Martinez et al. [6]. A second cue

comes straightforward with the context awareness in Clair et

al. [4]. Bascetta et al. [9] used an online prediction of user’s

trajectory, which can be associated with a user’s habit. More

cues are related with user’s body part orientation. Huber [3]

based his work on user’s feet position and orientation, Kuan

et al. [7] used elbow angles and force signals. Only a few pa-

per presented audio features such as [10]. In order to extract

all these features, RGB-D cameras and classical cameras are

dominantly chosen for tracking, head pose and eye gaze esti-

mation, but sometimes physiological sensors are used such as

muscular electomyogram (EMG) and force sensors. Surpris-

ingly, contrary to its pervasive presence, audio sensors/signals

have been rarely utilized for intention detection, but rather for

user engagement detection in few occasions, e.g., [10]

Evidently, fusing different heterogeneous cues fur-

ther robustifies the estimation step. When considering

multimodal/multi-cue based intention estimation, the consid-

ered fusion/inference module plays an important role in ro-

bustness. In the literature, the most promising works uti-

lize probabilistic frameworks for fusion and inference. For

instance Dynamic Bayesian Networks [11], Hidden Markov

Models [9, 5], and generic recursive Bayesian filters [6]. Gen-

erally, all intention perception modules relate to safety con-

siderations and improved communication. However, they are

used in a large variety of applications, such as: action predic-

tion [4], electric wheelchair’s navigation [6], and guiding or

resisting a user as part of a rehabilitation process [7]. These

kinds of perception modules are even used in smart public

display in order to determine the intention to read an adver-

tisement [3]. Based on these insights, the presented multi-

modal intention-for-interaction detection scheme fuses user

head orientation, user anterior body orientation, and audio

activity – heterogeneous cues that have not been considered

altogether before for detecting intention – in a probabilistic

framework. Intermediary outputs from a visual detector, head

and shoulder orientations, are filtered using a novel Particle

Swarm Optimization based tracker. This step is important as

intentionality is based on spatio-temporal patterns, and head

pose and shoulder orientation seems to be highly correlated.

Contributions In this paper, we claim to make two core

contributions: (i) we propose a probabilistic user’s intention-

for-interaction estimation framework using Hidden Markov

Model (HMM) to fuse visual and audio cues from an assistive

robot; and (ii) we integrate the intention detection module in

a real robotic platform providing quantitative evaluations of

each constituent modules and the complete framework.

2. FRAMEWORK

As highlighted in the introduction, the focus of this work

is detecting the intention of a user to interact with an as-

sistive robot – referred as intention-for-interaction detection.

This will be considered as the working definition of intention

through out the rest of this paper.
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Fig. 1. Proposed framework to estimate user’s intention-for-

interaction.

Figure 1 shows the proposed framework to estimate user’s

intention using an RGB-D camera (e.g., kinect, stereo rig)

and an audio sensor (e.g., smart phone, tablet, mic, etc). The

framework estimates the user’s intention based on three im-

portant cues: line of sight – inferred from head pose; anterior

body direction – determined from shoulder orientation; and

speech used to draw attention – captured via vocal activity

detection. The head pose detection and shoulder orientation

detection modules rely on depth image (detailed in section 3).

The detection outputs are further filtered to discard spurious

noise and fill-in missing detections using a particle swarm op-

timization inspired tracker (PSOT). Both, the vocal activity

detection (detailed in section 4) and tracker output are con-

sidered as observation (measurement) inputs and are fused

to provide a probabilistic intention estimate using a Hidden

Markov Model (figure 2).

xt−1 xt

z1t−1 z2t−1 z1t z2t

Fig. 2. Probabilistic graphical model used for intention esti-

mation.

The probabilistic graphical model depicted in figure 2 il-

lustrates the relationship between the hidden variables, xt and

xt−1, which are the intention indicators at time t and t−1 re-
spectively, and the observation variables z1t , z

2
t , z

1
t−1, z

2
t−1.

z1t represents the observation from the particle swarm based



tracker that provides estimated head pose (position and ori-

entation) in space, and shoulder orientation with respect to

the vertical plane of the camera optical frame in space (yaw).

z2t , on the other hand, denotes the observation from the vo-

cal activity detection module. Probability distributions asso-

ciated with each of the observation variables are detailed in

sections 3 and 4 respectively.

With the assumption that the observations are condition-
ally independent given the state (encoded in the graphical
model), and making use of Bayes’s rule, the posterior prob-
ability distribution over the state P (xt|Z1:t) given all mea-
surements upto time t, Z1:t, is expressed with equation 1.

P (xt|Z1:t) = (1)

ηP
(

z
1
t |xt

)

P
(

z
2
t |xt

)

∑

xt−1

P (xt|xt−1)P (xt−1|Z1:t−1)

Where P (xt|xt−1) is the state transition (dynamics) dis-

tribution, and η is a normalization factor. Here both x

and z2 are discrete random variables that take on values

{intent,¬intent} and {vad,¬vad} respectively, where vad
stands for vocal activity detection (see section 4). On the

other hand, z1 takes on continuous values given the tracker

output (see section 3).

3. HEAD AND SHOULDER POSE ESTIMATION

This observation is based on: head pose estimation, shoulder

orientation estimation, and particle swarm optimization based

tracking for filtered estimates.

Head pose estimation This module is based on the works

of Fanelli et al. [12]. In their work, the authors formu-

late the pose estimation as a regression problem and use

random regression forests on depth images from an RGB-

D sensor. This choice is motivated by regression forests

capability to handle large training datasets. The regres-

sion is based on rectangular features that resemble gener-

alized HAAR-like features. The training is done using the

Biwi Kinect Head Pose Dataset [12]. The 6-D state vec-

tor, [x′h, y
′
h, z

′
h, θ

′
h, φ

′
h, ψ

′
h], contains the 3-D head posi-

tion and the 3 orientation angles relative to the sensor. The

claimed precision in the paper is 5.7o mean error in yaw esti-

mation with 15.2o standard deviation, and 5.1o mean error in

pitch estimation with 4.9o standard deviation. Additionally,

head pose is detected with 13.4mmmean error with 21.1mm
of standard deviation. This mode works best with close by

subjects, subjects placed at a distance of 1.5 to 2.0m.

Shoulder orientation estimation For this we primarily rely

on Openni library [13] which provides a fitted skeleton model

of the user based on the depth data. Then, using simple geom-

etry, the user’s shoulder orientation is obtained by computing

the vector between the left and right shoulder joint pose de-

termined from the fitted skeleton. The shoulder orientation is

expressed with respect to the RGB-D sensor parallel optical

plane providing a yaw angle θ′sh for the tracking step. Illus-

trative estimated shoulder and head orientations are displayed

Fig. 3. The head pose is displayed with the green cylinder

(head) on the point cloud, while shoulders are displayed in

red and their orientation in dark blue (below the neck).

in figure 3. Following the Kinect – the specific RGB-D cam-

era used in this work – characteristics and Openni library, the

skeleton tracking algorithm works upto a range of 4 meters.

The head and shoulder poses provided by the above two

modules are computed frame by frame without any temporal

link. It is also possible to have missing estimates from any

of the modules at any times. To alleviate that and provide a

smoothed continuous estimate, we make use of the following

PSOT tracker.

Particle Swarm Optimization based Tracker (PSOT) The

PSOT, as detailed here, is a proposed tracker that com-

bines interesting amenities of Particle Swarm Optimization

(PSO) [14] with Particle Filter [15], like target dynamic

model for improved tracking performance. It is used here to

track the head pose and shoulder orientation estimates provid-

ing smoothed and improved spatio-temporal estimates.

input : ŝt−1,
{

s
(i)
t−1, p

(i)
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(i)
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i=1
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s
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(i)
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(i)
t
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t

if f
(

p
(i)
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> f (ŝt−1) then ŝt ← p
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t

end

end

MAP estimate: ŝt

MMSE estimate: s̄t =
∑N

i=0

f
(

p
(i)
t

)

∑

N
j=0 f

(

p
(j)
t

)s
(i)
t

Algorithm 1:Particle swarm optimization based tracker.

Contrary to other particle based algorithms, in the pre-

sented PSOT, particles interact with each other with a “so-

cial” and “cognitive” component in the update step. This be-

havior leads to a more efficient estimation of target as there

is not particle degeneration. Algorithm 1 outlines the uti-

lized PSOT tracker. The particle swarm is indexed with i,



and based on classical PSO terminology, s
(i)
t , v

(i)
t , p

(i)
t repre-

sent the ith particle tracked state in the search space, velocity,

and best known tracked state respectively at time t. f (·) is a
fitness function (likelihood equivalent in Particle Filters), rp
and rg are factors that randomly weight social and cognitive

terms, whereas ψg and ψp are constant social and cognitive

weights. ω models particle inertia, ŝt the Maximum A Pos-

teriori (MAP) estimate at time t, and s̄t the Minimum Mean

Square Error (MMSE) estimate.

In this work a random walk dynamic model, i.e. d(p
(i)
t ) =

p
(i)
t + w (w is a Gaussian noise), is adopted for d(·) – the

filter dynamic model. Given head pose and shoulder orien-

tation in the form of sd = [x′h, y
′
h, z

′
h, θ

′
h, φ

′
h, ψ

′
h, θ

′
sh]

from the head pose and shoulder orientation estimation mod-

ules, algorithm 1 is used to determine spatio-temporal pos-

terior point estimates on head pose and shoulder orientation

recursively at each time frame t with the state vector of the

PSOT tracker represented as s = [xh, yh, zh, θh, φh, ψh, θsh].
A multivariate Gaussian model with a diagonal covariance

matrix diag(Σ) = [diag(Σposition) diag(Σangles)] is used
as the observation model in the fitness evaluation.

The distribution P (z1t |xt) is derived based on the tracker

output. It is mainly based on θ′h, φ
′
h, θ

′
sh angles. These

angles are represented in such a way that when the user is

looking right into the optical frame with their anterior body

oriented parallel to the image plane, all angles are 0. With

this in mind, P (z1t |xt) is represented as a multivariate nor-

mal distribution, i.e., P (z1t |xt) = N
(

z1t ; 0,Σ
)

with z1t =
[θ′h, φ

′
h, θ

′
sh]. The covariance matrix Σ is a diagonal ma-

trix; though not applied here, its values can be varied using

the tracked head position.

4. VOCAL ACTIVITY DETECTION

As stated in section 2, audio signal is used for intention detec-

tion based on user vocal activity detection. Users have the ten-

dency to talk to a robot when they want its attention. Taking

advantage of this, we denote the onset of a vocal activity as

one indicator for user intention-for-interaction. In this work

we rely on the vocal activity detection module from Pocket-

Sphinx C library1.This algorithm is based on signal energy. It

flags the given audio frame as containing speech elements if

the signal energy is above a set threshold. Since signal energy

is affected by the noise in the environment, the implementa-

tion in PocketSphinx does an initial calibration stage so as to

best separate signal from stationary noise using a statistical-

based noise removal method. Depending on the environment

ambient noise (robot noise and room noise), the VAD is es-

timated properly up to 2 meters. Hence, the user should be

within 2 meters from the android based mobile device.

The observation from the VAD module is represented

by the random variable z2t at time t taking discrete values

{vad,¬vad}. Since both z2t and xt take binary discrete val-

1http://cmusphinx.sourceforge.net/

ues, the associated likelihood distribution P (z2t |xt) is simply

represented by four probability values.

5. EXPERIMENTS AND RESULTS

The presented work is aimed to be deployed on a mobile robot

for user’s intention-for-interaction detection in HRI setting

targeted for the elderly people. The complete framework is

implemented using C++ and Python languages as various in-

teracting ROS2 nodes. It has been integrated on a PR2 mobile

robot. The PR2 is a popular robot that has been used as a

test bed by many robotic researchers all over the world. It

is equipped with various sensors of which we have primarily

used the kinect RGB-D sensor mounted on it. Its computing

power relies on two Quad-Core i7 Xeon Processors (8 cores)

with 24 GB RAM. Audio data is captured using Samsung

Note 3 smartphone (android 4.2). The smartphone commu-

nicates with PR2 via a common wifi network.

5.1. Evaluation Metrics

For evaluation, we make use of two sets of evaluation metrics:

Tracker accuracy metrics, to evaluate the performance of the

PSOT tracker, and various metrics to characterize the inten-

tion detection performance. For the PSOT tracker, we treat

the position estimates and angular estimates separately and

compute positional root mean square error (RMSE) in mm

and angular RMSE in degrees.

For user’s intention detection, we make use of various

metrics mosly used in HMM applications in the literature.

True Positive Rate (TPR): The ratio of correct intention de-

tection (in accordance with the ground truth) to that of total

intention tagged data frames.

False Alarm Rate (FAR): The ratio of the number of ob-

servation data frames, of which the detection output flags an

intention where there is none in the ground truth.

Average Early Detection (AED): Given an observation

length in time of T , early detection time is the time t the sys-

tem took to correctly detect an intention. The AED, then, is

computed by averaging the normalized early detection time,
t
T
, over all correctly detected intentions.

Average Correct Duration (ACD): Given an intention ob-

servation of length, T , and the total time during which the

intention is detected, C, the normalized correct duration is

computed as C
T
. Then, the ACD is computed by averaging

over all correctly detected intentions.

5.2. Dataset

For user’s intention detection evaluation, we acquire three

separate datasets, two of which are acquired using the PR2 in

a robotic experimental area and the third is acquired merely

in an office using a standalone kinect and smartphone. Their

lengths vary between 2700 and 3500 image frames (acquired

at 30 fps). The datasets constitute of RGB-D and audio

streams. In all cases, the user seated at an approximate

2Robot Operating System (ROS): http://wiki.ros.org/



distance of 3m from the RGB-D sensor demonstrates his

intention-for-interaction by facing the robot and/or using vo-

cal activity. The datasets are manually annotated to mark in-

tention active regions with the help of the user. The test results

presented in section 5.3 are based on one dataset acquired us-

ing PR2 (dataset I) and another dataset acquired in an office

environment (dataset II). The third dataset, acquired using the

PR2, is used to tune and learn the HMM parameters.

To evaluate the PSOT tracker separately, we use a dataset

acquired using a kinect and a marker-based motion capture

system (Mocap). The Mocap is used to obtain the ground

truth for the tracker evaluation and is calibrated and time syn-

chronized with the RGB-D sensor.

5.3. Results and Discussions

Tracker Evaluation The PSOT tracker results obtained us-

ing the Mocap coupled dataset are shown in figure 4. For

completeness, we have also compared its performance with

Sample Important Resampling (SIR) particle filter [15]. As

can be seen, the PSOT tracker, either using MAP or MMSE

point estimate, outperforms the SIR filter significantly –

achieving less than 100 mm average position error and an

average angular error centered around 0o. The results – av-

eraged over 100 runs – are obtained using ω = 0.9, ψp = 0.8,
ψg = 1, and 100 particles. These parameters are tuned em-

pirically.
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Fig. 4. PSOT accuracy evaluation.

Intention Detection This core modality is evaluated using

two datasets acquired in robotic and casual office settings.

But, initially a separate robotic based dataset is used to learn

the different distributions via frequentist approach. Accord-

ingly, P(z2
t |xt)=

[

0.30 0.75

0.70 0.25

]

rows represent {vad,¬vad} and

columns {intent,¬intent}. Similarly, the transition matrix,

P (xt|xt−1)=

[

0.990 0.017

0.010 0.983

]

. For P (z1
t |xt)=N(z1

t ;0,Σ), Σ is a diag-

onal matrix with values of 100 (tuned empirically).

Table 1 shows the results obtained for the intention de-

tection modality on the two datasets, I and II. To see the im-

provement brought by each perceptual component, the eval-

uation is carried using VAD only as measurement, RGB-D

data input only (PSOT tracker output) as measurement, and

the combined Multimodal system.

Clearly in all counts, except AED, the proposed multi-

modal approach outperforms all. In fact, it achieves to detect

72% and 80% of user’s intentions correctly with low false

alarm rate – 14% and 9% – on dataset I and II respectively.

In the robotic dataset, it detects with a 20% lag and man-

ages to flag an intention correctly, on average, over 74% of

its sustenance. It also demonstrates quite improved perfor-

mance on the dataset II. The VAD based approach, though

quite fast owing to the high audio frame rate, leads to signif-

icant false alarms and less than average TPR on the robotic

dataset. This arises because VAD only captures a speech sig-

nal without any know how about the intended listener. The

RGB-D only approach shows quite promising achievements.

The results clearly demonstrate, by fusing a very unreliable

measurement like the VAD, which might be overlooked, with

RGB-D further perceptual improvements can be gained – in

our case a 4% to 8% gain in TPR, a significantly reduced FAR

(almost by half in the robotic dataset), and improved correct

coverage and early detection.

Figure 5 illustrates an instance taken from dataset I (ac-

quired with the PR2). At this instance, the user turns its at-

tention to the robot and starts talking. Figures 5b and 5c show

what the robot sees. The tracked user head pose and shoul-

der poses are shown in the point cloud depth in figure 5c. The

posterior on the user’s intention increases in figure 5c flagging

this instance as an intention-for-interaction. The output of the

system for a duration of time is illustrated in figure 6 which

corresponds to dataset II (office environment). The figure

shows the variation of the posterior over intent and ¬intent.
Here, a visual correlation could be made between the ground

truth annotation (black) and detection output (blue). Both the

ground truth and detection outputs take on binary values, but

they are shown here scaled to enhance visibility. It is clear

that the detection system does well producing results that co-

incide with the ground truth frequently. Further description of

the used dataset and demonstration videos are made available

at http://homepages.laas.fr/aamekonn/icme-2015/.

6. CONCLUSIONS

In this work, the importance of multimodal cues in intention-

for-interaction detection has been stated. The experiments

have shown that audio can significantly improve computer

vision and vice versa. Due to omnipotence of context in

a robotic application and the importance for intention-for-

interaction detection, a further investigation will be to couple

our multimodal detector, with an activity detector. This could

be justified by the fact that, when a user answer its phone,

they usually do not want to start an interaction with the robot.

Moreover, context cues could be used to determine any source

of interfering noise which would reduce the precision of VAD

or any other audio feature.
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