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Introduction

In this work, we study the initial-boundary value problem for the Prandtl boundary layer equation in two dimension, which reads

           ∂ t u + u∂ x u + v∂ y u + ∂ x p = ∂ 2 y u, t > 0, (x, y) ∈ R 2 + , ∂ x u + ∂ y v = 0, u| y=0 = v| y=0 = 0, lim y→+∞ u = U (t, x), u| t=0 = u 0 (x, y) ,
where R 2 + = {(x, y) ∈ R 2 ; y > 0}, u(t, x, y) represents the tangential velocity, v(t, x, y) normal velocity. p(t, x) and U (t, x) are the values on the boundary of the Euler's pressure and Euler's tangential velocity and determined by the Bernoulli's law: ∂ t U (t, x) + U (t, x)∂ x U (t, x) + ∂ x p = 0.

Prandtl equations is a major achievement in the progress of understanding the famous D'Alembert's paradox in fluid mechanics. In a word, D'Alembert's paradox can be stated as: while a solid body moves in an incompressible and inviscid potential flow, it undergoes neither drag or buoyancy. This of course disobeys our everyday experiences. In 1904, Prandtl said that, in fluid of small viscosity, the behavior of fluid near the boundary is completely different from that away from the boundary. Away from the boundary part can be almost considered as ideal fluid, but the near boundary part is deeply affected by the viscous force and is described by Prandtl boundary layer equation which was firstly derived formally by Prandtl in 1904 ([22]).

From the mathematical point of view, the well-posedness and justification of the Prandtl boundary layer theory don't have satisfactory theory yet, and remain open for general cases. During the past century, lots of mathematicians have investigated this problems. The Russian school has contributed a lot to the boundary layer theory and their works were collected in [START_REF] Oleinik | Mathematical models in boundary layer theory[END_REF]. Up to now, the local existence theory for the Prandtl boundary layer equation has been achieved when the initial data belong to some special functional spaces: 1) the analytic space or analytic with respect to the tangential variable [START_REF] Kukavica | On the local existence of analytical solution to the Prandtl boundary layer equations[END_REF][START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF][START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. existence for Euler and Prandtl equations[END_REF][START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. construction of the Navier-Stokes solution[END_REF]; 2) Sobolev spaces or Hölder spaces under monotonicity assumption [START_REF] Alexandre | Well-posedness of the Prandtl equation in sobolev spaces[END_REF][START_REF] Liu | A well-posedness theory for the Prandtl equations in three space variables[END_REF][START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF][START_REF] Oleinik | Mathematical models in boundary layer theory[END_REF][START_REF] Xin | On the global existence of solutions to the Prandtl's system[END_REF]; 3) recently [START_REF] Gerard-Varet | Well-posedness for the Prandtl system without analyticity or monotonicity[END_REF] in Gevrey class with non-degenerate critical point. See also [START_REF] Kukavica | On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions[END_REF] where the initial data is monotone on a number of intervals and analytic on the complement.

Except explaining the D'Alembert's Parabox, Prandtl equations play a vital role in the challenging problem: inviscid limit problem.

In deed, as pointed out by Grenier-Guo-Nguyen [START_REF] Grenier | Spectral instability of characteristic boundary layer flows[END_REF][START_REF] Grenier | Spectral instability of symmetric shear flows in a twodimensional channel[END_REF][START_REF] Grenier | Spectral stability of Prandtl boundary layers: an overview[END_REF], the long time behavior of the Prandtl equations is important to make progress towards the inviscid limit of the Navier-Stokes equations. We must understand behaviors of solutions to on a longer time interval than the one which causes the instability used to prove ill-posedness.

To the best of our knowledge, under the monotonic assumption, by using the Crocco transformation, Oleinik ([21]) obtained the long-time smooth solution in Hölder space for the Prandtl equation defined on the interval 0 ≤ x ≤ L with L very small. ) proved the global existence of weak solutions if the pressure gradient has a favorable sign, that is ∂ x p ≤ 0. See [START_REF] Liu | Global existence of weak solutions to the threedimensional Prandtl equations with A special structure[END_REF] for a similar work in 3-D case. The global existence of smooth solutions in the monotonic case remains open.

In the analytical frame, Ignatova-Vicol ( [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF]) recently get an almost global-intime solution which is analytic with respect to the tangential variable, see also [START_REF] Zhang | Long time well-posdness of Prandtl system with small and analytic initial data[END_REF] for a same attempt work by using a refined Littlewood-Paley analysis. On the other side, without the monotonicity assumption, E and Engquist in [START_REF] Enquist | Blow up of solutions of the unsteady Prandtl's equation[END_REF] constructed finite time blowup solutions to the Prandtl equation. After this work, there are many un-stability or strong ill-posedness results. In particular, Gérard-Varet and Dormy [START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF] showed that the linearized Prandtl equation around the shear flow with a nondegenerate critical point is ill-posed in the sense of Hadamard in Sobolev spaces. See also [START_REF]Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation[END_REF][START_REF] Gérard-Varet | Remarks on the ill-posedness of the Prandtl equation[END_REF][START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF][START_REF] Guo | A note on Prandtl boundary layers[END_REF][START_REF] Renardy | Ill-posedness of the hydrostatic Euler and Navier-Stokes equations[END_REF] for the relative works.

Besides, Crocoo transformation can't be used to Navier-Stokes equations. The best choice left for us is to get the long time wellposedness by energy method, since energy method works well for both Navier-Stokes equations and Euler equations. Recently, there are two works [START_REF] Alexandre | Well-posedness of the Prandtl equation in sobolev spaces[END_REF][START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF] where the local-in-time wellposedness is obtained by different kinds of energy methods. One is by Nash-Moser-Hörmander iteration. The other is by using uniform estimates of the regularized parabolic equation and Maximal Principle.

Motivated by above analysis, in this work, using directly energy method, we will prove the long time existence of smooth solutions of Prandtl equations in Sobolev space. In details, for any fixed T > 0, we will show that if the initial perturbation are size of e -T small enough, then the life time of solutions to Prandtl equations could at least be T .

In what follows, we choose the uniform outflow U (t, x) = 1 which implies p x = 0. In other words the following problem for the Prandtl equation is considered :

           ∂ t u + u∂ x u + v∂ y u = ∂ 2 y u, t > 0, (x, y) ∈ R 2 + , ∂ x u + ∂ y v = 0, u| y=0 = v| y=0 = 0, lim y→+∞ u = 1,
u| t=0 = u 0 (x, y).

(1.1)

The weighted Sobolev spaces (similar to [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF]) are defined as follows:

f 2 H n λ (R 2 + ) = |α1+α2|≤n R 2 + y 2λ+2α2 |∂ α1 x ∂ α2 y f | 2 dxdy , λ > 0, n ∈ N + . Specially, f L 2 λ (R 2 + ) = f H 0 λ (R 2 
+
) and H n stands for the usual Sobolev space. Initial data of shear flow. Loosely speaking, shear flow is a solution to Prandtl equations and is independent of x. For more details, please check the analysis of shear flow part in Section 2 and Lemma 2.1. We denote shear flow as u s . From now on, we consider solutions to Prandtl equations as their perturbations around some shear flow. That is to say, u(t, x, y) = u s (t, y) + ũ(t, x, y), t ≥ 0. Assume that u s 0 (initial datum of shear flow) satisfies the following conditions:

           u s 0 ∈ C m+4 ([0, +∞[), lim y→+∞ u s 0 (y) = 1; (∂ 2p y u s 0 )(0) = 0, 0 ≤ 2p ≤ m + 4; c 1 y -k ≤ (∂ y u s 0 )(y) ≤ c 2 y -k , ∀ y ≥ 0, |(∂ p y u s 0 )(y)| ≤ c 2 y -k-p+1 , ∀ y ≥ 0, 1 ≤ p ≤ m + 4, (1.2) 
for certain c 1 , c 2 > 0 and even integer m. We have the following long time wellposedness results.

Theorem 1.1. Let m ≥ 6 be an even integer, k > 1 and -1 2 < ν < 0. Assume that u s 0 satisfies (1.2), the initial data ũ0 = (u 0u s 0 ) ∈ H m+3 k+ν (R 2 + ), and ũ0 satisfies the compatibility condition up to order m + 2. Then for any T > 0, there exists δ 0 > 0 small enough such that if

ũ0 H m+1 k+ν (R 2 + ) ≤ δ 0 , (1.3) 
then the initial-boundary value problem (1.1) admits a unique solution (u, v) with

(u -u s ) ∈ L ∞ ([0, T ]; H m k+ν-δ ′ (R 2 + )), v ∈ L ∞ ([0, T ]; L ∞ (R y,+ ; H m-1 (R x )), where δ ′ > 0 satisfying ν + 1 2 < δ ′ < ν + 1 and k + ν -δ ′ > 1 2
. Moreover, we have the stability with respect to the initial data in the following sense: given any two initial data

u 1 0 = u s 0 + ũ1 0 , u 2 0 = u s 0 + ũ2 0 , if u s 0 satisfies (1.
2) and ũ1 0 , ũ2 0 satisfies (1.3), then the solutions u 1 and u 2 to (1.1) satisfy,

u 1 -u 2 L ∞ ([0,T ];H m-3 k+ν-δ ′ (R 2 + )) ≤ C u 1 0 -u 2 0 H m+1 k+ν (R 2 + )
, where the constant C depends on the norm of

∂ y u 1 , ∂ y u 2 in L ∞ ([0, T ]; H m k+ν-δ ′ +1 (R 2 + )). Remark 1.2.
1. We also can verify ,

∂ y (u -u s ) ∈ L ∞ ([0, T ]; H m k+ν-δ ′ +1 (R 2 + )), ∂ y v ∈ L ∞ ([0, T ]; H m-1 k+ν-δ ′ (R 2 + )). 2.
From (2.5) and (6.5), the relationship between the life span T and the size of initial data is:

δ 0 ≈ e -T .

3.

The results of main Theorem can be generated to the periodic case where x is in torus. 4. We find that the weight of solution u(t)u s (t) is smaller than that of initial dates u 0u s 0 . There means that there exist decay loss of order δ ′ > 0 which may be very small. It results from the term v ∂ y u which is the major difficulty for the analysis of Prandtl equation. This article is arranged as follows. In Section 2, we explain the main difficulties for the study of the Prandtl equation and present an outline of our approach. In Section 3, we study the approximate solutions to (1.1) by a parabolic regularization. In Section 4, we prepare some technical tools and the formal transformation for the Prandtl equations. Sections 5 is dedicated to the uniform estimates of approximate solutions obtained in Section 3. We prove finally the main theorem in Section 6-7. Notations: The letter C stands for various suitable constants, independent with functions and the special parameters, which may vary from line to line and step to step. When it depends on some crucial parameters in particular, we put a sub-index such as C ǫ etc, which may also vary from line to line.

Preliminary

Difficulties and our approach. Now, we explain the main difficulties in proving Theorem 1.1, and present the strategies of our approach.

It is well-known that the major difficulty for the study of the Prandtl equation (1.1) is the term v ∂ y u, where the vertical velocity behaves like v(t, x, y) = -y 0 ∂ x u(t, x, ỹ)dỹ, by using the divergence free condition and boundary conditions. So it introduces a loss of x-derivative. The y-integration create also a loss of weights with respect to y-variable. Then the standard energy estimates do not work. This explains why there are few existence results in the literatures.

Recalling that in [START_REF] Alexandre | Well-posedness of the Prandtl equation in sobolev spaces[END_REF] (see also [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF] for a similar transformation), under the monotonic assumption ∂ y u > 0, we divide the Prandtl equations by ∂ y u and then take derivative with respect to y, to obtain an equation of the new unknown function f = u ∂y u y . In the new equation, the term v disappears by using the divergence free condition. Here a little different from [START_REF] Alexandre | Well-posedness of the Prandtl equation in sobolev spaces[END_REF], we use

g m = ∂ m x u ∂yu y
, where m stands for the highest derivative with x. From [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF], we can observe that we only need to worry about the highest derivative with x. This is why we only define g m . In order to prove the existence of solutions, following the idea of Masmoudi-Wong ( [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF]), we will construct an approximate scheme and study the parabolic regularized Prandtl equation (3.1), which preserves the nonlinear structure of the original Prandlt equation (1.1), as well as the nonlinear cancellation properties. Then by uniform energy estimates of the approximate solutions, the existence of solutions to the original Prandlt equation (1.1) follows. This energy estimate also implies the uniqueness and the stability. The uniform energy estimate for the approximate solutions is the main duty of this paper. Analysis of shear flow. We write the solution (u, v) of system (1.1) as u(t, x, y) = u s (t, y) + ũ(t, x, y), v(t, x, y) = ṽ(t, x, y), where u s (t, y) is the solution of the following heat equation

       ∂ t u s -∂ 2 y u s = 0, u s | y=0 = 0, lim y→+∞ u s (t, y) = 1, u s | t=0 = u s 0 (y). (2.1) 
Then (1.1) can be written as

           ∂ t ũ + (u s + ũ)∂ x ũ + ṽ(u s y + ∂ y ũ) = ∂ 2 y ũ, ∂ x ũ + ∂ y ṽ = 0, ũ| y=0 = ṽ| y=0 = 0, lim y→+∞ ũ = 0, ũ| t=0 = ũ0 (x, y) . (2.2)
We first study the shear flow, Lemma 2.1. Assume that the initial date u s 0 satisfy (1.2), then for any T > 0, there exist c1 , c2 , c3 > 0 such that the solution u s (t, y) of the initial boundary value problem (2.1) satisfies

c1 y -k ≤ ∂ y u s (t, y) ≤ c2 y -k , ∀ (t, y) ∈ [0, T ] × R+ , |∂ p y u s (t, y)| ≤ c3 y -k-p+1 , ∀ (t, y) ∈ [0, T ] × R+ , 1 ≤ p ≤ m + 4, (2.3) 
where c1 , c2 , c3 depend on T .

Proof. Firstly, the solution of (2.1) can be written as

u s (t, y) = 1 2 √ πt +∞ 0 e -(y-ỹ) 2 4t -e -(y+ ỹ) 2 4t u s 0 (ỹ)dỹ = 1 √ π +∞ -y 2 √ t e -ξ 2 u s 0 (2 √ tξ + y)dξ - +∞ y 2 √ t e -ξ 2 u s 0 (2 √ tξ -y)dξ ,
which gives

∂ t u s (t, y) = 1 √ πt +∞ -y 2 √ t ξ e -ξ 2 (∂ y u s 0 )(2 √ tξ + y)dξ - +∞ y 2 √ t ξ e -ξ 2 (∂ y u s 0 )(2 √ tξ -y)dξ .
By using (∂ 2j y u s 0 )(0) = 0 for 0 ≤ 2j ≤ m + 4, it follows

∂ p y u s (t, y) = 1 √ π +∞ -y 2 √ t e -ξ 2 (∂ p y u s 0 )(2 √ tξ + y)dξ + (-1) p+1 +∞ y 2 √ t e -ξ 2 (∂ p y u s 0 )(2 √ tξ -y)dξ = 1 2 √ πt +∞ 0 e -(y-ỹ) 2 4t + (-1) p+1 e -(y+ ỹ) 2 4t (∂ p y u s 0 )(ỹ)dỹ, (2.4) 
for all 1 ≤ p ≤ m + 4.

For p = 1, we have,

∂ y u s (t, y) = 1 √ π +∞ -y 2 √ t e -ξ 2 (∂ y u s 0 )(2 √ tξ + y)dξ + +∞ y 2 √ t e -ξ 2 (∂ y u s 0 )(2 √ tξ -y)dξ = 1 2 √ πt +∞ 0 e -(y-ỹ) 2 4t + e -(y+ ỹ) 2 4t (∂ y u s 0 )(ỹ)dỹ .
Thanks to the monotonic assumption (1.2), we have that

∂ y u s (t, y) ≈ 1 2 √ πt +∞ 0 e -(y-ỹ) 2 4t + e -(y+ ỹ) 2 4t ỹ -k dỹ ≈ 1 2 √ πt +∞ -∞ e -(y+ ỹ) 2 4t ỹ -k dỹ .
Recalling now Peetre's inequality, for any λ ∈ R

c0 y λ y + ỹ -|λ| ≤ ỹ λ ≤ c-1 0 y λ y + ỹ |λ| ,
then for λ = -k, we get the first estimate of (2.3) with

c1 = c 1 c0 (1 + T ) -k 2 , c2 = c 2 c-1 0 (1 + T ) k 2 . (2.5)
For the second estimate of (2.3), (2.4) implies

|∂ p y u s (t, y)| ≤ c 2 2 √ πt +∞ 0 e -(y-ỹ) 2 4t + e -(y+ ỹ) 2 4t ỹ -k-p+1 dỹ ≤ c 2 2 √ πt +∞ -∞ e -(y+ ỹ) 2 4t ỹ -k-p+1 dỹ .
Using now Peetre's inequality, with λ = -kp + 1, we get

|∂ p y u s (t, y)| ≤ c 2 c-1 0 (1 + T ) k+p-1 2 y -k-p+1 , for any (t, y) ∈ [0, T ] × R + .
Compatibility conditions and reduction of boundary data. We give now the precise version of the compatibility condition for the nonlinear system (2.2) and the reduction properties of boundary data.

Proposition 2.2. Let m ≥ 6 be an even integer, and assume that ũ is a smooth solution of the system (2.2), then the initial data ũ0 have to satisfy the following compatibility conditions up to order m + 2:

ũ0 (x, 0) = 0, (∂ 2 y ũ0 )(x, 0) = 0, ∀x ∈ R, (∂ 4 y ũ0 )(x, 0) = ∂ y u s 0 (0) + (∂ y ũ0 )(x, 0) (∂ y ∂ x ũ0 )(x, 0), ∀x ∈ R, (2.6) 
and for 4 ≤ 2p ≤ m,

(∂ 2(p+1) y ũ0 )(x, 0) = p q=2 (α,β)∈Λq C α,β q j=1 ∂ αj x ∂ βj+1 y u s 0 + ũ0 y=0 , ∀x ∈ R, (2.7) 
where

Λ q = (α, β) = (α 1 , • • • , α q ; β 1 , • • • , β q ) ∈ N q × N q ; α j + β j ≤ 2p -1, 1 ≤ j ≤ q; q j=1 3α j + β j = 2p + 1; q j=1 β j ≤ 2p -2, 0 < q j=1 α j ≤ p -1 .
(2.8)

Remark that for α j > 0, we have ∂ Proof. By the assumption of this Proposition, ũ is a smooth solution. If we need the existence of the trace of ∂ m+2 y ũ on y = 0, then we at least need to assume that ũ ∈ L ∞ ([0, T ]; H m+3 k+ℓ-1 (R 2 + )). Recalling the boundary condition in (2.2): ũ(t, x, 0) = 0, ṽ(t, x, 0) = 0, (t, x) ∈ [0, T ] × R, then the following is obvious:

(∂ t ∂ n x ũ)(t, x, 0) = 0, (∂ t ∂ n x ṽ)(t, x, 0) = 0, (t, x) ∈ [0, T ] × R, 0 ≤ n ≤ m.
Thus the first result of (2.6) is exactly the compatibility of the solution with the initial data at t = 0. For the second result of (2.6), using the equation of (2.2), we find that, fro 0

≤ n ≤ m (∂ 2 y ∂ n x ũ)(t, x, 0) = 0, (∂ t ∂ 2 y ∂ n x ũ)(t, x, 0) = 0, (t, x) ∈ [0, T ] × R. Derivating the equation of (2.2) with y, ∂ t ∂ y ũ + ∂ y (u s + ũ)∂ x ũ + ∂ y ṽ(u s y + ∂ y ũ) = ∂ 3 y ũ, observing ∂ y (u s + ũ)∂ x ũ + ∂ y ṽ(u s y + ∂ y ũ) y=0 = 0, then we get (∂ t ∂ y ũ))| y=0 = (∂ 3 y ũǫ )| y=0 .
Derivating again the equation of (2.2) with y,

∂ t ∂ 2 y ũ + ∂ 2 y (u s + ũ)∂ x ũ + ∂ 2 y ṽ(u s y + ∂ y ũ) = ∂ 4 y ũ,
using Leibniz formula

∂ 2 y (u s + ũ)∂ x ũ + ∂ 2 y ṽ(u s y + ∂ y ũ) = (∂ 2 y (u s + ũ))∂ x ũ + (∂ 2 y ṽ)(u s y + ∂ y ũ) + (u s + ũ)∂ 2 y ∂ x ũ + ṽ∂ 2 y (u s y + ∂ y ũ) + 2(∂ y (u s + ũ))∂ y ∂ x ũ + 2(∂ y ṽ)∂ y (u s y + ∂ y ũ), thus, (∂ 4 y ũ)(t, x, 0) = u s y (t, 0) + (∂ y ũ)(t, x, 0) (∂ y ∂ x ũ)(t, x, 0), and 
(∂ t ∂ 4 y ũ)(t, x, 0) = ∂ y u s (t, 0) + (∂ y ũ)(t, x, 0) (∂ 3 y ∂ x ũ)(t, x, 0) + ∂ 3 y u s (t, 0) + (∂ 3 y ũ)(t, x, 0) (∂ y ∂ x ũ)(t, x, 0) . (2.9) 
For p = 2, we have

∂ t ∂ 4 y ũ + ∂ 4 y (u s + ũ)∂ x ũ + ∂ 4 y ṽ(u s y + ∂ y ũ) = ∂ 6 y ũ, using Leibniz formula ∂ 4 y (u s + ũ)∂ x ũ + ∂ 4 y ṽ(u s y + ∂ y ũ) = (∂ 4 y (u s + ũ))∂ x ũ + (∂ 4 y ṽ)(u s y + ∂ y ũ) + (u s + ũ)∂ 4 y ∂ x ũ + ṽ∂ 4 y (u s y + ∂ y ũ) + 1≤j≤3 C 4 j (∂ j y (u s + ũ))∂ 4-j y ∂ x ũ + (∂ j y ṽ)∂ 4-j y (u s y + ∂ y ũ) ,
thus, by (2.9)

(∂ 6 y ũ)(t, x, 0) = (∂ t ∂ 4 y ũ)(t, x, 0) -(∂ 3 y ∂ x u)(u s y + ∂ y ũ)(t, x, 0) + 1≤j≤3 C 4 j (∂ j y (u s + ũ))∂ 4-j y ∂ x ũ + (∂ j y ṽ)∂ 4-j y (u s y + ∂ y ũ) (t, x, 0) = ∂ 3 y u s (t, 0) + (∂ 3 y ũ)(t, x, 0) (∂ y ∂ x ũ)(t, x, 0) + 1≤j≤3 C 4 j (∂ j y (u s + ũ))∂ 4-j y ∂ x ũ -(∂ j-1 y ∂ x ũ)∂ 4-j y (u s y + ∂ y ũ) (t, x, 0).
(2.10)

Taking the values at t = 0, we have proven (2.7) for p = 2. The case of p ≥ 3 is then by induction.

Remark 2.3. By the similar methods, we can prove that if ũ is a smooth solution of the system (2.2), then we have

ũ(t, x, 0) = 0, (∂ 2 y ũ)(t, x, 0) = 0, ∀(t, x) ∈ [0, T ] × R, (∂ 4 y ũ)(t, x, 0) = u s y (t, 0) + (∂ y ũ)(t, x, 0) (∂ y ∂ x ũ)(t, x, 0), ∀(t, x) ∈ [0, T ] × R,
and for 4 ≤ 2p ≤ m,

(∂ 2(p+1) y ũ)(t, x, 0) = p q=2 (α,β)∈Λq C α,β q j=1 ∂ αj x ∂ βj +1 y u s (t, 0) + ũ(t, x, 0) , (2.11)
for all (t, x) ∈ [0, T ] × R, where Λ q is defined in (2.8). See Lemma 5.9 of [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF] and Lemma 4 of [START_REF] Gerard-Varet | Well-posedness for the Prandtl system without analyticity or monotonicity[END_REF] for the similar results.

Remark that the condition 0 < q j=1 α j implies that, for each terms of (2.11),

there is at last one factor like ∂ αj x ∂ βj +1 y ũ(t, x, 0).

The approximate solutions

To prove the existence of solution of the Prandtl equation, we study a parabolic regularized equation for which we can get the existence by using the classical energy method. Nonlinear regularized Prandtl equation. We study the following nonlinear regularized Prandtl equation, for 0 < ǫ ≤ 1,

       ∂ t ũǫ + (u s + ũǫ )∂ x ũǫ + v ǫ (u s y + ∂ y ũǫ ) = ∂ 2 y ũǫ + ǫ∂ 2 x ũǫ , ∂ x ũǫ + ∂ y v ǫ = 0, ũǫ | y=0 = v ǫ | y=0 = 0, lim y→+∞ ũǫ = 0, ũǫ | t=0 = ũ0,ǫ = ũ0 + ǫµ ǫ , (3.1)
where we choose the corrector ǫµ ǫ such that ũ0 + ǫµ ǫ satisfies the compatibility condition up to order m + 2 for the regularized system (3.1).

We study now the boundary data of the solution for the regularized nonlinear system (3.1) which give also the precise version of the compatibility condition for the system (3.1), see [START_REF] Cannone1 | Well-posedness of Prandtl equations with non-compatible data[END_REF][START_REF] Cannone | On the Prandtl boundary layer equations in presence of corner singularities[END_REF] for the Prandtl equation with non-compatible data. Proposition 3.1. Let m ≥ 6 be an even integer 1 < k, 0 < ℓ < 1 2 and k + ℓ > 3 2 , and assume that ũ0 satisfies the compatibility conditions (2.6) and (2.7) for the system (2.2), and µ ǫ ∈ H m+3 k+ℓ ′ -1 (R 2 + ) for some 1 2 < ℓ ′ < ℓ + 1 2 such that ũ0 + ǫµ ǫ satisfies the compatibility conditions up to order m + 2 for the regularized system

(3.1). If ũǫ ∈ L ∞ ([0, T ]; H m+3 k+ℓ (R 2 + )) ∩ Lip([0, T ]; H m+1 k+ℓ (R 2 + )
) is a solution of the system (3.1), then we have

ũǫ (t, x, 0) = 0, (∂ 2 y ũǫ )(t, x, 0) = 0, ∀(t, x) ∈ [0, T ] × R, (∂ 4 y ũǫ )(t, x, 0) = u s y (t, 0) + (∂ y ũǫ )(t, x, 0) (∂ y ∂ x ũǫ )(t, x, 0), ∀(t, x) ∈ [0, T ] × R,
and for 4 ≤ 2p ≤ m,

(∂ 2(p+1) y ũǫ )(t, x, 0) = p q=2 q-1 l=0 ǫ l (α l ,β l )∈Λ l q C α l ,β l × q j=1 ∂ α l j x ∂ β l j +1 y u s (t, 0) + ũǫ (t, x, 0) , (3.2) for all (t, x) ∈ [0, T ] × R, where Λ l q = (α, β) = (α 1 , • • • , α p ; β 1 , • • • , β p ) ∈ N q × N q ; α j + β j ≤ 2p -1, , 1 ≤ j ≤ q; q j=1 3α j + β j = 2p + 4l + 1; q j=1 β j ≤ 2p -2l -2, 0 < q j=1 α j ≤ p + 2l -1 .
Remark 3.2. .

1.

Remark that the condition 0 < q j=1 α l j implies that, for each terms of (3.2),

there are at last one factor like ∂

α l j x ∂ β l j +1 y ũǫ (t, x, 0). 2.
Here we change the notation for the wighted index of function space, in fact, using the notations of Theorem 1.1, we have

ℓ = ν -δ ′ + 1, ℓ ′ = ν + 1.
Proof. Firstly, for p ≤ m 2 , we have

∂ 2p+2 y ũǫ ∈ L ∞ ([0, T ]; H 1 k+ℓ+2p+1 (R 2 + ))
. So the trace of ∂ 2p+2 y ũǫ exists on y = 0. Using the boundary condition of (3.1), we have, for 0 ≤ n ≤ m + 2,

∂ n x ũǫ (t, x, 0) = 0, ∂ n x v ǫ (t, x, 0) = 0, (t, x) ∈ [0, T ] × R, and for 0 ≤ n ≤ m (∂ t ∂ n x ũǫ )(t, x, 0) = 0, (∂ t ∂ n x v ǫ )(t, x, 0) = 0, (t, x) ∈ [0, T ] × R.
From the equation of (3.1), we get also

(∂ 2 y ∂ n x ũǫ )(t, x, 0) = 0, (∂ t ∂ 2 y ∂ n x ũǫ )(t, x, 0) = 0, (t, x) ∈ [0, T ] × R. (3.3)
On the other hand,

∂ t ∂ y ũǫ + ∂ y (u s + ũǫ )∂ x ũǫ + ∂ y v ǫ (u s y + ∂ y ũǫ ) = ∂ 3 y ũǫ + ǫ∂ 2 x ∂ y ũǫ , observing ∂ y (u s + ũǫ )∂ x ũǫ + ∂ y v ǫ (u s y + ∂ y ũǫ ) y=0 = 0, we get (∂ t ∂ y ũǫ )| y=0 = (∂ 3 y ũǫ )| y=0 + ǫ(∂ 2 x ∂ y ũǫ )| y=0 . We have also ∂ t ∂ 2 y ũǫ + ∂ 2 y (u s + ũǫ )∂ x ũǫ + ∂ 2 y v ǫ (u s y + ∂ y ũǫ ) = ∂ 4 y ũǫ + ǫ∂ 2 x ∂ 2 y ũǫ , using Leibniz formula ∂ 2 y (u s + ũǫ )∂ x ũǫ + ∂ 2 y v ǫ (u s y + ∂ y ũǫ ) = (∂ 2 y (u s + ũǫ ))∂ x ũǫ + (∂ 2 y v ǫ )(u s y + ∂ y ũǫ ) + (u s + ũǫ )∂ 2 y ∂ x ũǫ + v ǫ ∂ 2 y (u s y + ∂ y ũǫ ) + 2(∂ y (u s + ũǫ ))∂ y ∂ x ũǫ + 2(∂ y v ǫ )∂ y (u s y + ∂ y ũǫ ), thus, (∂ 4 y ũǫ )(t, x, 0) = u s y (t, 0) + (∂ y ũǫ )(t, x, 0) (∂ y ∂ x ũǫ )(t, x, 0). (3.4)
Applying ∂ t to (3.4), we have

(∂ t ∂ 4 y ũǫ )(t, x, 0) = ∂ 3 y u s (t, 0) + (∂ 3 y ũǫ )(t, x, 0) + ǫ(∂ 2 x ∂ y ũǫ )(t, x, 0) (∂ y ∂ x ũǫ )(t, x, 0) + u s y (t, 0) + (∂ y ũǫ )(t, x, 0) (∂ 3 y ∂ x ũǫ )(t, x, 0) + ǫ(∂ 3 x ∂ y ũǫ )(t,
x, 0) . On the other hand, we have

∂ t ∂ 4 y ũǫ + ∂ 4 y (u s + ũǫ )∂ x ũǫ + ∂ 4 y v ǫ (u s y + ∂ y ũǫ ) = ∂ 6 y ũǫ + ǫ∂ 2 x ∂ 4 y ũǫ , using Leibniz formula ∂ 4 y (u s + ũǫ )∂ x ũǫ + ∂ 4 y v ǫ (u s y + ∂ y ũǫ ) = (∂ 4 y (u s + ũǫ ))∂ x ũǫ + (∂ 4 y v ǫ )(u s y + ∂ y ũǫ ) + (u s + ũǫ )∂ 4 y ∂ x ũǫ + v ǫ ∂ 4 y (u s y + ∂ y ũǫ ) + 1≤j≤3 C 4 j (∂ j y (u s + ũǫ ))∂ 4-j y ∂ x ũǫ + (∂ j y v ǫ )∂ 4-j y (u s y + ∂ y ũǫ ) , thus, (∂ 6 y ũǫ )(t, x, 0) = (∂ t ∂ 4 y ũǫ )(t, x, 0) -(∂ 3 y ∂ x u ǫ )(u s y + ∂ y ũǫ )(t, x, 0) + 1≤j≤3 C 4 j (∂ j y (u s + ũǫ ))∂ 4-j y ∂ x ũǫ + (∂ j y v ǫ )∂ 4-j y (u s y + ∂ y ũǫ ) (t, x, 0) -ǫ∂ 2 x ∂ 4 y ũǫ (t, x, 0).
Using (3.4), we get then

(∂ 6 y ũǫ )(t, x, 0) = ∂ 3 y u s (t, 0) + ∂ 3 y ũǫ (t, x, 0) ∂ y ∂ x ũǫ (t, x, 0) -2ǫ∂ x ∂ y ũǫ (t, x, 0)(∂ y ∂ 2 x ũǫ )(t, x, 0) + 1≤j≤3 C 4 j (∂ j y (u s + ũǫ ))∂ 4-j y ∂ x ũǫ -∂ j-1 y ∂ x ũǫ ∂ 4-j y (u s y + ∂ y ũǫ ) (t, x, 0), (3.5) 
Compared to (2.10), the underlined term is the new term. This is the Proposition 3.1 for p = 2. We can complete the proof of Proposition 3.1 by induction.

The proof of the above Proposition implies also the following result.

Corollary 3.3. Let m ≥ 6 be an even integer, assume that ũ0 satisfies the compatibility conditions (2.6) -(2.7) for the system (2.2) and ∂ y ũ0 ∈ H m+2 k+ℓ ′ (R 2 + ), then there exists ǫ 0 > 0, and for any 0 < ǫ ≤ ǫ 0 there exists µ ǫ ∈ H m+3 k+ℓ ′ -1 (R 2 + ) such that ũ0 + ǫµ ǫ satisfies the compatibility condition up to order m + 2 for the regularized system (3.1). Moreover, for any m ≤ m ≤ m + 2

∂ y ũ0,ǫ H m k+ℓ ′ (R 2 + ) ≤ 3 2 ∂ y ũ0 H m k+ℓ ′ (R 2 + ) , and 
lim ǫ→0 ∂ y ũ0,ǫ -∂ y ũ0 H m k+ℓ ′ (R 2 + ) = 0. Proof.
We use the proof of the Proposition 3.1.

Taking the values at t = 0 for (3.3), then (2.6) implies that the function

µ ǫ satisfies (∂ n x µ ǫ )(x, 0) = 0, (∂ 2 y ∂ n x µ ǫ )(x, 0) = 0, x ∈ R . Taking t = 0 for (3.4), we have (∂ 4 y ũ0 )(x, 0) + ǫ(∂ 4 y µ ǫ )(x, 0)) = ∂ y u s 0 (0) + (∂ y ũ0 )(x, 0) + ǫ(∂ y µ ǫ )(x, 0) × (∂ y ∂ x ũ0 )(x, 0) + ǫ(∂ y ∂ x µ ǫ )(x, 0) , using (2.6), we have that µ ǫ satisfies (∂ 4 y µ ǫ )(x, 0)) = ∂ y u s 0 (0) + (∂ y ũ0 )(x, 0) (∂ y ∂ x µ ǫ )(x, 0) + (∂ y µ ǫ )(x, 0)(∂ y ∂ x ũ0 )(x, 0) + ǫ(∂ y ∂ x µ ǫ )(x, 0)(∂ y ∂ x µ ǫ )(x, 0). We have also (∂ t ∂ 4 y ũǫ )(0, x, 0) = ∂ 3 y u s 0 (0) + (∂ 3 y ũǫ )(0, x, 0) + ǫ(∂ 2 x ∂ y ũǫ )(0, x, 0) × (∂ 3 y ∂ x ũǫ )(0, x, 0) + ǫ(∂ 3 x ∂ y ũǫ )(0, x, 0) .
Taking the values at t = 0 for (3.5), we obtain a restraint condition for (∂ 6 y µ ǫ )(x, 0),

∂ 6 y µ ǫ (x, 0) = ((∂ 3 y u s 0 + ∂ 3 y ũ0 )∂ y ∂ x µ ǫ )| y=0 + ∂ 3 y µ ǫ ∂ y ∂ x ũ0 | y=0 + ǫ∂ 3 y µ ǫ ∂ y ∂ x µ ǫ | y=0 -2∂ x ∂ y ũ0 (x, 0)(∂ y ∂ 2 x ũ0 )(x, 0) -2ǫ∂ x ∂ y ũ0 (x, 0)(∂ y ∂ 2 x µ ǫ )(t, x, 0) -2ǫ∂ x ∂ y µ ǫ (t, x, 0)(∂ y ∂ 2 x ũ0 )(t, x, 0) -2ǫ 2 ∂ x ∂ y µ ǫ (x, 0)(∂ y ∂ 2 x µ ǫ )(x, 0) + 1≤j≤3 C 4 j ∂ j y u s 0 + ũ0 ∂ 4-j y ∂ x µ ǫ + ∂ j y µ∂ 4-j y ∂ x ũ0 + ǫ∂ j y µ∂ 4-j y ∂ x µ ǫ y=0 - 1≤j≤3 C 4 j ∂ j-1 y ∂ x ũ0 ∂ 4-j y µ ǫ + ǫ∂ j-1 y ∂ x µ ǫ ∂ 4-j y ∂ y µ ǫ y=0 - 1≤j≤3 C 4 j ∂ j-1 y ∂ x µ ǫ ∂ 4-j y (∂ y u s 0 + ∂ y ũ0 ) y=0 , thus ∂ 6 y µ ǫ (x, 0) = -2∂ x ∂ y ũ0 (x, 0)(∂ y ∂ 2 x ũ0 )(x, 0) + α1,β1;α2,β2 C α1,β1;α2,β2 ∂ α1 x ∂ β1+1 y (u s 0 + ũ0 )∂ α1 x ∂ β1+1 y µ ǫ (x, 0) + α1,β1;α2,β2 C α1,β1;α2,β2 ∂ α1 x ∂ β1+1 y µ ǫ ∂ α1 x ∂ β1+1 y µ ǫ (x, 0), (3.6) 
where the summation is for the index α 2 + β 2 ≤ 3;

α 1 + β 1 + α 2 + β 2 ≤ 3.
The underlined term in the above equality is deduced from the underlined term in (3.5). All these underlined terms are from the added regularizing term ǫ∂ 2 x ũ in the equation (3.1). This means that the regularizing term ǫ∂ 2

x ũ has an affect on the boundary. This is why we add a corrector term.

More generally, for 6 ≤ 2p ≤ m, we have that (∂

2(p+1) y µ ǫ )(x, 0
) is a linear combination of the terms of the form

q1 j=1 ∂ α 1 j x ∂ β 1 j +1 y u s 0 + ũ0 y=0 , q2 i=1 ∂ α 2 i x ∂ β 2 i +1 y µ ǫ y=0 , and q1 j=1 ∂ α 1 j x ∂ β 1 j +1 y u s 0 + ũ0 y=0 × q2 i=1 ∂ α 2 i x ∂ β 2 i +1 y µ ǫ y=0 ,
where the coefficients of the combination can be depends on ǫ but with a nonnegative power. We have also

α l j + β l j + 1 ≤ 2p, l = 1, 2, thus (∂ 2(p+1) y µ ǫ )(x, 0
) is determined by the low order derivatives of µ ǫ and these of ũ0 .

We now construct a polynomial function μǫ on y by the following Taylor expansion,

μǫ (x, y) = m 2 +1 p=3 μ2p ǫ (x) y 2p (2p)! , where μ6 ǫ (x) = -2(∂ x ∂ y ũ0 )(x, 0)(∂ y ∂ 2 x ũ0 )(x, 0),

and μ2p

ǫ (x) will give successively by (∂ 2q

y µ ǫ )(x, 0) with (∂ 2q+1 y µ ǫ )(x, 0) = 0, q = 0, • • • , m, and it is then determined by (∂ α x ∂ β y ũ0 )| y=0 . Finally we take µ ǫ = χ(y)μ ǫ with χ ∈ C ∞ ([0, +∞[); χ(y) = 1, 0 ≤ y ≤ 1; χ(y) = 0, y ≥ 2.
Thus we complete the proof of the Corollary. Remark 3.4. Suppose that ũ0 satisfies the compatibility conditions up to order m + 2 for the system (2.2) with m ≥ 4, then for the regularized system (3.1), if we want to obtain the smooth solution wǫ , we have to add a non-trivial corrector µ ǫ to the initial data such that ũ0 + ǫµ ǫ satisfies the compatibility conditions up to order m + 2 for the system (3.1). In fact, if we take µ ǫ with

(∂ j y µ ǫ )(x, 0) = 0, 0 ≤ j ≤ 5, then (3.6) implies (∂ 6 y µ ǫ )(x, 0) = -2(∂ x ∂ y ũ0 )(x, 0)(∂ y ∂ 2 x ũ0
)(x, 0), which is not equal to 0. So added a corrector is necessary for the initial data of the regularized system.

We will prove the the existence of the approximate solutions of the system (3.1) by using the following equation of vorticity wǫ = ∂ y ũǫ , it reads We have the following theorem for the existence of approximate solutions Theorem 3.5. Let ∂ y ũ0 ∈ H m+2 k+ℓ (R 2 + ), and m ≥ 6 be an even integer, k > 1, 0 ≤ ℓ < 1 2 , k + ℓ > 3 2 , assume that ũ0 satisfies the compatibility conditions of order m+ 2 for the system (2.2). Suppose that the shear flow satisfies

     ∂ t wǫ + (u s + ũǫ )∂ x wǫ + v ǫ (u s yy + ∂ y wǫ ) = ∂ 2 y wǫ + ǫ∂ 2 x wǫ , ∂ y wǫ | y=0 = 0, wǫ | t=0 = w0,ǫ = w0 + ǫ∂ y µ ǫ , (3.
|∂ p+1 y u s (t, y)| ≤ C y -k-p , (t, y) ∈ [0, T 1 ] × R + , 0 ≤ p ≤ m + 2.
Then, for any 0 < ǫ ≤ ǫ 0 and 0 < ζ, there exits T ǫ > 0 which depends on ǫ and ζ, such that if 

w0 H m+2 k+ℓ (R 2 + ) ≤ ζ, then the system (3.7)-(3.8) admits a unique solution wǫ ∈ L ∞ ([0, T ǫ ]; H m+2 k+ℓ (R 2 + )), which satisfies wǫ L ∞ ([0,Tǫ];H m k+ℓ (R 2 + )) ≤ 4 3 w0,ǫ H m k+ℓ (R 2 + ) ≤ 2 w0 H m k+ℓ (R 2 + ) . ( 3 
ũǫ = 0 imply ũǫ ∈ L ∞ ([0, T ǫ ]; H m+2 k+ℓ-1 (R 2 + )), and ṽǫ ∈ L ∞ ([0, T ǫ ]; L ∞ (R y,+ ; H m+1 (R x )).
Integrating the equation of (3.7) over [y, +∞[ imply that (ũ ǫ , ṽǫ ) is a solution of the system (3.1), except the boundary condition to check:

ũǫ (t, x, 0) = - +∞ 0 wǫ (t, x, ỹ)dỹ = 0, (t, x) ∈ [0, T ǫ ] × R. (3.10) In fact, noting f (t, x) = - +∞ 0 wǫ (t, x, ỹ)dỹ = ũǫ (t, x, 0), a direct calculate give ∂ t f + f ∂ x f = ǫ∂ 2 x f, (t, x) ∈]0, T ǫ ] × R; f | t=0 = 0, (3.11) 
here we use

+∞ 0 v ǫ (u s yy + ∂ y wǫ )dy = v ǫ (u s y + wǫ ) +∞ 0 - ∞ 0 (∂ y v ǫ )(u s y + wǫ )dy = ∞ 0 (∂ x u ǫ )∂ y (u s + ũǫ )dy = (∂ x u ǫ )(u s + ũǫ ) +∞ 0 - ∞ 0 (∂ x w ǫ )(u s + ũǫ )dy = -f ∂ x f - ∞ 0 (∂ x w ǫ )(u s + ũǫ )dy. Since f ∈ L ∞ ([0, T ǫ ], H m+2 (R))
, the uniqueness of solution for equation (3.11) imply that f = 0 on [0, T ǫ ] × R. (3.10) imply also

ũǫ (t, x, y) = - +∞ y wǫ (t, x, ỹ)dỹ = y 0 wǫ (t, x, ỹ)dỹ, (t, x, y) ∈ [0, T ǫ ] × R 2 + .
We will prove Theorem 3.5 by the following three Propositions, where the first one is devoted to the local existence of approximate solution wǫ of (3.7).

Proposition 3.7. Let w0,ǫ ∈ H m+2 k+ℓ (R 2 + ), m ≥ 6 be an even integer, k > 1, 0 ≤ ℓ < 1 2 , k + ℓ > 3 2
, and satisfy the compatibility conditions up to order m + 2 for (3.7). Suppose that the shear flow satisfies

|∂ p+1 y u s (t, y)| ≤ C y -k-p , (t, y) ∈ [0, T 1 ] × R + , 0 ≤ p ≤ m + 2.
Then, for any 0 < ǫ ≤ 1 and ζ > 0, there exits

T ǫ > 0 such that if w0,ǫ H m+2 k+ℓ (R 2 + ) ≤ ζ, then the system (3.7) admits a unique solution wǫ ∈ L ∞ ([0, T ǫ ]; H m+2 k+ℓ (R 2 + )) . Remark 3.8. If w0 ∈ H m+2 k+ℓ (R 2 +
) is the initial data in Theorem 3.5, using Corollary 3.3, there exists ǫ 0 > 0, and for any 0 < ǫ ≤ ǫ 0 , there exists µ ǫ ∈ H m+3 k+ℓ (R 2 + ) such that w0,ǫ = w0 + ǫ∂ y µ ǫ satisfies the compatibility conditions up to order m + 2 for the system (3.7), and

w0,ǫ H m+2 k+ℓ (R 2 + ) ≤ 3 2 w0 H m+2 k+ℓ (R 2 
+ ) . Then, using Proposition 3.7, we obtain also the existence of the approximate solution under the assumption of Theorem 3.5.

The proof of this Proposition is standard since the equation in (3.7) is a parabolic type equation. Firstly, we establish the à priori estimate and then prove the existence of solution by the standard iteration and weak convergence methods. Because we work in the weighted Sobolev space and the computation is not so trivial, we give a detailed proof in the Appendix B, to make the paper self-contained. So the rest of this section is devoted to proving the estimate (3.9). Uniform estimate with loss of x-derivative In the proof of the Proposition 3.7 (see Lemma B.2), we already get the à priori estimate for wǫ . Now we try to prove the estimate (3.9) in a new way, and our object is to establish an uniform estimate with respect to ǫ > 0. We first treat the easy part in this subsection.

We define the non-isotropic Sobolev norm,

f 2 H m,m-1 k+ℓ (R 2 + ) = |α1+α2|≤m,α1≤m-1 y k+ℓ+α2 ∂ α1 x ∂ α2 y f 2 L 2 (R 2 + ) , (3.12) 
where we don't have the m-order derivative with respect to x-variable. Then

f 2 H m k+ℓ (R 2 + ) = f 2 H m,m-1 k+ℓ (R 2 + ) + ∂ m x f 2 L 2 k+ℓ (R 2 + ) .
Proposition 3.9. Let m ≥ 6 be an even integer, k > 1, 0 < ℓ < 1 2 , k + ℓ > 3 2 , and assume that wǫ

∈ L ∞ ([0, T ǫ ]; H m+2 k+ℓ (R 2 + )) is a solution to (3.7), then we have d dt wǫ 2 H m,m-1 k+ℓ (R 2 + ) + ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) + ǫ ∂ x wǫ 2 H m,m-1 k+ℓ (R 2 + ) ≤ C 1 wǫ 2 H m k+ℓ (R 2 + ) + wǫ m H m k+ℓ (R 2 + ) , (3.13) 
where C 1 > 0 is independent of ǫ.

Remark. The above estimate is uniform with respect to ǫ > 0, but on the left hand of (3.13), we missing the terms

∂ m x wǫ 2 L 2 k+ℓ
. This is because that we can't control the term

∂ m x ṽǫ (t, x, y) = - y 0 ∂ m+1 x ũǫ (t, x, ỹ)dỹ,
which is the major difficulty in the study of the Prandtl equation. We will study this term in the next Proposition with a non-uniform estimate firstly, and then focus on proving the uniform estimate in the rest part of this paper.

Proof.

For |α| = α 1 + α 2 ≤ m, α 1 ≤ m -1, we have ∂ t ∂ α wǫ -ǫ∂ 2 x ∂ α wǫ -∂ 2 y ∂ α ∂ wǫ = -∂ α (u s + ũǫ )∂ x wǫ -∂ α ṽǫ (u s yy + ∂ y wǫ ) . (3.14) 
Multiplying the (3.14) with y 2(k+ℓ+α2) ∂ α wǫ , and integrating over R 2 + ,

R 2 + (∂ t ∂ α wǫ ) y 2(k+ℓ)+2α2 ∂ α wǫ dxdy -ǫ R 2 + (∂ 2 x ∂ α wǫ ) y 2(k+ℓ)+2α2 ∂ α wǫ dxdy - R 2 + (∂ 2 y ∂ α wǫ ) y 2(k+ℓ)+2α2 ∂ α wǫ dxdy = - R 2 + ∂ α (u s + ũǫ )∂ x wǫ -ṽǫ (u s yy + ∂ y wǫ ) y 2(k+ℓ)+2α2 ∂ α wǫ dxdy.
Remark that for wǫ ∈ L ∞ ([0, T ǫ ]; H m+2 k+ℓ (R 2 + )), all above integrations are in the classical sense. We deal with each term on the left hand respectively. After integration by part, we have

R 2 + (∂ t ∂ α wǫ ) y 2(k+ℓ)+2α2(R 2 + ) ∂ α wǫ dxdy = 1 2 d dt ∂ α wǫ 2 L 2 k+ℓ+α 2 (R 2 + ) , -ǫ R 2 + (∂ 2 x ∂ α wǫ ) y 2(k+ℓ)+2α2(R 2 + ) ∂ α wǫ dxdy = ǫ ∂ x ∂ α wǫ 2 L 2 k+ℓ+α 2 (R 2 + ) , and 
- R 2 + ∂ 2 y ∂ α wǫ y 2(k+ℓ)+2α2 ∂ α wǫ dxdy = ∂ y ∂ α wǫ 2 L 2 k+ℓ+α 2 (R 2 
+ ) + R 2 + ∂ α ∂ y wǫ ( y 2(k+ℓ)+2α2 ) ′ ∂ α wǫ dxdy + R (∂ α ∂ y wǫ ∂ α wǫ ) y=0 dx.
Cauchy-Schwarz inequality implies

R 2 + ∂ α ∂ y wǫ ( y 2(k+ℓ)+2α2 ) ′ ∂ α wǫ dxdy ≤ 1 16 ∂ y ∂ α wǫ 2 L 2 k+ℓ+α 2 (R 2 + ) + C ∂ α wǫ 2 L 2 k+ℓ+α 2 -1 (R 2 
+ ) . We study now the term

R (∂ α ∂ y wǫ ∂ α wǫ ) y=0 dx.
Case : |α| ≤ m -1, using the trace Lemma A.2, we have

R (∂ α ∂ y wǫ ∂ α wǫ ) y=0 dx ≤ (∂ α ∂ y wǫ )| y=0 L 2 (R) (∂ α wǫ )| y=0 L 2 (R) ≤ C ∂ α ∂ 2 y wǫ L 2 k+ℓ (R 2 + ) ∂ α ∂ y wǫ L 2 k+ℓ (R 2 + ) ≤ C ∂ y wǫ H m,m-1 k+ℓ (R 2 + ) wǫ H m k+ℓ (R 2 + ) ≤ 1 16 ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) + C wǫ 2 H m k+ℓ (R 2 + ) . Case : α 1 = m -1, α 2 = 1, using (3.3), we have (∂ α wǫ )| y=0 = (∂ α1 x ∂ 2 y ũǫ )| y=0 = 0, thus R (∂ α ∂ y wǫ ∂ α wǫ ) | y=0 dx = 0.
Case : α 1 = 0, α 2 = m. Only in this case, we need to suppose that m is even. Using again the trace Lemma A.2, we have

R ∂ m+1 y wǫ ∂ m y wǫ | y=0 dx ≤ (∂ m+2 y ũǫ )| y=0 L 2 (R) (∂ m y wǫ )| y=0 L 2 (R) ≤ C (∂ m+2 y ũǫ )| y=0 L 2 (R) ∂ m+1 y wǫ L 2 k+ℓ (R 2 + ) ≤ 1 16 ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) + C (∂ m+2 y ũǫ )| y=0 2 L 2 (R) .
Using Proposition 3.1 and the trace Lemma A. 

(∂ αj x ∂ βj+1 y (u s + ũǫ ))| y=0 2 L 2 (R) ≤ C ∂ y p j=1 (∂ αj x ∂ βj+1 y (u s + ũǫ )) 2 L 2 1 2 +δ (R 2 + )
with 2 ≤ p ≤ m 2 , α j + β j ≤ m -1 and {j; α j > 0} = ∅. Then using Sobolev inequality and m ≥ 6, we get

(∂ m+2 y ũǫ )| y=0 L 2 (R) ≤ C wǫ m/2 H m k+ℓ (R 2 + ) . Case : 1 ≤ α 1 ≤ m -2, α 1 + α 2 =
m, α 2 even, using the same argument to the precedent case, we have

R (∂ α ∂ y wǫ ∂ α wǫ )| y=0 dx = R (∂ α1 x ∂ α2+1 y wǫ ∂ α1 x ∂ α2 y wǫ )| y=0 dx ≤ (∂ α1 x ∂ α2+1 y wǫ )| y=0 L 2 (R) (∂ α1 x ∂ α2 y wǫ )| y=0 L 2 (R) ≤ 1 16 ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) + C (∂ α1 x ∂ α2+2 y ũǫ )| y=0 2 L 2 (R) ≤ 1 16 ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) + C wǫ α2 H m k+ℓ (R 2 + ) . Case : 1 ≤ α 1 ≤ m -2, α 1 + α 2 = m, α 2 odd, integration by part with respect to x variable implies R (∂ α1 x ∂ α2+1 y wǫ ∂ α1 x ∂ α2 y wǫ )| y=0 dx = R (∂ α1-1 x ∂ α2+1 y wǫ ∂ α1+1 x ∂ α2 y wǫ )| y=0 dx ≤ (∂ α1-1 x ∂ α2+1 y wǫ )| y=0 L 2 (R) (∂ α1+1 x ∂ α2 y wǫ )| y=0 L 2 (R) ≤ 1 16 ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) + C (∂ α1+1 x ∂ α2+1 y ũǫ )| y=0 2 L 2 (R) ≤ 1 16 ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) + C wǫ α2-1 H m k+ℓ (R 2 + )
. Finally, we have proven

R 2 + ∂ t ∂ α wǫ -∂ 2 y ∂ α wǫ -ǫ∂ 2 x ∂ α wǫ y 2(k+ℓ+α2) ∂ α wǫ dxdy ≥ 1 2 d dt ∂ α wǫ 2 L 2 k+ℓ+α 2 + ǫ ∂ x ∂ α wǫ 2 L 2 k+ℓ+α 2 + ∂ y ∂ α wǫ 2 L 2 k+ℓ+α 2 - 1 4 ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) -C wǫ m H m k+ℓ (R 2 
+ ) . We estimate now the right hand of (3.14). For the first item, we need to split it into two parts

-∂ α (u s + ũǫ )∂ x wǫ = -(u s + ũǫ )∂ x ∂ α wǫ + [(u s + ũǫ ), ∂ α ]∂ x wǫ .
Firstly, we have

R 2 + (u s + ũǫ )∂ x ∂ α wǫ y 2(k+ℓ+α2) ∂ α wǫ dxdy ≤ ∂ x ũǫ L ∞ ∂ α wǫ 2 L 2 k+ℓ+α 2
, then using (A.2), we get

R 2 + (u s + ũǫ )∂ x ∂ α wǫ y 2(ℓ+α2) ∂ α wǫ dxdy ≤ wǫ H 3 1 ∂ α wǫ 2 L 2 k+ℓ+α 2
.

For the commutator operator, in fact, it can be written as

[(u s + ũǫ ), ∂ α ]∂ x wǫ = β≤α, 1≤|β| C β α ∂ β (u s + ũǫ )∂ α-β ∂ x wǫ .
Then for |α| ≤ m, m ≥ 4, using the Sobolev inequality again and Lemma A.1,

[(u s + ũ), ∂ α ]∂ x wǫ L 2 k+ℓ+α 2 ≤ C( wǫ H m k+ℓ + wǫ 2 H m k+ℓ ). Thus R 2 + y 2(k+ℓ+α2) [(u s + ũǫ ), ∂ α ]∂ x wǫ • ∂ α wǫ dxdy ≤ C wǫ 2 H m k+ℓ + wǫ 3 H m k+ℓ ,
and

R 2 + y 2(k+ℓ+α2) ∂ α (u s + ũǫ )∂ x wǫ ∂ α wǫ dxdy ≤ C wǫ 2 H m k+ℓ + wǫ 3 H m k+ℓ ,
where C is independent of ǫ.

For the next one, similar to the first term in (3.14), we have

∂ α ṽǫ (u s yy + ∂ y wǫ ) = ṽǫ ∂ y ∂ α wǫ -[ṽ ǫ , ∂ α ]∂ y wǫ + ∂ α (ṽ ǫ u s yy ). Then R 2 + ṽǫ y 2(k+ℓ+α2) (∂ y ∂ α wǫ ) • ∂ α wǫ dxdy ≤ ṽǫ L ∞ (R 2 + ) ∂ y wǫ H m k+ℓ wǫ H m k+ℓ ≤ 1 4 ∂ y wǫ 2 H m k+ℓ (R 2 + ) + C wǫ 4 H m k+ℓ (R 2 + )
where we have used ṽǫ

L ∞ (R 2 + ) ≤ C ∂ x ũǫ L ∞ (Rx;L 2 1 2 +δ (Ry,+)) ≤ C R 2 + y 1+2δ (|∂ x ũǫ | 2 + |∂ 2 x ũǫ | 2 )dxdy ≤ C R 2 + y 3+2δ (|∂ x wǫ | 2 + |∂ 2 x wǫ | 2 )dxdy ≤ C wǫ H 2 3 2 +δ
, where δ > 0 is small. Noticing that

[ṽ ǫ , ∂ α ]∂ y wǫ = β≤α,1≤|β| C β α ∂ β ṽǫ ∂ α-β ∂ y wǫ .
Since H m ℓ is an algebra for m ≥ 6, we only need to pay attention to the order of derivative in the above formula. Firstly for |β| ≥ 1, we have for |α -β| + 1 ≤ m,

-∂ β ṽǫ = ∂ β1 x ∂ β2 y y 0 ũǫ,x dỹ = ∂ β1+1 x ∂ β2-1 y ũǫ , β 2 ≥ 1, y 0 ∂ β1+1 x ũǫ dỹ, β 2 = 0.
Now using the hypothesis β ≤ α, 1 ≤ |β| and

β 1 ≤ α 1 ≤ m -1, using Lemma A.1, we get [ṽ ǫ , ∂ α ]∂ y wǫ L 2 k+ℓ+α 2 ≤ C wǫ 2 H m k+ℓ . On the other hand, if α 2 = 0, using -1 + ℓ < -1 2 , we can get ∂ m-1 x (ṽ ǫ u s yy ) L 2 k+ℓ ≤ C ∂ m x ũǫ L 2 1 2 +δ (R 2 + ) u s yy L 2 k+ℓ (R+) ≤ C wǫ H m 3 2 +δ
.

Similar computation for other cases, we can get, for α 2 > 0,

α 1 + α 2 ≤ m, ∂ α (ṽ ǫ u s yy ) L 2 k+ℓ+α 2 ≤ C wǫ H m k+ℓ .
Combining the above estimates, we have finished the proof of the Proposition 3.9.

Smallness of approximate solutions. To close the energy estimate, we still need to estimate the term ∂ m x wǫ . Proposition 3.10. Under the hypothesis of Theorem 3.5, and with the same notations as in Proposition 3.9, we have 1 2

d dt ∂ m x wǫ 2 L 2 k+ℓ + 3ǫ 4 ∂ m+1 x wǫ 2 L 2 k+ℓ + 3 4 ∂ y ∂ m x wǫ 2 L 2 k+ℓ ≤ C wǫ 2 H m k+ℓ + wǫ 3 H m k+ℓ + 32 ǫ wǫ 4 H m k+ℓ + wǫ 2 H m k+ℓ .
(3.15)

Proof. We have

∂ t ∂ m x wǫ -∂ 2 y ∂ m x wǫ -ǫ∂ m x ∂ 2 x wǫ = -∂ m x (u s + ũǫ )∂ x wǫ -∂ m
x ṽǫ (∂ y wǫ + u s yy ) , then the same computations as in Proposition 3.9 give

d 2dt ∂ m x wǫ 2 L 2 k+ℓ + ǫ ∂ m+1 x wǫ 2 L 2 k+ℓ + 3 4 ∂ y ∂ m x wǫ 2 L 2 k+ℓ ≤ C( wǫ 2 H m k+ℓ + wǫ 3 H m k+ℓ ) + R 2 + ∂ m x ṽǫ (∂ y wǫ + u s yy ) y 2(k+ℓ) ∂ m x wǫ dxdy , (3.16) 
where the boundary terms is more easy to control, since

(∂ y ∂ m x wǫ )(t, x, 0) = (∂ 2 y ∂ m x ũǫ )(t, x, 0) = 0, (t, x) ∈ [0, T ] × R.
The estimate of the last term on right hand is the main obstacle for the study of the Prandtl equations.

∂ m x ṽǫ (∂ y wǫ + u s yy ) = ṽǫ ∂ m x ∂ y wǫ + (∂ m x ṽǫ )(∂ y wǫ + u s yy ) + 1≤j≤m-1 C j m ∂ j x ṽǫ ∂ m-j x ∂ y wǫ .
For the first term

R 2 + ṽǫ (∂ m x ∂ y wǫ ) y 2(k+ℓ) (∂ m x wǫ )dxdy = 1 2 ṽǫ y 2(k+ℓ) ∂ y (∂ m x wǫ ) 2 dxdy = 1 2 ũǫ,x y 2(k+ℓ) (∂ m x wǫ ) 2 dxdy -ℓ ṽǫ y 2(k+ℓ)-1 (∂ m x wǫ ) 2 dxdy ≤ C wǫ 3 H m
k+ℓ , where we have used ṽǫ | y=0 = 0, and

R 2 + 1≤j≤m-1 C j m ∂ j x ṽǫ ∂ m-j x ∂ y wǫ ) y 2(k+ℓ) (∂ m x wǫ dxdy ≤ C wǫ 3 H m k+ℓ .
Finally for the worst term, we have

R 2 + (∂ m x ṽǫ )(∂ y wǫ + u s yy ) y 2(k+ℓ) (∂ m x wǫ )dxdy ≤ C ∂ m x ṽǫ L 2 (Rx;L ∞ (R+)) ∂ y wǫ L ∞ (Rx;L 2 k+ℓ (R+)) wǫ H m k+ℓ + ∂ m x ṽǫ u s yy L 2 k+ℓ (R 2 
+ ) wǫ H m k+ℓ . On the other hand, observing

∂ m x ṽǫ (t, x, y) = - y 0 ∂ m+1
x ũǫ (t, x, ỹ)dỹ, then using Sobolev inequality and Lemma A.1, for δ > 0 small,

∂ m x ṽǫ L 2 (Rx;L ∞ (R+)) ≤ C ∂ m+1 x ũǫ L 2 1 2 +δ (R 2 + ) ≤ C ∂ m+1 x wǫ L 2 3 2 +δ (R 2 + ) , we get ∂ m x ṽǫ L 2 (Rx;L ∞ (R+)) ≤ C ∂ m+1 x wǫ L 2 3 2 +δ (R 2 
+ ) . Using the hypothesis for the shear flow u s and ℓ

-1 < -1 2 , ∂ m x (ṽ ǫ u s yy ) L 2 k+ℓ (R 2 + ) ≤ ∂ m x ṽǫ L 2 (Rx;L ∞ (R+)) u s yy L 2 k+ℓ (R+) ≤ C ∂ m+1 x wǫ L 2 3 2 +δ (R 2 + ) ,
and for k 

+ ℓ ≥ 3 2 + δ, ∂ y wǫ L ∞ (Rx;L 2 k+ℓ (R+)) ≤ C ∂ y wǫ H 1 (Rx;L 2 k+ℓ (R+)) ≤ C wǫ H m k+ℓ (R 2 
(R 2 + ) ≤ C ǫ wǫ 2 H m k+ℓ (R 2 + ) + wǫ m H m k+ℓ (R 2 + ) , (3.18) 
with C > 0 independent of ǫ. From (3.18), by the nonlinear Gronwall's inequality, we have

wǫ (t) m-2 H m k+ℓ (R 2 + ) ≤ wǫ (0) m-2 H m k+ℓ e -C ǫ t( m 2 -1) -( m 2 -1) C ǫ t wǫ (0) m-2 H m k+ℓ , 0 < t ≤ T ǫ ,
where we choose T ǫ > 0 such that

e -C ǫ Tǫ( m 2 -1) -( m 2 -1) C ǫ T ǫ ζ m-2 -1 = 4 3 m-2 . (3.19)
Finally, we get for any wǫ (0) H m k+ℓ ≤ ζ, and 0 < ǫ ≤ ǫ 0 ,

wǫ (t) H m k+ℓ (R 2 + ) ≤ 4 3 wǫ (0) H m k+ℓ (R 2 + ) ≤ 2 w0 H m k+ℓ (R 2 + ) , 0 < t ≤ T ǫ .
The rest of this paper is dedicated to improve the results of Proposition 3.10, and try to get an uniform estimate with respect to ǫ. Of course, we have to recall the assumption on the shear flow in the main Theorem 1.1.

Formal transformations

Since the estimate (3.13) is independent of ǫ, we only need to treat (3.15) in a new way to get an estimate which is also independent of ǫ. To simplify the notations, from now on, we drop the notation tilde and sub-index ǫ, that is, with no confusion, we take

u = ũǫ , v = ṽǫ , w = wǫ . Let w ∈ L ∞ ([0, T ]; H m k+ℓ (R 2 + ), m ≥ 6, k > 1, 0 < ℓ < 1 2 , 1 2 < ℓ ′ < ℓ + 1 2 , k + ℓ > 3 2
be a classical solution of (3.7) which satisfies the following à priori condition

w L ∞ ([0,T ];H m k+ℓ (R 2 + )) ≤ ζ. (4.1)
Then (A.2) gives

y k+ℓ w L ∞ ([0,T ]×R 2 + ) ≤C( y 1 2 +δ ( y k+ℓ w) y L ∞ ([0,T ];L 2 (R 2 + )) + y 1 2 +δ ( y k+ℓ w) xy L ∞ ([0,T ];L 2 (R 2 + )) ) ≤ C m w L ∞ ([0,T ];H m k+ℓ (R 2 + )) , which implies |∂ y u(t, x, y)| = |w(t, x, y)| ≤ C m ζ y -k-ℓ , (t, x, y) ∈ [0, T ] × R 2 + . We assume that ζ is small enough such that C m ζ ≤ c1 4 , (4.2) 
where C m is the above Sobolev embedding constant. Then we have for ℓ ≥ 0, c1 4

y -k ≤ |u s y + u y | ≤ 4c 2 y -k , (t, x, y) ∈ [0, T ] × R × R + . (4.
3)

The formal transformation of equations. Under the conditions (4.2) and (4.3), in this subsection, we will introduce the following formal transformations of system (3.1). Set, for 0 ≤ n ≤ m

g n = ∂ n x u u s y + u y y , η 1 = u xy u s y + u y , η 2 = u s yy + u yy u s y + u y , ∀(t, x, y) ∈ [0, T ] × R 2 + .
Formally, we will use the following notations

∂ -1 y g n (t, x, y) = ∂ n x u u s y + u y (t, x, y), ∂ y ∂ -1 y g n = g n , ∀(t, x, y) ∈ [0, T ] × R 2 + Applying ∂ n x to (3.1), we have ∂ t ∂ n x u + (u s + u)∂ x ∂ n x u + (∂ n x v)(u s y + ∂ y u) = ∂ 2 y ∂ n x u + ǫ∂ 2 x ∂ n x u + A 1 n + A 2 n , (4.4) 
where

A 1 n = -[∂ n x , (u s + u)]∂ x u = - n i=1 C i n ∂ i x u ∂ n+1-i x u, A 2 n = -[∂ n x , (u s y + ∂ y u)]v = - n i=1 C i n ∂ i x w ∂ n-i x v.
Dividing (4.4) with (u s y +u y ) and performing ∂ y on the resulting equation, observing

∂ x ∂ n x u + ∂ y ∂ n x v = ∂ n x (∂ x u + ∂ y v) = 0,
we have for j = 1, 2,

∂ y ∂ t ∂ n x u u s y + u y + (u s + u)∂ y ∂ x ∂ n x u u s y + u y = ∂ y ∂ 2 y ∂ n x u + ǫ∂ 2 x ∂ n x u u s y + u y + ∂ y A 1 n + A 2 n u s y + u y .
We compute each term on the support of , .

∂ y ∂ t ∂ n x u u s y + u y = ∂ y ∂ t ∂ n x u u s y + u y + ∂ -1 y g n ∂ t u y + ∂ t u s y u s y + u y = ∂ t g n + ∂ y ∂ -1 y g n ∂ t u s y + ∂ t u y u s y + ũy , (u s + u)∂ y ∂ x ∂ n x u u s y + u y = (u s + u) ∂ x ∂ y ∂ n x u u s y + u y + ∂ y ∂ n x u u s y + u y u xy u s y + u y + ∂ n x u u s y + u y ∂ y u xy u s y + u y = (u s + u)(∂ x g n + g n η 1 + ∂ -1 y g n ∂ y η 1 ), ∂ 2 y ∂ n x u u s y + u y = ∂ 2 y ∂ n x u u s y + u y + 2 ∂ y u u s y + u y u s yy + u yy u s y + u y -∂ n x u ∂ 2 y 1 u s y + u y , ∂ 2 
So ∂ 2 y ∂ n x u u s y + u y = ∂ y g n + 2(g n η 2 -2∂ -1 y g n η 2 2 ) + ∂ -1 y g n u s yyy + u yyy (u s y + ũy ) , ∂ y ∂ 2 y ∂ n x u u s y + u y = ∂ 2 y g n + 2(∂ y g n )η 2 + 2g n ∂ y η 2 -4g n η 2 2 -8∂ -1 y g n η 2 ∂ y η 2 + ∂ y ∂ -1 y g n u s yyy + u yyy u s y + u y .
Similarly, we have

∂ 2 x ∂ n x u u s y + u y = ∂ 2 x ∂ n x u u s y + u y + 2 ∂ n x u u s y + u y x u xy u s y + u y -2 ∂ n x u u s y + u y u xy (u s y + u y ) 2 + ∂ n x u u s y + u y u xxy (u s y + u y ) , ∂ y ∂ 2 x ∂ n x u u s y + u y = ∂ 2 x g n + 2∂ x g n η 1 + 2∂ x ∂ -1 y g n ∂ y η 1 -2g n η 2 1 -4∂ -1 y g n η 1 ∂ y η 1 + ∂ y ∂ -1 y g n u xxy u s y + u y .
For the boundary condition, we only need to pay attention to j = 1. From (4.4) and the boundary condition for (u, v) in (3.1), we observe

∂ n x u| y=0 = 0, ∂ 2 y ∂ n x u| y=0 = 0, (u s y + u y )| y=0 = 0. At the same time, 0 = ∂ 2 y ∂ n x u u s y + u y y=0 = ∂ y g n | y=0 + 2(g n η 2 -2(∂ -1 y g n )η 2 2 )| y=0 + ∂ -1 y g n u s yyy + u yyy (u s y + ũy ) y=0 , and 
η 2 | y=0 = u s yy + u yy u s y + u y y=0 = 0, ∂ -1 y g n (t, x, y)| y=0 = ∂ n x u u s y + u y (t, x, y) y=0 = 0, we get then (∂ y g n )| y=0 = 0, 0 ≤ n ≤ m.
Finally, we have, for j = 1, 2,

         ∂ t g n + (u s + u)∂ x g n -∂ 2 y g n -ǫ∂ 2 x g n -ǫ 2 (∂ x ∂ -1 y g n )∂ y η 1 = M n , (∂ y g n )| y=0 = 0, g n | t=0 = g n,0 , (4.5) with M n = 6 j=1 M n j , M n 1 = -(u s + u)(g n η 1 + (∂ -1 y g n )∂ y η 1 ), M n 2 = 2(∂ y g n )η 2 + 2g n (∂ y η 2 -2η 2 2 ) -8(∂ -1 y g n ) η 2 ∂ y η 2 , M n 3 = ǫ 2(∂ x g n )η 1 -2g n η 2 1 -4(∂ -1 y g n )η 1 ∂ y η 1 , M n 4 = ∂ y ∂ -1 y g n (u s + u)w x + v(w y + u s yy ) u s y + u y , M n 5 = -∂ y n i=1 C i n ∂ i x u • ∂ n+1-i x u u s y + u y , M n 6 = -∂ y n i=1 C i n ∂ i x w • ∂ n-i x v u s y + u y ,
where we have used the relation,

∂ t u s y + ∂ t u y -(u s yyy + u yyy ) -ǫu xxy = -(u s + u)w x + v(u s yy + w y ).

Uniform estimate

In the future application(see Lemma 6.3), we need that the weight of g m big then 1 2 , but from the definition, w ∈ H m+2 k+ℓ (R 2 + ) imply only g m ∈ H 2 ℓ (R 2 + ) with 0 < ℓ < 1 2 . So the first step is to improve this weights if the weight of the initial data is more big. We first have

Lemma 5.1. If w0 ∈ H m+2 k+ℓ ′ (R 2 + ), m ≥ 6, k > 1, 0 < ℓ < 1 2 , 1 2 < ℓ ′ < ℓ+ 1 2 , k+ℓ > 3 2 which satisfies (4.1)-(4.2) with 0 < ζ ≤ 1, then (g m )(0) ∈ H 2 k+ℓ (R 2 +
), and we have

(g m )(0) H 2 ℓ ′ (R 2 + ) ≤ C w0 H m+2 k+ℓ ′′ (R 2 + ) .
Remark. In fact, observing

g m (0) = ∂ m x ũ0 u s 0,y + ũ0,y y = ∂ y ∂ m x ũ0 u s 0,y + ũ0,y - ∂ m x ũ0 u s 0,y + ũ0,y η 2 (0), then (4.3) implies y k+ℓ |g m (0)| ≤ C y k+ℓ ′ |∂ m x w0 | + C y k+ℓ ′ -1 |∂ m x ũ0 |, which finishes the proof of this Lemma. Proposition 5.2. Let w ∈ L ∞ ([0, T ]; H m+2 k+ℓ (R 2 + )), m ≥ 6, k > 1, 0 ≤ ℓ < 1 2 , ℓ ′ > 1 2 , ℓ ′ -ℓ < 1 2 , k + ℓ > 3 2 , satisfy (4.1)-(4.2) with 0 < ζ ≤ 1.
Assume that the shear flow u s verifies the conclusion of Lemma 2.1, and g n satisfies the equation (4.5) for 1 ≤ n ≤ m, then we have the following estimates, for t ∈ [0, T ]

d dt m n=1 g n 2 L 2 ℓ ′ (R 2 + ) + m n=1 ∂ y g n 2 L 2 ℓ ′ (R 2 + ) + ǫ m n=1 ∂ x g n 2 L 2 ℓ ′ (R 2 + ) ≤ C 2 ( m n=1 g n 2 L 2 ℓ ′ (R 2 + ) + w 2 H m k+ℓ (R 2 + ) ), (5.1) 
where C 2 is independent of ǫ.

Approach of the proof for the Proposition 5.2: We can't prove (5.1) directly, since the approximate solution w ǫ obtained in Theorem 3.5 is belongs to

L ∞ ([0, T ǫ ]; H m+2 k+ℓ (R 2 + )), which implies only g n ∈ L ∞ ([0, T ǫ ]; H 2 ℓ (R 2 + )). Then we can't use y 2ℓ ′ g n ∈ L ∞ ([0, T ǫ ]; H 2 ℓ-2ℓ ′ (R 2 +
)) as the test function to the equation (4.5). To overcome this difficulty, we consider that (4.5) as a linear system for g n , n = 1, • • • , m with the coefficients and the source terms depends on w and their derivatives up to order m, we will clarify this confirmation in the following proof of the the Proposition 5.2. We prove now the estimate (5.1) by the following approach: For the linear system (4.5), we prove firstly (5.1) as à priori estimate. Lemma 5.1 imply that g n (0

) ∈ H 2 ℓ ′ (R 2 + ), n = 1, • • • , m
, then by using Hahn-Banach theorem, this à priori estimate imply the existence of solutions

g n ∈ L ∞ ([0, T ]; H 2 ℓ ′ (R 2 + )), n = 1, • • • , m.
Finally, by uniqueness, we can prove the estimate (5.1) by proving it as à priori estimate. So that the proof of the Proposition 5.2 is reduced to the proof of the à priori estimate (5.1).

Proof of the à priori estimate (5.1). Multiplying the linear system (4.5) by

y 2ℓ ′ g n ∈ L ∞ ([0, T ]; H 2 -ℓ ′ (R 2 + )
) and integrating over R × R + . We start to deal with the left hand of (4.5) first, we have

R 2 + ∂ t g n y 2ℓ ′ g n dxdy = 1 2 d dt g n 2 L 2 ℓ ′ (R 2 + ) ,
and

R 2 + (u s + u)∂ x g n y 2ℓ ′ g n dxdy = 1 2 R 2 + (u s + u) • ∂ x ( y 2ℓ ′ g 2 n )dxdy ≤ 1 2 u x L ∞ (R 2 + ) g n 2 L 2 ℓ ′ (R 2 + ) ≤ C w H 2 1 (R 2 + ) g n 2 L 2 ℓ ′ (R 2 + ) .
Integrating by part, where the boundary value is vanish,

- R 2 + ∂ 2 y g n y 2ℓ ′ g n dxdy = ∂ y g n 2 L 2 ℓ ′ (R 2 + ) + R 2 + ∂ y g n ( y 2ℓ ′ ) ′ g n dxdy ≥ 3 4 ∂ y g n 2 L 2 ℓ ′ (R 2 + ) -4 g n 2 L 2 (R 2 + ) , and 
-ǫ R 2 + ∂ 2 x g n y 2ℓ ′ g n dxdy = ǫ ∂ x g n 2 L 2 ℓ ′ (R 2 + ) .
We have also

-ǫ R 2 + ∂ x ∂ -1 y g n ∂ y η 1 y 2ℓ ′ g n dxdy = ǫ R 2 + ∂ -1 y g n ∂ y η 1 y 2ℓ ′ ∂ x g n dxdy + ǫ R 2 + ∂ -1 y g n (∂ y ∂ x η 1 ) y 2ℓ ′ g n dxdy ≤ ǫ ∂ -1 y g n ∂ y η 1 2 L 2 ℓ ′ (R 2 + ) + ǫ 8 ∂ x g n 2 L 2 ℓ ′ (R 2 + ) + ǫ ∂ -1 y g n ∂ y ∂ x η 1 2 L 2 (R 2 + ) + ǫ g n 2 L 2 ℓ ′ (R 2 
+ ) . So by (4.5) and 0 < ǫ ≤ 1, we obtain

d dt g n 2 L 2 ℓ ′ (R 2 + ) + ∂ y g n 2 L 2 ℓ ′ (R 2 + ) + ǫ ∂ x g n 2 L 2 ℓ ′ (R 2 + ) ≤ C g n 2 L 2 ℓ ′ (R 2 + ) + (∂ -1 y g n )∂ y η 1 2 L 2 ℓ ′ (R 2 + ) + (∂ -1 y g n )∂ y ∂ x η 1 2 L 2 (R 2 + ) + 2 6 j=1 R 2 + M j y 2ℓ ′ g n dxdy .
Then we can finish the proof of the à priori estimate (5.1) by the following four Lemmas.

Lemma 5.3. Under the assumption of Proposition 5.2, we have

∂ -1 y g n ∂ y η 1 2 L 2 ℓ ′ (R 2 + ) + ∂ -1 y g n ∂ y ∂ x η 1 2 L 2 (R 2 + ) ≤ C g n 2 L 2 ℓ ′ (R 2 + )
. where C is independent of ǫ.

Proof. Notice that (4.1) and (4.2) imply

|η 1 | ≤ C y -ℓ , |∂ x η 1 | ≤ C y -ℓ , |∂ y η 1 | ≤ C y -ℓ-1 , |∂ y ∂ x η 1 | ≤ C y -ℓ-1 . Then ℓ ′ > 1 2 , ℓ ′ -ℓ < 1 2 , imply ∂ -1 y g n (∂ y ∂ x η 1 ) 2 L 2 ℓ ′ (R 2 + ) ≤ C R 2 + y 2(ℓ ′ -ℓ-1) y 0 g n (t, x, ỹ)dỹ 2 dxdy ≤ C g n 2 L 2 ℓ ′ (R 2 + )
. Similarly, we also obtain

∂ -1 y g n ∂ y η 1 2 L 2 ℓ ′ (R 2 + ) ≤ C g n 2 L 2 ℓ ′ (R 2 + ) .
Lemma 5.4. Under the assumption of Proposition 5.2, we have

R 2 + 4 j=0 M n j y 2ℓ ′ g n dxdy ≤ 1 8 ∂ y g n 2 L 2 ℓ ′ (R 2 + ) + ǫ 8 ∂ x g n 2 L 2 ℓ ′ (R 2 + ) + C( g n 2 L 2 ℓ ′ (R 2 + ) + w 2 H m k+ℓ (R 2 + ) ), where C is independent of ǫ. Proof. Recalling M n 1 = -(u s + u) g n η 1 + (∂ -1 y g n )∂ y η 1 , by Lemma 5.3, R 2 + (u s + u)g n η 1 y 2ℓ ′ g n dxdy ≤ C g n 2 L 2 ℓ ′ (R 2 + ) , R 2 + |(u s + u)(∂ -1 y g n )∂ y η 1 y 2ℓ ′ g n |dydx ≤ C w 2 H n k+ℓ + C g n 2 L 2 ℓ ′ . Besides, we have R 2 + M n 1 y 2ℓ ′ g n dxdy ≤ C( g n 2 L 2 ℓ ′ (R 2 + ) + w 2 H n ℓ ′ (R 2 + ) ).
The estimates of M n 2 and M n 3 needs the following decay rate of η 2 :

|η 2 | ≤ C y -1 , |∂ x η 2 | ≤ C y -ℓ-1 , |∂ y η 2 | ≤ C y -2 , |∂ y ∂ x η 2 | ≤ C y -ℓ-2 . Recall M n 2 = 2∂ y g n η 2 + 2g n (∂ y η 2 -2η 2 2 ) -8∂ -1 y g n η 2 ∂ y η 2 . We have R 2 + g n (∂ y η 2 -η 2 2 ) y 2ℓ ′ g n dxdy ≤ C g n 2 L 2 ℓ ′ (R 2 + ) , R 2 + (∂ y g n )η 2 y 2ℓ ′ g n dxdy ≤ C g n 2 L 2 ℓ ′ (R 2 + ) + 1 8 ∂ y g n 2 L 2 ℓ ′ (R 2 + ) , 2 R 2 + ∂ -1 y g n η 2 ∂ y η 2 y 2ℓ ′ g n dxdy ≤ C y ℓ ′ -3 ∂ -1 y g n 2 L 2 + g n 2 L 2 ℓ ′ (R 2 + ) ≤ C g n 2 L 2 ℓ ′ (R 2 + ) . All together, we conclude R 2 + M n 2 y 2ℓ ′ g n dxdy ≤ C( g n 2 L 2 ℓ ′ (R 2 + ) + w 2 H n ℓ ′ (R 2 + ) ) + 1 8 ∂ y g n 2 L 2 ℓ ′ (R 2 + ) ,
and exactly same computation gives also

R 2 + M n 3 y 2ℓ ′ g n dxdy ≤ C( g n 2 L 2 ℓ ′ (R 2 + ) + w 2 H n k+ℓ (R 2 + ) ) + ǫ 8 ∂ x g n 2 L 2 ℓ ′ (R 2 + ) .
Now using (4.1)-(4.2) and m ≥ 6, with the same computation as above, we can get

R 2 + M n 4 y 2ℓ ′ g n dxdy ≤ C g n 2 L 2 ℓ ′ (R 2 + ) + w 2 H n k+ℓ (R 2 + ) .
which finishes the proof of Lemma 5.4.

Lemma 5.5. Under the assumption of Proposition 5.2, we have

R 2 + M n 5 y 2ℓ ′ g n dxdy ≤ C n p=1 gp 2 L 2 ℓ ′ (R 2 + ) + w 2 H n k+ℓ (R 2 + ) ,
where C is independent of ǫ.

Proof. Recall,

M n 5 = i≥4 C i n g i ∂ n+1-i x u + 1≤i≤3 C i n ∂ i x u g n+1-i + i≥4 C i n ∂ -1 y g n ∂ n+1-i x w + 1≤i≤3 C i n ∂ i x w ∂ -1 y g n+1-i ,
here if n ≤ 3, we have only the last term. Then, for w

H m k+ℓ ≤ ζ ≤ 1, m ≥ 6, i≥4 C i n g i ∂ n+1-i x u L 2 ℓ ′ (R 2 + ) + 1≤i≤3 ∂ i x u g n+1-i L 2 ℓ ′ (R 2 + ) ≤ i≥4 C i n g i L 2 ℓ ′ (R 2 + ) ∂ n+1-i x u L ∞ (R 2 + ) + 1≤i≤3 C i n ∂ i x u L ∞ (R 2 + ) gn+1-i L 2 ℓ ′ (R 2 + ) ≤ C i≥4 C i n g i L 2 ℓ ′ (R 2 + ) w H n+3-i 1 + C 1≤i≤3 C i n w H i+3 1 g n+1-i L 2 ℓ ′ (R 2 + ) ≤ C n i=1 g i L 2 ℓ ′ .
Similarly, for the second line in M 5 , by Lemma 5.3, we have

i≥4 C i n (∂ -1 y g i )∂ n+1-i x w L 2 ℓ ′ (R 2 + ) ≤ i≥4 C i n y ℓ ′ -ℓ-1 (∂ -1 y g i ) L 2 (R 2 + ) y ℓ+1 ∂ n+1-i x w L ∞ ≤ C n i=1 g i L 2 ℓ ′ (R 2 + ) .
We have proven Lemma 5.5.

Lemma 5.6. Under the assumption of Proposition 5.2, we have

R 2 + M n 6 y 2ℓ ′ g n dxdy ≤ 1 8m n p=1 ∂ y g p 2 L 2 ℓ ′ (R 2 + ) + C n p=1 g p 2 L 2 ℓ ′ (R 2 + ) + w 2 H n k+ℓ (R 2 + ) ,
where C is independents of ǫ.

Proof. Recall

M 6 = n i=1 C i n g i η 2 ∂ n-i x v + n i=1 C i n g i ∂ n+1-i x u + n i=1 C i n ∂ y g i ∂ n-i x v + n i=1 ∂ -1 y g i C i n ∂ n-i x v∂ y η 2 + C i n ∂ n+1-i x uη 2 .
In M n 6 , we just study the term ∂ y g 1 ∂ n-1 x v as an example, the others terms are similar,

R 2 + ∂ y g 1 ∂ n-1 x v y 2ℓ ′ g n = - R 2 + g 1 ∂ n-1 x v y 2ℓ ′ ∂ y g n + R 2 + g 1 ∂ n x u y 2ℓ ′ g n dxdy, R 2 + g 1 ∂ n-1 x v y 2ℓ ′ ∂ y g n dxdy ≤ 1 8m ∂ y g n 2 L 2 ℓ ′ + C g 1 ∂ n-1 x v 2 L 2 ℓ ′ , g 1 ∂ n-1 x v 2 L 2 ℓ ′ ≤ sup x∈R +∞ 0 y 2ℓ ′ g 2 1 dy sup y∈R+ +∞ -∞ y 0 ∂ n x udz 2 dy ≤ g 1 2 L 2 ℓ ′ (R 2 + ) + ∂ x g 1 2 L 2 ℓ ′ (R 2 + ) +∞ -∞ +∞ 0 |∂ n x u|dz 2 dy ≤ C g 1 2 L 2 ℓ ′ (R 2 + ) + ∂ x g 1 2 L 2 ℓ ′ (R 2 + ) × +∞ -∞ +∞ 0 y -k-ℓ+1 y k+ℓ-1 |∂ n x u|dz 2 dy ≤ C g 1 2 L 2 ℓ ′ (R 2 + ) + g 2 2 L 2 ℓ ′ (R 2 + ) + w 2 H m k+ℓ × +∞ -∞ +∞ 0 y -k-ℓ+1 y k+ℓ-1 |∂ n x u|dz 2 dy ≤ C 2 i=1 g i 2 L 2 ℓ ′ + C w 2 H m k+ℓ .
Here we have used Lemma 5.3 and

k + ℓ -1 > 1 2 , w H m k+ℓ ≤ 1,
and

∂ x g j = g j+1 -g j η 1 -∂ -1 y g n • ∂ y η 1 .
By the similar trick, we have completed the proof of this lemma.

Existence of the solution

Now, we can conclude the following energy estimate for the sequence of approximate solutions. Theorem 6.1. Assume u s satisfies Lemma 2.1. Let m ≥ 6 be an even integer,

k + ℓ > 3 2 , 0 < ℓ < 1 2 , 1 2 < ℓ ′ < ℓ + 1 2 , , and ũ0 ∈ H m+3 k+ℓ ′ -1 (R 2 + ) which satisfies the compatibility conditions (2.6)-(2.7). Suppose that wǫ ∈ L ∞ ([0, T ]; H m+2 k+ℓ (R 2 + )) is a solution to (3.7) such that wǫ L ∞ ([0,T ];H m k+ℓ (R 2 + ) ≤ ζ with 0 < ζ ≤ 1, C m ζ ≤ c1 2 ,
where 0 < T ≤ T 1 and T 1 is the lifespan of shear flow u s in the Lemma 2.1, C m is the Sobolev embedding constant in (4.2). Then there exists

C T > 0, CT > 0 such that, wǫ L ∞ ([0,T ];H m k+ℓ (R 2 + )) ≤ C T ũ0 H m+1 k+ℓ ′ -1 (R 2 + ) , (6.1) 
where C T > 0 is increasing with respect to 0 < T ≤ T 1 and independent of 0 < ǫ ≤ 1.

Firstly, we collect some results to be used from Section 3 -5. We come back to the notations with tilde and the sub-index ǫ. Then g ǫ m , h ǫ m are the the functions defined by ũǫ . Under the hypothesis of Theorem 6.1, we have proven the estimates (3.13) and (5.1)

d dt wǫ 2 H m,m-1 k+ℓ (R 2 + ) + ∂ y wǫ 2 H m,m-1 k+ℓ (R 2 + ) + ǫ ∂ x wǫ 2 H m,m-1 k+ℓ (R 2 + ) ≤ C 1 wǫ 2 H m k+ℓ (R 2 + ) , (6.2) 
d dt m n=1 g ǫ n 2 L 2 ℓ ′ (R 2 + ) + m n=1 ∂ y g ǫ n 2 L 2 ℓ ′ (R 2 + ) + ǫ m n=1 ∂ x g ǫ n 2 L 2 ℓ ′ (R 2 + ) ≤ C 2 ( m n=1 g ǫ n 2 L 2 ℓ ′ (R 2 + ) + wǫ 2 H m k+ℓ (R 2 + ) ) , (6.3) 
Lemma 6.2. For the inital date, we have

T ǫ m (g, w)(0) = m n=1 g ǫ n (0) 2 L 2 ℓ ′ (R 2 + ) + wǫ (0) 2 H m,m-1 k+ℓ (R 2 + ) ≤ C ũ0 2 H m+1 k+ℓ ′ -1 (R 2 + )
, where C is independent of ǫ.

Proof. Notice for any 1 ≤ n ≤ m,

g ǫ n = ∂ n x ũǫ u s y + wǫ y = ∂ n x ∂ y ũǫ u s y + wǫ - ∂ n x ũǫ u s y + wǫ η 2 ,
and ũǫ (0) = ũ0 , then we deduce, for any 1 ≤ n ≤ m,

g ǫ n (0) 2 L 2 ℓ ′ (R 2 + ) ≤ 2 ∂ n x ∂ y ũ0 u s 0,y + w0 2 L 2 ℓ ′ (R 2 + ) + 2 ∂ n x ũ0 u s 0,y + w0 η 2 (0) 2 L 2 ℓ ′ (R 2 + ) ≤ C ∂ n x ∂ y ũ0 2 L 2 k+ℓ ′ (R 2 + ) + ∂ n x ũ0 2 L 2 k+ℓ ′ -1 (R 2 + ) ≤ C ũ0 2 H m+1 k+ℓ ′ -1 (R 2 + ) .
From (6.2) and ( 6.3), we have

g ǫ m 2 L 2 ℓ ′ (R 2 + ) + wǫ 2 H m,m-1 k+ℓ (R 2 + ) ≤ C 8 e C2t t 0 e -C2τ wǫ (τ ) 2 H m k+ℓ (R 2 + ) dτ + C 9 e C2t ũ0 2 H m+1 k+ℓ ′ -1 (R 2 + ) .
(6.4) Lemma 6.3. We have also the following estimate :

∂ m x wǫ 2 L 2 k+ℓ (R 2 + ) ≤ C g ǫ m 2 L 2 ℓ ′ . where C is independent of ǫ.
Proof. By the definition, 

∂ m x w 2 L 2 k+ℓ ≤ C R 2 + y 2ℓ-2 y 0 g ǫ m (t, x, z)dz 2 dxdy + g ǫ m (t) 2 L 2 ℓ ′ (R 2 + ) ≤ C g ǫ m (t) 2 L 2 ℓ ′ (R 2 + )
, where we have used ℓ -1 < -1 2 and 1 2 < ℓ ′ .

End of proof of Theorem 6.1. Combining (6.4), Lemma 6.2 and Lemma 6.3, we get, for any t ∈]0, T ],

wǫ (t) 2 H m k+ℓ (R 2 + ) ≤ C8 e C2t t 0 e -C2τ wǫ (τ ) 2 H m k+ℓ (R 2 + ) dτ + C9 e C2t ũ0 2 H m+1 k+ℓ ′ -1 (R 2 
+ ) , with C8 , C9 independent of 0 < ǫ ≤ 1. We have by Gronwell's inequality that, for any t ∈]0, T ], wǫ (t) 2

H m k+ℓ (R 2 + ) ≤ C9 e (C2+ C8)t ũ0 2 H m+1 k+ℓ ′ -1 (R 2 + ) . So it is enough to take C 2 T = C9 e (C2+ C8
)T (6.5) which gives (6.1), and C T is increasing with respect to T . We finish the proof of Theorem 6.1.

Theorem 6.4. Assume u s satisfies Lemma 2.1, and let ũ0 ∈ H m+3 k+ℓ ′ -1 (R 2 + ), m ≥ 6 be an even integer, k > 1, 0 < ℓ < 1 2 , 1 2 < ℓ ′ < ℓ + 1 2 , k + ℓ > 3 2 , and

0 < ζ ≤ 1 with C m ζ ≤ c1 2 ,
where C m is the Sobolev embedding constant. If there exists 0 < ζ 0 small enough such that, ũ0 H m+1 k+ℓ ′ -1 (R 2 + ) ≤ ζ 0 , then, there exists ǫ 0 > 0 and for any 0 < ǫ ≤ ǫ 0 , the system (3.7) admits a unique solution wǫ such that wǫ L ∞ ([0,T1];H m k+ℓ (R 2 + )) ≤ ζ, where T 1 is the lifespan of shear flow u s in the Lemma 2.1. Remark 6.5. Under the uniform monotonic assumption (1.2), some results of above theorem holds for any fixed T > 0. But ζ 0 decreases as T increases, according to the (2.5).

Proof. We fix 0 < ǫ ≤ 1, then for any w0 ∈ H m+2 k+ℓ (R 2 + ), Theorem 3.5 ensures that, there exists ǫ 0 > 0 and for any 0 < ǫ ≤ ǫ 0 , there exits T ǫ > 0 such that the system (3.7) admits a unique solution wǫ

∈ L ∞ ([0, T ǫ ]; H m+2 k+ℓ (R 2 + )) which satisfies wǫ L ∞ ([0,Tǫ];H m k+ℓ (R 2 + )) ≤ 4 3 wǫ (0) H m k+ℓ (R 2 + ) ≤ 2 ũ0 H m+1 k+ℓ-1 (R 2 + ) . Now choose ζ 0 such that max{2, C T1 }ζ 0 ≤ ζ 2 .
On the other hand, taking wǫ (T ǫ ) as initial data for the system (3.7), Theorem 3.5 ensures that there exits T ′ ǫ > 0, which is defined by (3.19) with ζ = ζ 2 , such that the system (3.7) admits a unique solution w′

ǫ ∈ L ∞ ([T ǫ , T ǫ + T ′ ǫ ]; H m k+ℓ (R 2 + )) which satisfies w′ ǫ L ∞ ([Tǫ,Tǫ+T ′ ǫ ];H m k+ℓ (R 2 + )) ≤ 4 3 wǫ (T ǫ ) H m k+ℓ (R 2 + ) ≤ ζ. Now, we extend wǫ to [0, T ǫ + T ′ ǫ ] by w′ ǫ , then we get a solution wǫ ∈ L ∞ ([0, T ǫ + T ′ ǫ ]; H m k+ℓ (R 2 + )) which satisfies wǫ L ∞ ([0,Tǫ+T ′ ǫ ];H m k+ℓ (R 2 + )) ≤ ζ. So if T ǫ + T ′ ǫ < T 1 ,
we can apply Theorem 6.1 to wǫ with T = T ǫ + T ′ ǫ , and use (6.1), this gives

wǫ L ∞ ([0,Tǫ+T ′ ǫ ];H m k+ℓ (R 2 + )) ≤ C T1 ũ0 H m+1 k+ℓ-1 (R 2 + ) ≤ ζ 2 .
Now taking wǫ (T ǫ + T ′ ǫ ) as initial data for the system (3.7), applying again Theorem 3.5, for the same T ′ ǫ > 0, the system (3.7) admits a unique solution w′

ǫ ∈ L ∞ ([T ǫ + T ′ ǫ , T ǫ + 2T ′ ǫ ]; H m k+ℓ (R 2 + )) which satisfies w′ ǫ L ∞ ([Tǫ+T ′ ǫ ,Tǫ+2T ′ ǫ ];H m k+ℓ (R 2 + )) ≤ 4 3 wǫ (T ǫ + T ′ ǫ ) H m k+ℓ (R 2 + ) ≤ ζ. Now, we extend wǫ to [0, T ǫ + 2T ′ ǫ ] by w′ ǫ , then we get a solution wǫ ∈ L ∞ ([0, T ǫ + 2T ′ ǫ ]; H m k+ℓ (R 2 + )) which satisfies wǫ L ∞ ([0,Tǫ+2T ′ ǫ ];H m k+ℓ (R 2 + )) ≤ ζ. Theorem 6.6. Let m ≥ 6 be an even integer, k > 1, 0 < ℓ < 1 2 , 1 2 < ℓ ′ < ℓ + 1 2 , k + ℓ > 3 2
, assume that u s 0 satisfies (1.2), the initial date ũ0 ∈ H m+3 k+ℓ ′ -1 (R 2 + ) and ũ0 satisfies the compatibility condition (2.6)-(2.7) up to order m + 2. Then there exists T > 0 such that if ũ0 H m+1 k+ℓ ′ -1 (R 2 + ) ≤ δ 0 , for some δ 0 > 0 small enough, then the initial-boundary value problem (2.2) admits a solution (ũ, ṽ) with

ũ ∈ L ∞ ([0, T ]; H m k+ℓ-1 (R 2 + )), ∂ y ũ ∈ L ∞ ([0, T ]; H m k+ℓ (R 2 + ))
. Moreover, we have the following energy estimate,

∂ y ũ L ∞ ([0,T ];H m k+ℓ (R 2 + )) ≤ C ũ0 2 H m+1 k+ℓ ′ -1 (R 2 + ) . (6.6) 

Uniqueness and stability

Now, we study the stability of solutions which implies immediately the uniqueness of solution.

Let ũ1 , ũ2 be two solutions obtained in Theorem 6.6 with respect to the initial date ũ1 0 , ũ2 0 respectively. Denote ū = ũ1 -ũ2 and v = ṽ1 -ṽ2 , then

         ∂ t ū + (u s + ũ1 )∂ x ū + (u s y + ũ1,y )v = ∂ 2 y ū -ṽ2 ∂ y ū -(∂ x ũ2 )ū, ∂ x ū + ∂ y v = 0, ū| y=0 = v| y=0 = 0, ū| t=0 = ũ1 0 -ũ2 0 .
So it is a linear equation for ū. We also have for the vorticity w = ∂ y ū,

     ∂ t w + (u s + ũ1 )∂ x w + (u s yy + w1,y )v = ∂ 2 y w -ṽ2 ∂ y w -(∂ x w2 )ū, ∂ y w| y=0 = 0, w| t=0 = w1 0 -w2 0 . (7.1) 
Estimate with a loss of x-derivative. Firstly, for the vorticity w = ∂ y ū, we deduce an energy estimate with a loss of x-derivative with the anisotropic norm defined by (3.12).

Proposition 7.1. Let ũ1 , ũ2 be two solutions obtained in Theorem 6.6 with respect to the initial date ũ1 0 , ũ2 0 , then we have

d dt w 2 H m-2,m-3 k+ℓ (R 2 + ) + ∂ y w 2 H m-2,m-3 k+ℓ (R 2 + ) ≤ C1 w 2 H m-2 k+ℓ , (7.2) 
where the constant C1 depends on the norm of w1 , w2 in L ∞ ([0, T ]; H m k+ℓ (R 2 + )). Proof. The proof of this Proposition is similar to the proof of the Proposition 3.9, and we need to use that m -2 is even. We only give the calculation for the terms which need a different argument. Moreover we also explain why we only get the estimate on w 

α = ∂ α x ∂ α2 y , for |α| = α 1 +α 2 ≤ m-2, α 1 ≤ m -3, ∂ t ∂ α w -∂ 2 y ∂ α ∂ w = -∂ α (u s + ũ1 )∂ x w + ṽ2 ∂ y w + (u s yy + w1,y )v + (∂ x w2 )ū . (7.3) 
Multiplying the above equation with y k+ℓ ′ +α2 ∂ α w, the same computation as in the proof of the Proposition 3.9, in particular, the reduction of the boundary-data are the same, gives

R 2 + ∂ t ∂ α w -∂ 2 y ∂ α w y 2(k+ℓ+α2) ∂ α wdxdy ≥ 1 2 d dt ∂ α w 2 L 2 k+ℓ+α 2 + 3 4 ∂ y w 2 H m-2,m-3 k+ℓ -C w 2 H m-2 k+ℓ .
As for the right hand of (7.3), for the first item, we split it into two parts

-∂ α (u s + ũ1 )∂ x w = -(u s + ũ1 )∂ x ∂ α w + [(u s + ũ1 ), ∂ α ]∂ x w.
Firstly, we have

R 2 + (u s + ũ1 )∂ x ∂ α w y 2(ℓ+α2) ∂ α wdxdy ≤ w1 H 3 1 ∂ α w 2 L 2 k+ℓ+α 2
.

For the commutator operator, we have,

[(u s + ũ1 ), ∂ α ]∂ x wǫ L 2 k+ℓ+α 2 ≤ C w1 H m-2 k+ℓ (R 2 + ) w H m-2,m-3 k+ℓ (R 2 
+ ) . Notice that for this term, we don't have the loss of x-derivative.

With the similar method for the terms ṽ2 ∂ y w, we get

R 2 + ṽ2 ∂ y w y 2(ℓ+α2) ∂ α wdxdy ≤ w2 H m-2 k+ℓ (R 2 + ) w 2 H m-2,m-3 k+ℓ (R 2 
+ ) . For the next one, we have

∂ α (u s yy + ∂ y w1 )v = β≤α C α β ∂ β (u s yy + ∂ y w1 )∂ α-β v,
and thus β≤α,1≤|β|<|α|

C α β ∂ β (u s yy + ∂ y w1 )∂ α-β v L 2 k+ℓ+α 2 ≤ C w1 H m-2 k+ℓ (R 2 + ) w H m-2,m-3 k+ℓ (R 2 
+ ) . On the other hand, using Lemma A.1 and 3

2 -k < ℓ < 1 2 , ∂ α (u s yy + ∂ y w1 ) v L 2 k+ℓ+α 2 ≤ ∂ α u s yy v L 2 k+ℓ+α 2 + ∂ α ∂ y w1 v L 2 k+ℓ+α 2 ≤ C v L 2 (Rx;L ∞ (R+)) + C w1 H m k+ℓ (R 2 + ) v L ∞ (R 2 + ) ≤ C ūx L 2 1 2 +δ (R 2 + ) + C w1 H m k+ℓ (R 2 + ) ( ūx L 2 1 2 +δ (R 2 + ) + ūxx L 2 1 2 +δ (R 2 + ) ) ≤ C(1 + w1 H m k+ℓ (R 2 + ) ) w H 2 1 2 +δ (R 2 + ) ≤ C(1 + w1 H m k+ℓ (R 2 + ) ) w H 2 k+ℓ (R 2 + ) .

So this term requires the norms w1

H m k+ℓ (R 2 + ) ). Moreover, if α 2 = 0 (u s yy + ∂ y w1 )∂ α v L 2 k+ℓ+α 2 = (u s yy + ∂ y w1 )∂ α1 x ∂ α2-1 ūx L 2 k+ℓ+α 2 ≤ C(1 + w1 H m-1 k+ℓ (R 2 + ) ) w H m-2 k+ℓ (R 2 
+ ) , and also if α 2 = 0

(u s yy + ∂ y w1 )∂ α1 x v L 2 k+ℓ = (u s yy + ∂ y w1 )∂ -1 y ∂ α1 x ūx L 2 k+ℓ ≤ C(1 + w1 H m-1 k+ℓ (R 2 + ) ) ∂ α1+1 x w L 2 3 2 +δ (R 2 + ) .
These two cases imply the loss of x-derivative. Similar argument also gives

R 2 + ∂ α (∂ x w2 )ū y 2(ℓ+α2) ∂ α wdxdy ≤ C w2 H m k+ℓ (R 2 + ) w 2 H m-2 k+ℓ (R 2 + ) ,
which finishes the proof of the Proposition 7.1.

Estimate on the loss term. To close the estimate (6.6), we need to study the terms ∂

m-2 x w L 2 k+ℓ (R 2 
+
) which is missing in the left hand side of (7.2). Similar to the argument in Section 6, we will recover this term by the estimate of functions ḡn = ∂ n x ū u s y + ũ1,y y , ∀(t, x, y) ∈ [0, T ] × R × R + .

Proposition 7.2. Let ũ1 , ũ2 be two solutions obtained in Theorem 6.6 with respect to the initial date ũ1 0 , ũ2 0 , then we have

d dt m-2 n=1 ḡn 2 L 2 ℓ ′ (R 2 + ) + m-2 n=1 ∂ y ḡn 2 L 2 ℓ ′ (R 2 + ) ≤ C 2 ( m-2 n=1 ḡn 2 L 2 ℓ ′ (R 2 + ) + w 2 H m-2 k+ℓ ),
where the constant C2 depends on the norm of w1 , w2 in L ∞ ([0, T ]; H m k+ℓ (R 2 + )).

These Propositions can be proven by using exactly the same calculation as in Section 5. The only difference is that when we use the Leibniz formula, for the term where the order of derivatives is |α| = m -2, it acts on the coefficient which depends on ũ1 , ũ2 . Therefore, we need their norm in the order of (m -2) + 1. So we omit the proof of this Proposition here.

With the similar argument to the proof of Theorem 6. For (2), firstly, m ≥ 6 and |α| + |β| ≤ m imply |α| ≤ m -2 or |β| ≤ m -2, without loss of generality, we suppose that |α| ≤ m -2. Then, using the conclusion of (1), we have Proof. Once we get à priori estimate for this linear problem, the existence of solution is guaranteed by the Hahn-Banach theorem. So we only prove the à priori estimate of the smooth solutions.

(∂ α f )(∂ β g) L 2 k+ℓ+α 2 +β 2 (R 2 + ) ≤ y α2 (∂ α f ) L ∞ (R 2 + ) ∂ β g L 2 k+ℓ+β 2 (R 2 + ) ≤ C f H |α|+2 1 2 +δ (R 2 + ) ∂ β g L 2 k+ℓ+β 2 (R 2 
(∂ α f )(∂ p x (∂ -1 y g)) L 2 k+ℓ+α 2 (R 2 + ) ≤ y k+ℓ+α2 (∂ α f ) L 2 (R 2 + ) ∂ p x (∂ -1 y g) L ∞ (R 2 + ) ≤ C f H |α| k+ℓ (R 2 + ) ∂ p x g L ∞ (Rx;L
For any α ∈ N 

+ |α|≤m+2 R 2 + ( y 2k+2ℓ+2α2 ) ′ ∂ α ∂ y w n ∂ α ∂ y w n dxdy + |α|≤m+2 R (∂ α ∂ y w n ∂ α ∂ y w n ) y=0 dx, (B.5) 
With similar analysis to Section 5, we have

R 2 + y 2k+2ℓ+2α2 (u s + u n-1 )∂ x ∂ α w n ∂ α w n dxdy = - 1 2 R 2 + y 2k+2ℓ+2α2 ∂ x (u s + u n-1 )∂ α w n ∂ α w n dxdy ≤ C u n-1 L ∞ (R 2 + ) w n 2 H m+2 k+ℓ (R 2 
+ ) , and

R 2 + y 2k+2ℓ+2α2 [∂ α , (u s + u n-1 )]∂ x w n ∂ α w n dxdy ≤ C(1 + w n-1 H m+2 k+ℓ (R 2 + ) ) w n 2 H m+2 k+ℓ (R 2 
+ ) . For the second term on the right hand of (B.5), by using the Leibniz formula, we need to pay more attention to the following two terms .

We prove the Lemma by induction. For n = 1, we have

B 0 T = C 1 + w0,ǫ H m+2 k+ℓ (R 2 
+ ) + (1 + 1 ǫ ) w0,ǫ 2 H m+2 k+ℓ (R 2 + ) ≤ C 1 + ζ + (1 + 1 ǫ ) ζ2 ,

α

  j implies that, for each terms of (2.7), there is at last one factor like ∂

  7) where ũǫ (t, x, y) = -+∞ y wǫ (t, x, ỹ)dỹ, ṽǫ (t, x, y) = -y 0 ∂ x ũǫ (t, x, ỹ)dỹ. (3.8)

  , x, ỹ)dỹ, y ∈ R + , , x, ỹ)dỹ -(u s y + wǫ )g ǫ m (t, x, y), y ≥ 0, and

2 k+ℓ (R 2 +

 22 1, we get w L ∞ ([0,T ];H m-)) ≤ C ū0 H m+1 k+ℓ ′ -1 (R 2 + ) ,which finishes the proof of Theorem 1.1.

2

 2 

∂ 0 ∂∂

 0 We have completed the proof of the Lemma. Appendix B. The existence of approximate solutions Now, we prove the Proposition 3.7, the existence of solution to the vorticity equation wǫ = ∂ y ũǫ and suppose that m, k, ℓ and u s (t, y) satisfy the assumption of Proposition 3t wǫ + (u s + ũǫ )∂ x wǫ + v ǫ (u s yy + ∂ y wǫ ) = ∂ 2 y wǫ + ǫ∂ 2 x wǫ , ∂ y wǫ | y=0 = 0 wǫ | t=0 = w0,ǫ , (B.1) where ũǫ (t, x, y) = -+∞ y wǫ (t, x, ỹ)dỹ, ṽǫ (t, x, y) = -y x ũǫ (t, x, ỹ)dỹ.We will use the following iteration process to prove the existence of solution, wherew 0 = w0,ǫ , t w n + (u s + u n-1 )∂ x w n + (u s yy + ∂ y w n-1 )v n = ∂ 2 y w n + ǫ∂ 2 x w n , ∂ y w n | y=0 = 0 w n | t=0 = w0,ǫ , (B.2) with u n-1 (t, x, y) = -+∞ y w n-1 (t, x, ỹ)dỹ, and v n (t, x, y) = -y 0 ∂ x u n (t, x, ỹ)dỹ +

R 2 +

 2 y 2k+2ℓ+2α2 ∂ α ∂ -1 y u n x (u s yy + ∂ y w n-1 )∂ α w n dxdy ≤ C(1 + w n-

  ≤ y k+ℓ+α2 (∂ α f ) L 2 (Ry,+;L ∞ (Rx)) ∂ p x (∂ -1 y g) L ∞ (Ry,+;L 2 (Rx)) ≤ C f H |α|+2

			+ ) ,
	which give (A.3).		
	For (3), if |α| ≤ m -2, we have (∂ α f )(∂ p x (∂ -1 y g)) L 2 k+ℓ+α 2 (R 2 + )		
	k+ℓ (R 2 + ) ∂ p x g L 2 1 2	+δ	(R 2

+ ) . If p ≤ m -2, we have

  2 , |α| ≤ m + 2, taking the equation (B.2) with derivative ∂ α , multiplying the resulting equation by y 2k+2ℓ+2α2 ∂ α w n and integrating by part

	over R 2 + , one obtains that
	1 2	d dt	w n 2 H m+2 k+ℓ (R 2 + ) + ∂ y w n 2 H m+2 k+ℓ (R 2 + ) + ǫ ∂ x w n 2 H m+2 k+ℓ (R 2 + )
	=	
		|α|≤m+2 R 2

+ y 2k+2ℓ+2α2 ∂ α (u s + u n-1 )∂ x w n -(∂ -1 y u n x )(u s yy + ∂ y w n-1 ) ∂ α w n dxdy

  y 2k+2ℓ+2α2 v n ∂ α ∂ y w n-1 ∂ α w n dxdy ∂ α w n-1 ∂ y ∂ α w n dxdy, here we have used v n | y=0 = 0, thus R 2 + y 2k+2ℓ+2α2 v n ∂ α ∂ y w n-1 ∂ α w ndxdy For the boundary term, similar to the proof of Proposition 3.9, we can get |α|≤m+2 R (∂ α ∂ y w n ∂ α ∂ y w n ) y=0 dx Suppose that m, k, ℓ and u s (t, y) satisfy the assumption of Proposition 3.7, ζ > 0, then for any 0 < ǫ ≤ 1, there exists T ǫ > 0 such that for any w0,ǫ ∈ the iteration equations (B.2) admit a sequence of solution {w n , n ∈ N} such that, for any t ∈ [0, T ǫ ], Remark. Here ζ is aribitary.Proof. Integrating (B.4) over [0, t], for 0 < t ≤ T and T > 0 small,

	and					
				R 2 +		
			= -	+ R 2	∂ y y 2k+2ℓ+2α2 (∂ -1 y u n x ) ∂ α w n-1 ∂ α w n dxdy
	-x ) ≤ C w n-1 R 2 + y 2k+2ℓ+2α2 (∂ -1 y u n H m+2 k+ℓ (R 2 + ) w n 2 H m+2 k+ℓ (R 2 + ) + ∂ y w n	H m+2 k+ℓ (R 2 + ) w n	H m+2 k+ℓ (R 2
			≤	1 16	∂ y w n 2 H m+2 k+ℓ (R 2 + ) + C w n-1 m+2 H m+2 k+ℓ (R 2 + ) w n m+2 H m+2 k+ℓ (R 2 + ) .
	We get finally			
	d dt	w n (t) 2 H m+2 k+ℓ (R 2	H m+2 k+ℓ (R 2	H m+2 k+ℓ (R 2 + )
							≤ B n-1 T	w n (t) 2 H m+2 k+ℓ (R 2 + ) + D n-1 T	w n m+2 H m+2 k+ℓ (R 2
	H m+2 k+ℓ (R 2 + ) with		
							w0,ǫ H m+2 k+ℓ (R 2
					w n (t) H m+2 k+ℓ (R 2 + ) ≤	4 3	w0,ǫ H m+2 k+ℓ (R 2
			w n (t) m H m+2 k+ℓ (R 2 + ) ≤	e -m 2 B n-1 T	w0,ǫ t -m 2 D n-1 m H m+2 k+ℓ (R 2 + ) T t w0,ǫ m H m+2 k+ℓ (R 2 + )
						1	H m+2 k+ℓ (R 2 + ) ) ∂ x w n	H m+2 k+ℓ (R 2 + ) w n	H m+2 k+ℓ (R 2 + )
		≤	ǫ 2	∂ x w n 2 H m+2 k+ℓ (R 2 + ) +	C ǫ	(1 + w n-1	H m+2 k+ℓ (R 2 + ) ) 2 w n 2 H m+2 k+ℓ (R 2 + ) ,

+ ) . + ) + ∂ y w n (t) 2 + ) + ǫ ∂ x w n (t) 2 + ) . Lemma B.2. + ) ≤ ζ, + ) , ∀n ∈ N.
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So if T ǫ + 2T ′ ǫ < T 1 , we can apply Theorem 6.1 to wǫ with T = T ǫ + 2T ′ ǫ , and use (6.1), this gives again

Then by recurrence, we can extend the solution wǫ to [0, T 1 ], and then the lifespan of approximate solution is equal to that of shear flow if the initial date ũ0 is small enough.

We have obtained the following estimate, for m ≥ 6 and 0 < ǫ ≤ ǫ 0 ,

. By using the equation (3.7) and the Sobolev inequality, we get, for 0 < δ < 1 wǫ Lip([0,T1];C 2,δ (R 2 + )) ≤ M < +∞. Then taking a subsequence, we have, for 0 < δ ′ < δ, Using the condition k + ℓ -1 > 1 2 , we have also ṽ = -

We have proven that, w is a classical solution to the following vorticity Prandtl equation

and (ũ, ṽ) is a classical solution to (2.2). Finally, (u, v) = (u s + ũ, ṽ) is a classical solution to (1.1), and satisfies (6.6). In conclusion, we have proved the following theorem which is the existence part of main Theorem 1.1.

Appendix A. Some inequalities

We will use the following Hardy type inequalities.

2 and lim y→∞ f (x, y) = 0, then

We need the following trace theorem in the weighted Sobolev space.

Lemma A.2. Let λ > 1 2 , then there exists C > 0 such that for any function

, it admits a trace on R x × {0}, and satisfies

The proof of the above two Lemmas is elementary, so we leave it to the reader. We use also the following Sobolev inequality and algebraic properties of H m k+ℓ (R 2 + ), Lemma A.3. For the suitable functions f, g, we have: 1) If the function f satisfies f (x, 0) = 0 or lim y→+∞ f (x, y) = 0, then for any small δ > 0,

2) For m ≥ 6, k + ℓ > 3 2 , and any α, β ∈ N 2 with |α| + |β| ≤ m, we have

3) For m ≥ 6, k + ℓ > 3 2 , and any α ∈ N 2 , p ∈ N with |α| + p ≤ m, we have,

where ∂ -1 y is the inverse of derivative ∂ y , meaning, ∂ -1 y g = y 0 g(x, ỹ) dỹ. Proof. For (1), using f (x, 0) = 0, we have

If lim y→+∞ f (x, y) = 0, we use

Here for the boundary data, we have

and also for 3

is a linear combination of the terms of the form:

where 2 ≤ q 1 + q 2 ≤ p, 1 ≤ i ≤ min{n, p} and u n (t, x, 0). For given w n-1 , we have u n-1 = ∂ -1 y w n-1 and v n = -∂ -1 y u n x . We will prove the existence and boundness of the sequence {w n , n ∈ N} in L ∞ ([0, T ǫ ]; H m+2 k+ℓ (R 2 + )) to the linear equation (B.2) firstly, then the existence of solution to (B.1) is guaranteed by using the standard weak convergence methods.

+ 1} and w0,ǫ satisfies the compatibility condition up to order m+ 2 for the system (B.1), then the initial-boundary value problem (B.2) admit a unique solution w n such that, for any t ∈ [0, T ],

where