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Abstract—We investigate the impact of additive noise and
uncertainty on levels (offset) on the filtering of level-crossing
sampled data. We therefore suppose that either the signal of the
levels are affected by an error following a normal distribution
with zero mean. The errors are then analyzed in terms of
the standard deviation of the normal distribution. For the
illustrations an IIR filter, namely Butterworth, is used, but the
results have a wider range of applications.

I. INTRODUCTION

For sporadic signals which are often encountered in mobile
applications, a way to reduce the power consumption is to use
event-driven sampling. The obtained data are then non-uniform
[1] and signal processing techniques have to be redefined.
Analog-to-Digital Converters (ADCs) using a non regular
samples can lead to interesting power savings compared to
Nyquist ADCs [2], [3]. The sample number reduction that can
be expected for signals with prescribed Hölder regularity has
been investigated in [4] using a wavelet description of data.

Previous works have given equivalents of Finite Impulse
Response (FIR) filters [5], [6] or Infinite Impulse Response
(IIR) filters [7]. The effect of noise and offset has been of
course intensively studied for classical regular signals. Here
we propose a first analysis of the impact of these effects with
filters specifically designed for non-uniform data.

We first describe precisely the type of data produced by
the level-crossing sampling procedure and explain why we are
specially interested in offset impact. Section II is devoted to
the description of the implementation of filters for non-uniform
data. Additive noise and offset are then addressed in Sections
III and IV.

A. Level-crossing sampling

Our purpose is to write algorithms that can be used in
asynchronous systems and for which the samples are obtained
via an Asynchronous ADC (A-ADC) based on level-crossing
sampling [8], [9]. This produces non-uniform samples in time
with quantized amplitudes. Suppose we have 2M predefined
levels. We use here equi-spaced levels, but the algorithms do
not take this feature into account. The design of specific sets
of levels for specific applications and type of signals is not
addressed here.

Each sample is the couple of an amplitude xj and a
time delay δtj , computed with a local clock (see Figure 1).
No global time is necessary for the implementation of the

algorithms, but, for sake of clarity, we will describe them using
sample times tj . We have δtj = tj − tj−1.
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Fig. 1. Level-crossing sampling.

For data processing, the input analog signal only known
at times tj and other information about the signal is lost.
We however need an analog signal to derive the filtering
procedures and consider an (at most) linearly interpolated
signal from the non-uniform samples:

x(t) ∼
n∑
j=1

(aj + bjt)χ[tj−1,tj ], (1)

where χI is the characteristic function of interval I .

B. Jitter vs. offset

There is clearly an amplitude–time duality between classi-
cal regular sampling and level-crossing sampling. In classical
sampling, samples are supposed to be taken at regular time
intervals. Times are supposed to be perfectly known and
multiples of some basis sampling time ts. Amplitudes are
captured at these times and have the precision of the ADC. On
the contrary, in the level-crossing paradigm, levels and hence
amplitudes are perfectly known, and times (or more precisely
delays) are captured when a level is crossed with the precision
of the local clock.

Classical jitter consists in having an incertitude on the
capture time. The amplitude is not captured at the right time,



but data processing uses the theoretical regular structure, and
computes as if amplitude xk is captured at time kts, inducing
a bias.

The equivalent phenomenon in level-crossing sampling is
therefore an incertitude, an offset, on the amplitudes, i.e. the
levels. For some reason the level which is recognized by the
hardware can be slightly different from its theoretical design
value. The time at which this level is crossed is slightly
different from the time at which the theoretical level is crossed
but the data processing is done with the theoretical amplitude.
This induces a dual bias to that for classical jitter.

Except for may be one sample at the beginning or the end
of the data, classical jitter does not induce a change in the
number of samples. In level-crossing, an error on the level
can induce changes in the number of samples if the value of
the level is close to local extrema of the data (see Figure 2).
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Fig. 2. Variation of the number of samples.

In the situation shown in Figure 2 wrong values of levels
can induce in particular in peak clipping.

II. NON-UNIFORM IIR FILTERS

In this paper, we will use Infinite Impulse Response (IIR)
filters. The only reason is that we have to able to compare
in the offset case two filtered signals at different input times,
and that we have already proposed an algorithm that allows
to compte the filtering result at any time, independently of
the input samples times. In the non-uniform context, the z-
transform formulation has no meaning. Two context have been
studied and will be used here: the state representation of IIR
filters [7] or the formulation in the frequency domain [10],
[11].

A. Uniform filters for non-uniform data

The state representation consists in considering the usual
filter coefficients αk and βk that occur in the Laplace expres-
sion of the filter transfer function

ĥ(p) =
N∑
k=0

αkp
k/

N∑
k=0

βkp
k. (2)

Here N is the filter order. Then the filtering process consists
in computing the state vector S(t), solution to the N-th order
linear system

dS(t)
dt

= AS(t) +Bx(t), (3)

where

A =


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
−β0 −β1 · · · −βK−2 −βK−1



is the N×N state matrix, and B = (0 · · · 0 1)t is the command
vector, and then the filtered signal y(t) is simply computed as

y(t) = CS(t) +Dx(t), (4)

where C = (α0 − αNβ0 · · · αN−1 − αNβN−1) is the
observation vector and D = αN the direct link coefficient.

Numerical algorithms follow from then the discretization
of the differential equation (3) or its integral form

S(t) = eAtS(0) +
∫ t

t0

eA(t−τ)Bx(τ) dτ (5)

(see [7] for more details). The non-uniformity of data is
handled by the fact that the discretization uses irregular time-
steps stemming from the input data times.

B. Non-uniform filters in the frequency domain

We have also developed filters which are based on the
interpolation in the frequency domain of the analog filter
transfer function H . The filtered signal is then the convolution
of the input signal x(t)

y(t) =
∫ +∞

−∞
h(t− τ)x(τ) dτ (6)

with the inverse Fourier transform of H:

h(t) =
1
2π

∫ +∞

−∞
H(ω)eiωt dω. (7)

Then aim of this approach is that it is possible to describe with
very few filter samples equivalents of very high order filters,
and even the ideal low-pass filter H(ω) = χ[−ωc,ωc] [10].

Here we sample in the frequency domain existing filter.
The sampling can be done non-uniformly, i.e. with non equi-
spaced frequencies. In practice we define the filter for positive
values of the frequency and suppose it is symmetric. Level-
crossing sampling is used to define the sampling frequencies
and we obtain filter samples (ωk, Hk). We describe here linear
interpolation, but log-scale interpolation has also been studied
[11]. The filter amplitudes Hk are complex and it has been
showed in [12] that the best way to perform the interpolation
is to treat the absolute values and the phase of the amplitudes
separately. This leads to less attenuation in the desired pass
domain. For a low-pass filter linear interpolation yields a
continuous approximation of H(ω):

H(ω) ∼
K∑
k=1

{
(ρ0
k + ρ1

kω)ei(θ
0
k+θ1kω)χJk

+ (ρ0
k − ρ1

kω)− ei(θ
0
k−θ

1
kω)χJ−

k

}
.

(8)

Here Jk = [ωk−1, ωk] (ω0 = 0), J−k = [−ωk,−ωk−1], and
ρ0
k, ρ1

k, θ0k, and θ1k are computed in a straightforward way from
the filter samples (ωk, Hk).

Inserting (1) and (7) in (6) the filtered signal can be cast
as

y(t) =
n∑
j=0

xj

K∑
k=1

hjk(t), (9)

which more or less looks like a FIR filter formula, although
we will interpolate IIR filter transfer functions. Details can be



found in [12] and [10]. One advantage of this approach its that
we will be able to evaluated y at any time t, possibly different
from times tj .

III. ADDITIVE NOISE

The goal is to compare at each data time (not changed here
by the addition of noise) filtered signal y(t) obtained from the
discretization of x(t) and the filtered signal ỹ(t) associated to
x̃(t) = x(t) + ε(t) via the computation of the mean square
error, weighted bu the length of each sample:

E =
1
T

∑
j

(y(tj)− ỹ(tj))2δtj , (10)

where T is the total time duration of the signal.

An additive noise ε(t) is added, with zero mean and a
standard deviation σ. The ε(tj) are independent identically
distributed. It is therefore expected that the mean square error
will be of the order of σ2.

The SPASS MATLAB toolbox is used for numerical tests
[13]. It implements a series of routines specific for the numeri-
cal processing of non-uniform data. In particular it implements
the A-ADC and filters described above.

For the numerical tests we use

x(t) = .5 + .25 cos(2πt) + .25 cos(4 · 2πt) (11)

as input signal. The regular samples are taken at a 1000 Hz
rate. The level-crossing sampling of x(t) is performed defining
2M (M = 3 or 4) equi-spaced levels ranging from .05 to .95.
There are 10.000 regular samples, 320 non-uniform samples
for M = 3 and 640 non-uniform samples for M = 4.

Filtering is performed with a 5th order low-pass Butter-
worth filter, with cut-off frequency 3 ·2π. The resulting filtered
signal y(t) is very similar for the classical Butterworth filter
and for both implementations of non-uniform filtering, state
representation and frequency-domain interpolation.

The standard deviation σ of the additive noise ε(t) is
chosen to be comparable with the level quantum q. More
precisely we test σ = q/4, q/2, q, and 2q. Note that q depends
on M . The filtered signal ỹ is computed for the regular filter,
and via state representation for M = 3 and 4. The mean square
error is displayed in Figure 3 in log-log scale. The experiment
is performed 10 times and a mean error is computed.

The linear behavior in log-log scale is well demonstrated
by the test case. The slope of all the curves is close to 2,
confirming that the mean square error is proportional to σ2.
The proportion constant is dependent on the sampling and is of
course much lower for the regular case which is less affected
by interpolation errors in the computation of the mean square
error.

IV. OFFSET

We suppose that there is an offset that is uniform over time,
which means that for each realization of the normal distribution
used, the set of levels is replaced by a perturbed one. This
behavior can be explained for example by an experimental
setting where the comparators of the A-ADC have slightly
different properties as prescribed by the design.

Fig. 3. Error in presence of an additive noise; asterisk: regular case, diamond:
M = 3, square M = 4.

As for the additive noise case we are interested in the mean
square error between the filtered signal with an without offset.
More realizations of the normal distribution will be necessary
to obtain convergence, since only 2M random numbers are
computed for each realization. Another feature is that the
number of non-uniform samples vary from one realization
to another. We therefore have to compare the signals at the
same times, and use the frequency-domain algorithm for this
purpose. Beside we can study the dispersion of the number of
samples and compute the variance of this number.

We use the same input signal as in Section III, with M = 3
and σ = q/16, q/8, q/4, q/2, and q. The results are displayed
in Figure 4. Here no comparison with the regular case is
possible.

Fig. 4. Error in presence of offset.

As expected, if the offset standard deviation is of the order
of the quantum, the signal and hence its filtering is too much
perturbed. For smaller values of the behavior is almost linear
in log-log scale (more realization should be used to have better
results) and the slope is 1.8, close to 2.



Now the variance of the number of samples is computed
and displayed in Figure 5. Here again a higher number of
realizations should be done to have better results, but the
slope is 1. The variance of the number of samples behaves
proportionally to the standard deviation.

Fig. 5. Variance of the number of samples in presence of offset.

V. CONCLUSION

We have investigated the impact of additive noise and
uncertainty on levels (offset) on the IRR filtering of level-
crossing sampled data. The number of levels that we use is
very low and is quite sufficient to obtain filtered signals which
are precise enough for the targeted applications. Besides the
test cases used here are practical for filter testing since it is
easy to check whether the higher frequency (4 in our case)
has been filtered out or not. Of course level-crossing sampling
is especially efficient in the case of sporadic signal (typically
not sum of sine functions!) because of the very low number
of non-linear samples compared to Nyqvist sampling.
In both cases additive noise and offset, we have been able to
connect the standard deviation of the applied noise (on the
signal or the levels) to the mean square error between the
perturbed and non perturbed signals.
Further results have to be obtained in the case when both the
signal and the levels are affected by noise.
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