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ABSTRACT
La complexité de l’environnement dynamique dans lequel évolu-
ent les entreprises requiert de la part de leurs managers de pren-
dre des décisions pertinente en un laps de temps très court. Les
systèmes de supervision des activités métiers devraient supporter
des requêtes bitemporelles complexes qui accèdent aussi bien à des
données historiques qu’à des données temps réel afin de détecter
des anomalies ou bien des tendances dans l’activité de l’entreprise.
Cependant, il s’avère que l’accès à ces deux types de données peut
être lent, ce qui ne convient pas aux applications de supervision.
Dans ce papier, nous présentons Decision Insight, une plateforme
développée par un éditeur de logiciels français pour aborder ce
problème. Elle est basée sur un SGBD orienté colonnes qui redéfinit
les requêtes bi-temporelles en: 1) un ensemble de requêtes con-
tinues pour gérer les données temps réel et dont les résultats sont
matérialisés, et 2) une requête qui accède aussi bien aux données
historiques qu’aux résultats des requêtes continues.
Nous démontrons l’intérêt de notre approche en utilisant une ver-
sion adaptée du benchmark TPC-BiH qui est une extension bi-
temporelle du benchmark TPC-H.

Categories and Subject Descriptors
H.4 [Information Systems]: Data management systems—Data
model extensions,Temporal data

General Terms
Business activity monitoring, temporal databases, temporal query
optimization
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1. INTRODUCTION
Companies operate in very dynamic and complex environments,

requiring their managers to possess both agility and ability to make
proactive operational decisions, in order to maintain or improve
their business [23]. On the one hand, exploiting historical data is
covered by the Business Intelligence (BI) domain [33], which pro-
vides access to past performance indicators by analyzing informa-
tion stored in data warehouses. This enables users to understand
what happened in the past and help them to prevent making mis-
takes in the future.
On the other hand, managers traditionally rely on Business Activ-
ity Monitoring (BAM) systems [23] to make operational decisions,
see for instance Splunk1 and Vitria2. BAM aims to provide
real-time access to critical business performance indicators. Thus
managers can have a deep insight into what is currently happening
in their business before taking rapid and effective decisions. BAM
gathers its information in real-time by analyzing data streams from
multiple sources. Nevertheless these technologies are limited be-
cause they focus on real-time information, ignoring existing his-
torical data. They do not give managers the necessary hindsight
to compare the current company activity behavior with its history.
Therefore, false positive decisions could be taken by analysts since
real-time and historical data are not considered together.
To overcome these limitations, BAM tool capabilities could be en-
hanced with BI features. Managers could then use an hybrid tool to
handle both real-time and historical data, allowing them to continu-
ally navigate from real-time to historical data. Such hybrid systems
approach faces with two main issues: combining real-time and his-
torical systems and the performance issue.

• Handling Two Different Types of Systems: Historical and
real-time data are handled by two different types of systems.
Historical data require well-known OLAP DataBase Man-
agement Systems (DBMS). Real-time data rely on Data Stream
Management Systems (DSMS), Complex Event Processing

1http://www.splunk.com/
2http://www.vitria.com/



(CEP) or BAM systems [22]. These systems handle tran-
sient data streams and can query them thanks to Continuous
Queries.
Handling within a unique system those two different types of
data is clearly an issue.

• Performance Issue: BI systems are usually used to generate
non interactive reports which do not have real-time (or near
real-time) requirements. BAM tools however always provide
managers with a graphical user interface (GUI) to monitor
their business. The GUI is always interactive and offers the
possibility to explore real-time data and other analyses com-
puted over them. This means that the underlying system must
guarantee fast response time of queries in charge of feeding
the GUI with information. This is because GUI display lag
can make the system unpractical, thus reducing its interest.
When historical data have to be queried, the main perfor-
mance bottleneck is on the induced I/O cost which impacts
real-time data processing, leading to unacceptable GUI dis-
play lag.

As far as we know, Chandrasekran and Franklin [9] and Reiss
and al [24] were the first to address the topic of enhancing DSMS
with DBMS capabilities. In [24], they define bitmap index spe-
cially designed to handle these two types of data. In [9], they
present a framework using Data Reduction techniques, sampling
techniques in their case, to limit I/O overhead induced by access-
ing historical data. Their approach enables the reduction level to be
adapted according to the available resources. They also addressed
the issue of when to perform data reduction. Three approaches
were explored: data reduction at data arrival, at query execution or
both. The framework was implemented on top of PostgreSQL.

In this paper, we focus on queries that access both historical data
already existing in the system and live data that had not yet been
entered into the system when the query was defined. They are tem-
poral by nature because they access data evolving over time. Such
queries support either the valid time dimension [28] or the transac-
tion time dimension [29] or both (bi-temporal query). The support
of the transaction time means that the query can access the history
of data as it is modified in the DB. The valid time enables access
to the history of data as it evolves in the modeled reality. We con-
sider the case of bi-temporal queries. Let us consider the following
example:

“What is the average of new revenue achieved by
the company every month last year (2014), consider-
ing the DB at the instant 1/10/2015 ?”

This simple query requires access to all items that have been
ordered from 1/1/2014 to 12/31/2014. Depending on the database,
this query may induce a large number of I/O operations and can be
very long to complete. Whenever this query is executed only once,
traditional approaches can be applied. Otherwise, if this query has
to be executed several times – for example to frequently refresh
some GUI – this is not acceptable.

Paper contribution.
We present Decision Insight [3], a platform that deals with his-

torical and real-time data in a unified manner. The project was
launched in 2008 under the name of Tornado by Systar, a French
software editor. This latter was then acquired in 2014 by Axway,
another French software editor and Tornado became Decision In-
sight. Axway aims to compete with major leading industries in
data management worldwide and turns out be the fifth french editor

according to a recent study3. The project mobilizes about twenty
engineers and it has been marketed since 2013. This platform im-
plements an optimization that consists in redefining complex bi-
temporal queries into: 1) a set of continuous queries in charge of
handling real time data streams (whose results are materialized) and
2) a query that accesses both historical and materialized results of
the previous continuous queries. Thus, Decision Insight can pro-
vide analysts with timely answers through a convenient GUI [3].
Decision Insight is based on a column-store bi-temporal DBMS
that handles these two types of data and implements a simple and
efficient bi-temporal query optimization technique. We demon-
strate the interest of our approach using an adapted version of TPC-
BiH, a bi-temporal extension of the TPC-H benchmark. Extensive
experiments have been conducted, pointing out the interest of De-
cision Insight for delivering timely information based on historical
and real-time data.

Paper organization.
The remainder of this paper is structured as follows: In section

2 we introduce our query rewriting approach. Then in section 3,
we address the issue of materialized continuous query computation
scheduling. Then in section 4, we point out how the contribution
has been implemented within the Decision Insight framework. Ex-
periments are given in section 5 using the TPC-BiH [17] bench-
mark. Section 6 is devoted to related works. Then we conclude the
paper in section 7.

2. QUERY REWRITING
In this section, we first describe how aggregate bi-temporal SQL

queries are expressed. Then we explain how complex bi-temporal
queries are decomposed as a set of materialized continuous queries
(CQ) and one special bi-temporal query.

In the rest of the paper, all queries are expressed using a pseudo-
SQL formalism based on SQL:2011 supporting temporal features
[20].

2.1 Temporal Query Expression for Aggregate
Queries

It is well known that the expressiveness of SQL:2011 is limited
to defining temporal queries performing aggregations [20, 18].

2.1.1 Rhythm
To deal with this issue, we introduce the concept of rhythm as a

partition of the valid time domain into contiguous and equal-length
time intervals. A rhythm is defined by a couple (begin, duration)
where begin is the reference time instant to be used for partitioning
the valid time domain and duration is the length of each interval.
For example, the rhythm (01/01/2014, 1 day) corresponds to the
following partition:

[01/01/2014, 01/02/2014[∪[01/02/2014, 01/03/2014[∪ . . .

Clearly, a rhythm is used to define the time range over which the
aggregation is performed.

Rhythms can be implemented in SQL:2011 as a relation with two
attributes representing the endpoints of each interval of that rhythm.
In the sequel, all queries use a one-day rhythm (01/01/1990, 1
day) represented by the relation Rhythm_day.

2.1.2 Temporal Data Schema of the Running Exam-
ple

3http://www.infodsi.com/articles/155700/editeurs-francais-contre-
courant-conjoncture.html?key=c9fee7a30353fd4a



Figure 1: Temporal database schema adapted from TPC-BiH
[17]

The TPC-BiH database schema [17] is a bi-temporal extension of
the TPC-H database schema. It mainly describes customers, orders
and line items of a fictive company. We have slightly adapted the
TPC-BiH database schema to fit our needs (Fig. 1). The schema
is fully bi-temporal, i.e all tables are extended with both valid time
and transaction time.

2.1.3 Temporal Aggregations
We follow Kaufmann and al’s classification of time ranges in

temporal aggregations [18]. They identified four types of time
ranges:

• Instantaneous Aggregation [12]: The aggregation is per-
formed on all valid tuples at an instant, e.g "What is the num-
ber of orders with orderstatus=’O’ at the beginning of every
day during the valid time interval [01/01/1994, 06/01/1994[,
considering the DB at the transaction instant ’10/20/2014T10:30:00.0’
?". This query is represented in Listing 1.

Listing 1: Example of an instantaneous aggregation
SELECT COUNT(*) as numberOpenOrders,

Rhythm_day.vtb, Rhythm_day.vte
FROM Orders
FOR SYSTEM_TIME AS OF TIMESTAMP
’10/20/2014T10:30:00.0’ ,

Rhythm_day
WHERE

-- filter of rhythm intervals
(01/01/1994 <= Rhythm_day.vtb AND
Rhythm_day.vtb < 06/01/1994) AND
-- only orders valid at Rhythm_day.vtb
Orders.vtb <= Rhythm_day.vtb AND
Rhythm_day.vtb < Orders.vte AND
orderstatus= ’O’

GROUP BY Rhythm_day.vtb;

• Tumbling Window: the aggregation is performed on non
overlapping intervals, e.g "What is the total revenue achieved
by the company every day during the valid time interval [01/01/-
1994, 06/01/1994[ and considering the DB at tt=10/20/2014T-
10:30:00.0 ?". This query is represented in Listing. 2.

Listing 2: Tumbling Window query
SELECT SUM(extendedPrice) as totalRevenue,
Rhythm_day.vtb, Rhythm_day.vte

FROM LineItems
FOR SYSTEM_TIME AS OF TIMESTAMP
’10/20/2014T10:30:00.0’,
Rhythm_day

WHERE
-- filter of rhythm intervals
(01/01/1994 <= Rhythm_day.vtb AND
Rhythm_day.vtb < 06/01/1994) AND
-- filter new lineItems
Rhythm_day.vtb <= LineItems.vtb AND
LineItems.vtb < Rhythm_day.vte

GROUP BY Rhythm_day.vtb;

• Sliding Window: the aggregation is performed on overlap-
ping intervals, e.g "What is the total revenue achieved by
the company during the last 10 days, computed every day if
we consider the valid time interval [01/01/1994, 06/01/1994[
and considering the DB at tt = ’10/20/2014T10:30:00.0’ ? ".
This query is represented in Listing 3.

Listing 3: Aggregation using a sliding window time range
SELECT SUM(extendedPrice) as totalRevenue,
Rhythm_day.vtb, Rhythm_day.vte

FROM LineItems
FOR SYSTEM_TIME AS OF TIMESTAMP
’10/20/2014T10:30:00.0’,
Rhythm_day

WHERE
-- filter of rhythm intervals

( 01/01/1994 <= Rhythm_day.vtb AND
Rhythm_day.vtb < 06/01/1994) AND
-- filter new lineItems
(Rhythm_day.vtb - INTERVAL 10 days) <=
LineItems.vtb AND
LineItems.vtb < Rhythm_day.vtb

GROUP BY Rhythm_day.vtb;

• Landmark Window: the aggregation is performed on inter-
vals that share the same interval begin, e.g "What is the total
revenue achieved by the company to each day for the cur-
rent month considering the valid time instant [01/01/1994,
01/23/1994[ and the DB at tt = ’10/20/2014T10:30:00.0’ ?".
This query is represented in 4.

Listing 4: Aggregation using a landmark window time range
SELECT SUM(extendedPrice) as totalRevenue,



’01/01/1994’ as vtb, Rhythm_day.vtb

FROM LineItems
FOR SYSTEM_TIME AS OF TIMESTAMP
’10/20/2014T10:30:00.0’,

Rhythm_day
WHERE

-- filter of rhythm intervals
(01/01/1994 <= Rhythm_day.vtb AND
Rhythm_day.vtb < 01/23/1994) AND
-- filter new lineItems
01/01/1994 <= LineItems.vtb AND
LineItems.vtb < Rhythm_day.vtb

GROUP BY Rhythm_day.vtb;

2.2 Query Rewriting Technique
Business Activity Monitoring systems usually provide managers

with features to build so-called views to monitor their business
through user-friendly GUI. Those views use underlying queries to
feed them with information to display. Consequently, they are not
intended to be executed only once and then deleted as is usually the
case in standard applications. Indeed, they can be evaluated several
times, as long as the related view needs to be updated.

In this section, we sketch the main idea of our query rewriting
technique. Without loss of generality, we are concerned with the
following class of bi-temporal queries [30]:

Listing 5: Initial query Qt

SELECT A1, A2, ..., An, Agg1, Agg2, ..., Aggk,
Rhythm_Table.vtb,Rhythm_Table.vte

FROM table1, table2, ..., tableJ,
stream1, stream2, ..., streamK,
Rhythm_Table

WHERE tc1 AND tc2 AND ... AND tcn AND
c1 AND c2 AND ... AND cm

GROUP BY A1, A2, ..., An,
Rhythm_Table.vtb, Rhythm_Table.vte

where:

• A1, A2, . . . , An are attributes or derived attributes,

• Agg1, Agg2, ..., Aggk are aggregation functions, e.g., AVG,
SUM, MIN.

• The WHERE clause is a conjunction of selection predicates
and join predicates: tcj predicates are over temporal attributes
while ci are over non temporal ones.

• table1, table2, . . . , tableJ are tables from the accessed database
(historical data).

• stream1, stream2, . . . , streamK are data streams (live
data)

• Rhythm_Table is the table defined in the previous section.

Such a query is used to feed an underlying GUI whenever it
needs to be updated, e.g due to a user interaction. Whenever the
amount of data to be processed exceeds some limits, GUI latency
deteriorates. Therefore, to address the scalability issue, we rely on
data reduction techniques. Intuitively, we compute as soon as pos-
sible some partial answers allowing to efficiently answer a query
asked by decision-makers. In other words, instead of performing
aggregations at query time, we propose to perform them on data
arrival. Thus, when a query is executed, it simply accesses the re-
sults of the aggregations which requires fewer I/O operations. This

approach ensures that the most expensive I/O costs have been per-
formed before information is needed by a decision-maker. Hence,
at query-time, the cost will be as low as possible, thus satisfying
our major goal.

Given a bi-temporal query, the process is as follows:

• one or more simple continuous queries [4] are defined, and
their results are materialized. Such queries handle large vol-
umes of data and do not affect historical data. They are re-
ferred to as materialized continuous queries;

• one elaborated temporal query, referred to as an on-demand
query, in charge of providing decision-makers with results.
Such a query accesses both historical and live data, including
materialized CQs.

This approach has the advantage of providing a unified way to
access both real-time and historical information through temporal
queries. The result of this approach is equivalent to the result of the
initial query against the same data. The reader is referred to [19]
for equivalence of continuous queries. This is not in the scope of
this paper.

2.3 Materialized Continuous Queries
For each aggregation Aggi in the initial query, we define one

continuous query in charge of reducing input data into pre-computed
aggregates. This query is simple and can handle a large volume of
data, as in (Listing 6).

Listing 6: A materialized continuous query
SELECT A1, A2, ..., An, Agg, vtb, vte
FROM stream1, stream2, ..., streamK
WHERE tc1 AND tc2 AND ... AND tcn AND
c1 AND c2 AND ... AND cm

GROUP BY A1, A2, ..., An

where:

• Agg is the aggregation operation performed by the query,

• stream1, stream2, ..., streamK is the set of accessed data
streams,

• vtb and vte are two time attributes representing the time in-
terval during which the computed result is valid,

• the result of this query is stored in a table, thus becoming
historical data.

Each continuous query is bound at its creation to a rhythm. For each
interval of the rhythm, the query returns one result that is stored in
the DB. The choice of the rhythm depends on the user’s needs. The
more accurate the expected result, the finer the rhythm’s granular-
ity, and the higher CPU cost and memory utilization.

Whenever a continuous query is created, some new attributes
linked to that query are added dynamically to the database schema.
This is intended to store the query results for future use. If we con-
sider the example from the introduction, then our approach requires
one continuous query (Listing. 7).

Listing 7: The continuous query sumNewRevenuePerDay
SELECT SUM(extendedPrice) as agg,
[vtDay].vtb, [vtDay].vte

FROM LineItems
WHERE
[vtDay].vtb <= vtb AND



vtb < [vtDay].vte) AND
Rhythm_day.vtb <= LineItems.vtb AND
LineItems.vtb < Rhythm_day.vte;

2.4 On-demand Queries
An on-demand query is a bi-temporal query executed against the

database whenever new information is required by decision-makers
through their GUI.

Listing 8: On-demand query
SELECT A1, A2, ..., An
FROM table1, table2, ..., tableJ
WHERE tc1 AND tc2 AND ... AND tcn AND

c1 AND c2 AND ... AND cm;

We consider two classes of on-demand queries: time travel and
time slice queries.

• Time Travel: This consists in acquiring the state, or snap-
shot, of the DB at a specific time. Here is an example of this
class of queries (listing 9): " What is the revenue achieved
by the company at vt = 10/13/2014, considering the DB at tt
= 10/20/2014T10:30:00.0?".

Listing 9: A time travel query example
SELECT aggr
FROM sumNewRevenuePerDay
FOR SYSTEM_TIME AS OF TIMESTAMP
10/20/2014T10:30:00.0
WHERE vtb <= 10/13/2014 AND 10/13/2014 < vte;

• Time Slice: This class of queries is intended to return the his-
torical data according to one temporal dimension. We fix one
time dimension at a particular time instant while the other
one is fixed at an interval. Here is an example of this class
of queries (listing 10): "What is the revenue achieved by the
company during the interval [10/13/2014, 12/13/2014[ and
considering the DB at tt=10/20/2014T10:30:00.0?"

Listing 10: A time slice query example
SELECT aggr, vtb, vte
FROM sumNewRevenuePerDay
FOR SYSTEM_TIME AS OF TIMESTAMP
10/20/2014T10:30:00.0
WHERE 10/13/2014 <= vtb AND vtb < 12/13/2014;

2.5 Data Storage
A database used in BAM applications has to store both real-time

data and results of the materialized continuous queries. It thus of-
fers an unified interface to access them all. Since these data are bi-
temporal, we need a database management system with bi-temporal
capabilities. Decision Insight is based on a column-store DBMS
[31, 7] which means that a table is stored column by column. We
outline below three main reasons motivating our choice.

2.5.1 Performances in Analytical Workloads
The oriented-column databases are intended to perform analyti-

cal queries that analyze data and give an insight into the business
activity, e.g the number of orders in pending status. The column-
oriented database systems outperform row-oriented database sys-
tems on analytical workloads such as those found in business intel-
ligence and decision support applications [1].

2.5.2 Dynamic Update of the Database Schema
Our query optimization requires adding and removing attributes

dynamically. The row-oriented approach is not suitable in our case
because addition or deletion of an attribute affects the whole ta-
ble, with performance impacts on the modified table. However
the column-oriented approach does not suffer from this issue since
each attribute has its own column.

2.5.3 Dealing with Temporal Attribute Evolution
The database must have bi-temporal built-in support and is in-

tended to handle the history of data as it evolves. In the row-
oriented approach, the update of an attribute value requires adding
a new tuple with the new value. This behavior causes both a storage
overhead and an increase in query execution time due to data dupli-
cation. As an example, let us consider the table Customer (Table 1)
represented using the formalism proposed by Snodgrass [27]. The
update of the attribute balance for the customer "AWM" leads to
the insertion of two new tuples in the table 2.
In a column-oriented approach, each attribute can evolve indepen-
dently because it is stored in its own column.

Table 1: customer before the update
custid name balance vtb vte ttb tte
1 Benason 12000 10/16 ∞ 10/16 ∞
2 AWM 2000 10/9 ∞ 10/10 ∞
3 Vop 47800 10/13 ∞ 10/14 ∞

Table 2: customer after the update
custid name balance vtb vte ttb tte
1 Benason 12000 10/16 ∞ 10/16 ∞
2 AWM 2000 10/9 ∞ 10/10 10/17
2 AWM 2000 10/9 10/17 10/17 ∞
2 AWM 6000 10/17 ∞ 10/17 ∞
3 Vop 47800 10/13 ∞ 10/14 ∞

This issue has been addressed by Jensen and Snodgrass from a
logical point of view [16]. They support the idea that the introduc-
tion of temporal dimensions in the data model requires adaptation
of the data model design. They propose a handbook of best prac-
tices for the design process. However, this is not in the scope of
this paper. As shown above, Decision Insight is therefore based on
a column-store DBMS.

2.6 Computation Scheduling of Materialized
Continuous Queries

The use of materialized views requires in general to consider the
scheduling strategy to compute its results. This strategy has to rec-
oncile keeping views up-to-date as data is collected and limit the
number of refresh so the computation cost overhead is contained.
Actually it is unthinkable to compute a view for each single incom-
ing update of entity. It is rather wise to refresh views periodically
or by bunch of updates. In the case of a soft real-time 2TDBMS,
the maintenance of materialized queries is more complex. The
real-time aspect induces computation deadline constraints to en-
sure fresh information to managers. The bitemporality necessitates
to consider the semantics of the two temporal dimensions to choose
the adapted computation strategy. Indeed we need to determine
the adequate instant when data is supposed to be available in the
database to trigger the computation. In the general case the two di-
mensions are orthogonal, which means that there is no restrictions



between the valid time and the transaction time of any fact in the
DB. However in many practical applications there is a restriction
relationship between them. For example, if we suppose that ev-
ery event that occurs in the reality is considered as valid when it is
inserted in the DB which, then vte = tte. This topic has been ad-
dressed by Jensen and Snodgrass in bitemporal relational databases
[15] under the name temporal specialization relations. The authors
classify bitemporal relations into 15 classes of specialization.
In Decision Insight, we consider three types of events :

• Retroactively bounded events: It is the usual case. For each
event, valid time and transaction time have the following in-
terrelationships vte < tte ≤ ∆t + vte with ∆t > 0. In
specific terms, the event occurs in reality at vte, then it is
recorded in DB at tte. ∆t is fixed by the user and repre-
sent the necessary time to collect it, transfer it to the DB and
record it.

• Delayed retroactive events: It corresponds to events whose
temporal attributes have the following interrelationships ∆t <
tte − vte. This type of events occurs in two cases:1) when
there is technical issue making difficult to deliver events to
the DB. 2) to correct previous events that have been recorded
into the DB.

• Predictive events: This case corresponds to events that are
recorded in the DB before they occurs in reality (tte ≤ vte),
e.g a government tax rate modification which is always an-
nounced before it is applied so that concerned people make
arrangements.

In order to handle these three types of events, Decision Insight im-
plements two different approaches: Live Mode and Late Data Han-
dler.

• Live Mode : This approach is the usual mode and is in charge
of handling both retroactively bounded events and predictive
events. Concretely, considering a materialized continuous
query, the condition to schedule its execution for an interval
of its rhythm is that all input data are available. Thus, for a
rhythm interval [vtbegin, vtend[, the system supposes that at
tt = vtend + ∆t all input data is available and schedules the
computation. ∆t must smaller than vtend − vtbegin. Other-
wise, the computation task queue fill rate will be faster than
the computation rate.

• Late Data Handler: This mode is dedicated to retroactive
events. When such type of events arrives, the system deter-
mines all materialized continuous query and rhythm intervals
impacted. Then it schedules a their recomputation.

In the sequel, we restrict ourselves to the live mode.

3. DECISION INSIGHT
Decision Insight is a comprehensive data-intensive decision sup-

port system that combines both BI and BAM capabilities. It uses a
dashboard as an user interface primitive, allowing analysts to visu-
alize activity indicators and to navigate in time to understand how
they evolve. A dashboard is made up of one or more graphical el-
ements (diagrams, charts, datagrids, . . . ) referred to as pagelets in
the sequel. Each graphical element displays data returned by an
underlying query. An example of a pagelet is depicted in Fig. 2,
where daily revenues for a company are displayed as a curve in a
particular time range.

Implementing queries using a SQL-based language can be a very
difficult activity, particularly for business managers with limited

technical skills. Decision Insight provides an advanced graphical
interface for rapid design of the complex queries related to BAM
[3].
Decision Insight allows to specify in a graphical interface the main
steps of the query optimization previously defined. This query
rewriting is performed intuitively via the GUI by a decision maker.
The process of implementing a pagelet is divided into two phases
described below.

3.1 Designing Materialized Continuous Queries
First, the manager has to define all analyses on data streams that

he wants to use in his pagelet.
Let us consider the following query: "What is the revenue achieved

by the company every day from 01/01/1992 to 01/01/1993, consid-
ering DB at the most recent state?". The screenshot (Fig.3) shows a
part of Decision Insight’s user interface used to create a new analy-
sis corresponding to Fig. 2. (A) indicates which rhythm do we want
to link to the attribute. In our case we choose a one-day rhythm as
we want to know the company’s total revenue per day. (B) indi-
cates the aggregation operation used to generate the analysis. (C)
indicates the time-range to consider for the aggregation. In our ex-
ample we fix at the last day. Finally (D) represents data inputs used
to compute the analysis, which is the attribute "extendedPrice" of
the LineItem. For each of these attributes, Decision Insight cre-
ates attributes via an underlying materialized continuous query in
a transparent way for the user.

3.2 Designing On-Demand Queries
In the second phase, the manager chooses the form and the con-

tent that will be displayed on the pagelet. Fig.4 is a screenshot of
Decision Insight’s user interface for implementing a pagelet. (A)
indicates the type of graphical element the manager wants to dis-
play, namely a historical curve. (B) indicates the time range of
information to display on the pagelet. According to the query, we
choose to display the whole current month. (C) indicates the infor-
mation to be displayed. Based on the provided information, Deci-
sion Insight creates a pagelet and an underlying on-demand query
in charge of updating the pagelet content (Fig.2).

4. EXPERIMENTS

4.1 Bi-temporal DB Benchmarks
A bi-temporal benchmark can be used in our case since it offers
bi-temporal data that can be used to simulate real-time data. To the
best of our knowledge, the TPC-BiH [17] is the most complete bi-
temporal benchmark. TPC-BiH is an extension of TPC-H [11] and
measures the performances of a DBMS used by a decision support
system. The benchmark also includes a data generator producing
a workload based on 9 categories of business transactions (New
Order, Cancel Order, Update Stock, etc).

4.2 Database Populating
From the initial data produced by the TPC-BiH data generator,

we generate a stream of events < id, data, T >. Each event cor-
responds to an updating instruction addressed to the database. id is
the event type, e.g "insert a new order" or "insert a new customer".
data is the information handled by the event and T is the times-
tamp when the event occurred. The events are ordered according
to the attribute T , so we can simulate a real-time workload. The
initial TPC-BiH dataset has a size of 400MB. The generated data
stream contains 3620761 events (Table 3).

We also introduce a scaling factor "sf " to fix the rate of the data
stream. For the initial data stream sf = 1. All data streams with a



Figure 2: Snapshot of a pagelet displaying the daily evolution of revenues

Figure 3: Decision Insight’s interface to implement a continuous query

higher sf are generated by duplicating sf times each of its events.

4.3 Queries
We have implemented two examples of typical queries used in

BAM. They are simple so that they can be easily expressed. Those
queries are frequently executed by a GUI which requires rapid re-
sponse times.

4.3.1 Query 1

This first query, (listing 11), aims at answering the following
business question: "What is the sum of new revenues for the com-
pany every day from 1/1/1992 to now considering the most re-
cent data?". We redefine this query as one materialized continuous
query "Q1-Cont" (Listing 12) and one on-demand query "Q1-OnD"
(Listing 13).

Listing 11: Q1: New Revenue per day
SELECT Ryhthm_1d.vtb as vtb, Ryhthm_1d.vte as vte,



Figure 4: Decision Insight’s interface for implementing an On-Demand query

Table 3: Number of operations per table
Relation # of insertions # of updates # of deletions
Region 5 0 0
Nation 25 0 0
Supplier 1000 0 0
Part 20000 49861 0
Customer 164668 253430 0
Partsupp 80000 352391 0
Orders 348026 681103 8452
LineItems 939670 699310 22820

SUM(extendedPrice) as totalRevenuePerDay
FROM LineItems, Ryhthm_1d
WHERE

’01/01/1992’=<Ryhthm_1d.vtb AND
Ryhthm_1d.vtb < ’01/01/[YEAR]’ AND
Ryhthm_1d.vtb <= LineItems.vtb AND
LineItems.vtb< Ryhthm_1d.vte

GROUP BY Ryhthm_1d.vtb;

Listing 12: Q1-Cont: New Revenue per day
SELECT SUM(extendedPrice) as totalRevenuePerDay,

[vtInterval].begin as vtb, [vtInterval].end as vte
FROM LineItems
WHERE [vtInterval].begin <= vtb AND

vtb < [vtInterval].end;
-- [vtInterval]: a rhythm interval

Listing 13: Q1-OnD: New Revenue per day
SELECT vtb, vte, aggr as newRevenuePerDay
FROM totalRevenuePerDay
WHERE ’01/01/1992’ <= vtb AND

vtb < ’01/01/[YEAR]’;

4.3.2 Query 2
The query given in the (listing 14) aims at answering the follow-

ing business question: "What is the number of orders per status for
every day from 1/1/1990 to now considering the most recent data?".
We redefine this query as one materialized continuous query "Q2-
Cont" (Listing 15) and one on-demand query "Q2-OnD" (Listing
16).

Listing 14: Q2: Number orders per status and per day
SELECT Ryhthm_1d.vtb as vtb, Ryhthm_1d.vte as vte,

SUM(extendedPrice) as totalRevenuePerDay

FROM Orders, Ryhthm_1d
WHERE
’01/01/1992’=<Ryhthm_1d.vtb AND
Ryhthm_1d.vtb < ’01/01/[YEAR]’ AND
Ryhthm_1d.vtb <= order.vtb AND
order.vtb< Ryhthm_1d.vte;

GROUP BY Ryhthm_1d.vtb, orderid;

Listing 15: Q2-Cont: Number of orders per status and per day
SELECT COUNT(*) as numberOrdersPerDay,
[vtInterval].begin as vtb, [vtInterval].end vte

FROM Orders
WHERE [vtInterval].begin <= vtb AND
vtb < [vtInterval].end

GROUP BY orderid;

Listing 16: Q2-OnD: Number of orders per status and per day
SELECT vtb, vte, numberOrdersPerDay
FROM Orderstatus
WHERE ’01/01/1992’ <= vtb AND
vtb <’01/01/[YEAR]’;

4.4 Experimental Results
In this section we present the results of experiments conducted to

assess the performances of our approach. To do this, we compare
system performances with and without using our optimization. We
also present some measures of the overhead induced by our opti-
mization. Experiments were executed on a physical machine which
runs an Ubuntu 10.04, equipped with 12GB of RAM, an Intel i7
processor with 8 cores at 2.8GHz and a 4TB of RAID storage.

4.4.1 Response Time
In this test, we point out the interest of our approach in reducing

Decision Insight’s time response. We run two experiments: in the
first, we evaluate the impact of the time range size on the execution
time of Q1 and Q2 (sf = 1) while in the second, we vary the value
of sf .

Fixed Scalar Factor
We inject stream concerning the period [1/1/1992, 1/1/1999[. At
the beginning of each new year of the simulation period, we execute
once Q1 and Q2 using a new value of the parameter "[YEAR]". We
compare two versions of each query: the optimized version, using
our approach based on continuous queries (Q1-OnD and Q2-OnD),
and a classical version, where the result is computed whenever the



query arrives (Q1 and Q2). We collect the execution times of these
queries and represent them on Fig.5.
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Figure 5: Query response time while varying window size

We can notice that optimized versions of queries outperform the
rest by at least a factor of 100. For each day of the query interval,
Q1-OnD accesses one value which is the materialized result of the
underlying continuous query. Q1, however, accesses the original
data, i.e about 200 items for each day.

Varying Scalar Factor
In this experiment, we assess our approach when we vary the data
stream rate. The experimental conditions are similar to the pre-
vious test. We vary the value of sf from 1 to 6. For each value
of sf , we inject the stream that concerns the period [1/1/1992,
1/1/1995[. Following injection, queries Q1 and Q2 are successively
executed with and without optimization. The queries are executed
with [YEAR]=1995.
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Figure 6: Query response time while varying data stream rate

When the data stream rate increases, the query execution time of
the non-optimized queries increases, else it remains stable.

4.4.2 Precomputation Overhead
Previous tests demonstrate the advantage of our approach in re-

ducing the response time of the system. However it induces a CPU
and disk storage overhead.

Fixed Scalar Factor
The experimental conditions are similar to the test for response
time/fixed scalar factor, except that we use only Q1. For each day

of the simulated period, we collect the CPU time of Q1-Cont. We
also collect the CPU time to execute Q1-OnD and Q1. Fig.7 shows
the results of the experiment: one curve represents the CPU con-
sumption of Q1, while the other is the sum of the CPU consumption
of Q1-cont and Q1-OnD.
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Figure 7: Continuous query computation overhead

It appears that the optimized approach requires a CPU overhead
throughout the simulation time. However, it smooths the CPU con-
sumption curve and avoids peaks at query time and thus system
overload. We also notice that as from the 2000th day of simula-
tion, the CPU Q1 cost is at least 100 times greater than the CPU
required to compute Q1-cont and Q1-OnD. This means that for a
query using a large time interval (6 years), the overhead induced by
our approach has no impact on query processing performance.

Varying Scalar Factor
In this experiment we assess the cost of our approach as we vary the
stream rate using the parameter sf . For each stream, we first inject
data stream corresponding to the period [1/1/1992, 1/1/1995[, then
we execute Q1 with [YEAR]= 1995. We collect the CPU time to
perform Q1 and Q1-OnD. We also collect the average CPU time
of Q1-cont per day and the total sum of all CPU time consumption
of Q1-cont during the simulation. The results are represented in
(Fig.8).
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Whenever sf >= 6, our approach does not have any CPU over-
head.



4.4.3 Concurrent Query Execution
In this test, we simulate several users interacting with the sys-

tem. We have performed two experiments: one where we vary the
number of concurrent queries and another where we vary sf .

Fixed Scalar Factor
In this experiment, we use a dataset where sf = 1. We first pop-
ulate the system with data corresponding to the period [1/1/1992,
1/1/1999[. Following system population, we execute concurrently
several instances of the query Q1 with [YEAR]=1999. Then we get
the CPU time required to execute them all. Fig.9 shows the results
of this experiment where we varied the number of simultaneous
executed queries from 1 to 20.
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Figure 9: Concurrent query execution

As shown in Fig.9, our approach is quite adapted for execution
of concurrent queries.

Varying Scalar Factor
In this experiment, we explore the impact of the data stream through-
put on the execution of concurrent queries. We first populate the
system with data that corresponds to the period [1/1/1992, 1/1/1995[.
Then we execute 10 concurrent queries, corresponding to 10 users.
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Figure 10: Concurrent query execution while varying sf

As in the previous test, we observe the advantage of the proposed
optimization due to the increasing number of queries accessing the
results of continuous queries as historical data.

5. RELATED WORKS

To the best of our knowledge, Chandrasekaran and Franklin were
the first to address the topic of combining real-time data with histor-
ical data [9] in the academic field. They noted that the main perfor-
mance issue for those systems was the I/O cost induced by gather-
ing historical data, which decreases drastically live data stream pro-
cessing performance. They proposed a framework using some data
reduction techniques for historical data to limit I/O cost (see also
[5]). Their framework data reduction level to be adapted with re-
spect to current available resources. They defined three approaches
to perform data reduction techniques: OnWriteReplicate, OnRead-
Modify and Hybdrid approach. The first approach is based on the
fact that random disk I/Os are expensive. Data reduction is per-
formed continuously as soon as data is collected by the system.
Thus at query time, the global query can access pre-computed re-
sults when needed. Nevertheless, pre-computed results can never
be accessed by global queries. The second approach consists in per-
forming the data reduction at query time only. The price to be paid
can be very high for delivering timely information. The third ap-
proach combines the two previous approaches and shares the work
between data arrival and query time. In this approach there is a
single copy of the stream stored on disk and divided into separate
batches. Each batch is divided into a fixed number of blocks. Tu-
ples are randomly inserted in different blocks of the current batch.
Once one block is filled, the entire run is flushed on disk. At query
time, the system only accesses a fraction of blocks of runs accord-
ing to a sampling rate.
With respect to our contribution, we use the OnWriteReplicate ap-
proach which turns out to be effective for BAM applications. Post-
poning query processing when the system is at a lower load is not
a new idea, see for instance [10] in a BI context. Load shedding
techniques have been investigated in DSMS to come up with high
data throughput [32]. Such techniques are quite different from the
proposition made in this paper. The application context of Busi-
ness Activity Monitoring does not fit perfectly into either of those
two main areas, i.e. neither the data volume is expected to be as
large as in data-warehouse applications, nor the data throughput is
expected to cause the system to collapse as in some DSMS appli-
cations. BAM applications lie somewhere between these two kinds
of applications.
The topic of materialized views has been widely discussed in DBMS
in general [21, 25] and in real-time DBMS in particular [2], since
materialized views are often considered to reduce query execution
time. These works mainly suppose the case of snapshot views, i.e
views that maintain only the last state of data. This assumption is
not sufficient in our case since we need to store its whole history.
There were some works concerning temporal materialized views
[34, 14, 13]. Yet the do not address the real-time case.
The concept of rhythm is close to the concept of Granularity that
has already been defined in litterature [6] and has been implemented
in some products. We can quote Teradata’ DBMS that extends SQL
with the key word "EXPAND ON". There is also Kx System’s
product KDB+ whose processing language supports such feature.
Many commercial products addressing business monitoring exist,
among which we quote Kx System 4, spunk and main DBMS play-
ers like DB2, Oracle and Teradata. However, as far as we know,
no one covers all features offered by Decision Insight. KDB+, for
example, handles both real-time and historical data and is based on
a column-store database dedicated to handle time-series data. Yet,
it only supports valid time dimension.

6. CONCLUSION
4http://kx.com/



In this paper, we have introduced Decision Insight, a compre-
hensive data-intensive decision support system that combines both
Business Activity Monitoring (BAM) and business intelligence ca-
pabilities.
Given a bi-temporal query on historical and live data, the opti-
mization technique of Decision Insight is based on a decomposi-
tion of the initial query into several continuous queries plus one
on-demand query, which accesses the materialized data of previous
queries. This technique has been implemented in Decision Insight,
and experiments have been conducted on the TPC-BiH benchmark
(variant of the TPC-H benchmark). Results show that Decision
Insight is able to deliver very fast responses to decision-makers,
which is a very strong requirement in BAM applications.

In future works, we aim to study multi-query optimization tech-
niques to share as much as possible the processing of a set of com-
plex bi-temporal queries [26, 8].
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