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DERIVED CATEGORIES AND DELIGNE-LUSZTIG

VARIETIES II

by

CÉDRIC BONNAFÉ, JEAN-FRANÇOIS DAT & RAPHAËL ROUQUIER

Abstract. — This paper is a continuation and a completion of [BoRo1]. We extend the
Jordan decomposition of blocks: we show that blocks of finite groups of Lie type in
non-describing characteristic are Morita equivalent to blocks of subgroups associated
to isolated elements of the dual group — this is the modular version of a fundamental
result of Lusztig, and the best approximation of the character-theoretic Jordan decom-
position that can be obtained via Deligne-Lusztig varieties. The key new result is the
invariance of the part of the cohomology in a given modular series of Deligne-Lusztig
varieties associated to a given Levi subgroup, under certain variations of parabolic sub-
groups.

We also bring in local block theory methods: we show that the equivalence arises
from a splendid Rickard equivalence. Even in the setting of [BoRo1], the finer homo-
topy equivalence was unknown. As a consequence, the equivalences preserve defect
groups and categories of subpairs. We finally determine when Deligne-Lusztig induced
representations of tori generate the derived category of representations. An additional
new feature is an extension of the results to disconnected reductive algebraic groups,
which is required to handle local subgroups.
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1. Introduction

Let G be a connected reductive algebraic group endowed with an endomorphism
F , a power of which is a Frobenius endomorphism. Let ℓ be a prime number distinct
from the defining characteristic of G and K a finite extension of Qℓ, large enough
for the finite groups considered. Let O be the ring of integers of K over Zℓ and k

the residue field. We will denote by Λ a ring that is either K , O or k .
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The main tool for the study of representations of GF over Λ is the Deligne-Lusztig
induction. Let L be an F -stable Levi subgroup of G contained in a parabolic sub-
group P with unipotent radical V so that P = V⋊ L. Consider the Deligne-Lusztig
variety

YP = {g V ∈G/V | g −1F (g ) ∈ V · F (V)}.

It has a left action of GF and a right action of LF by multiplication. The correspond-
ing complex of ℓ-adic cohomology induces a triangulated functor

RG

L⊂P
: D b (ΛL

F )→D b (ΛG
F ), M 7→ R Γc (YP,Λ)⊗L

ΛLF M

and a morphism

R G

L⊂P
= [RG

L⊂P
] : G0(ΛL

F )→G0(ΛG
F ).

This is the usual Harish-Chandra construction when P is F -stable.

1.A. Jordan decomposition. — Let G∗ be a group Langlands dual to G, with Frobe-
nius F ∗. Consider the set Irr(GF ) of characters of irreducible representations of GF

over K . Deligne and Lusztig gave a decomposition of Irr(GF ) into rational series

Irr(GF ) =
∐

(s )

Irr(GF , (s ))

where (s ) runs over the set of conjugacy classes of semi-simple elements of (G∗)F ∗ .
The unipotent characters of GF are those in Irr(GF , 1).

Let L be an F -stable Levi subgroup of G with dual L∗ ⊂ G∗ containing CG∗ (s ).
Lusztig constructed a bijection

Irr(LF , (s ))
∼
−→ Irr(GF , (s )), ψ 7→ ±R G

L
(ψ).

If s ∈ Z (L∗), then there is a bijection

Irr(LF , (1))
∼
−→ Irr(LF , (s )), ψ 7→ηψ

where η is the one-dimensional character of LF corresponding to s , and we obtain
a bijection

Irr(LF , (1))
∼
−→ Irr(GF , (s )).

This provides a description of irreducible characters of GF in the rational series (s )
in terms of unipotent characters of an other group, when CG∗ (s ) is a Levi subgroup
of G∗.

Let us now consider the modular version of the theory described above. Let s

be a semi-simple element of G∗F of order prime to ℓ. Consider
∐

t Irr(GF , (t )), where
(t ) runs over conjugacy classes of semi-simple elements of (G∗)F ∗ whose ℓ′-part is
(s ). Broué and Michel [BrMi] have show this is a union of blocks of OGF . The sum
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of the corresponding block idempotents is an idempotent e G
F

s
∈ Z (OGF ), and we

obtain a decomposition

OG
F -mod=
⊕

(s )

OG
F e GF

s
-mod

where (s ) runs over conjugacy classes of semi-simple ℓ′-elements of G∗F .

Let L be an F -stable Levi subgroup of G with dual L∗ containing CG∗ (s ). Let
P be a parabolic subgroup of G with unipotent radical V and Levi complement
L. Broué [Br2] conjectured that the (OGF ,O LF )-bimodule Hdim YP (YP,O )e LF

s
gives a

Morita equivalence between OGF e GF

s
and O LF e LF

s
. This was proven by Broué [Br2]

when L is a torus and in [BoRo1] in general.
Broué also conjectured that the truncated complex of cohomology GΓc (YV,O )e L

F

s

(well defined by Rickard [Ri] in the homotopy category) induces a splendid Rickard
equivalence between OGF e GF

s
and O LF e LF

s
: it induces not only an equivalence of de-

rived categories, but even an equivalence of homotopy categories, and it induces a
similar equivalence for centralizers of ℓ-subgroups. One of our main results here
is a proof of that conjecture. In order to show that there is a homotopy equiva-
lence, for connected groups, we show that the global functor induces local derived
equivalences for centralizers of ℓ-subgroups. Since such centralizers need not be
connected, we need to extend the results of [BoRo1] to disconnected groups. So,
part of this work involves working with disconnected groups.

We also extend the “Jordan decomposition equivalences” (Morita and splendid
Rickard) to the “quasi-isolated case”: assume now only C ◦

G∗
(s ) ⊂ L∗. We show that

the right action of LF on Hdim YP(YP,O )e L
F

s
extends to an action of N = NGF (L, e L

F

s
)

commuting with the action of GF , and the resulting bimodule induces a Morita
equivalence between OGF e GF

s
and ON e LF

s
. Similarly, we obtain a splendid Rickard

equivalence between OGF e GF

s
and ON e LF

s
.

As a consequence, we deduce that the bijection between blocks of OGF e GF

s
and

ON e LF

s
preserves the local structure, and in particular, preserves defect groups.

Kessar and Malle have proven this in the setting of [BoRo1], when one of the blocks
under consideration has abelian defect groups (modulo a central ℓ-subgroup) [KeMa1,
Theorem 1.3], an important step in their proof of half of Brauer’s height zero conjec-
ture for all finite groups [KeMa1, Theorem 1.1] and the second half for quasi-simple
groups [KeMa2, Main Theorem].

Let us summarize this.

Theorem 1.1. — Assume C ◦
G∗
(s )⊂ L∗.

The right action of LF on GΓc (YV,O )e LF

s
extends to an action of N and the resulting

complex C induces a splendid Rickard equivalence between OGF e GF

s
and ON e LF

s
. The

bimodule Hdim YP(C ) induces a Morita equivalence between OGF e GF

s
and ON e LF

s
.
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The bijections between blocks of OGF e G
F

s
and ON e L

F

s
induced by those equivalences pre-

serve the local structure.

Significant progress has been made recently on counting conjectures for finite
groups, using the classification of finite simple groups, and [BoRo1] has proved
useful. We hope this theorem will lead to simplifications and new results.

The character-theoretic consequence of this theorem is that, for groups with dis-
connected center, the Jordan decomposition shares many of the properties of that
for the connected case (commutation with Deligne-Lusztig induction for example).
In type A, the Jordan decomposition of characters links all series to unipotent series
of smaller groups: even in that case, the good behaviour of those correspondences
was known only when q is large (Bonnafé [Bo3] for SL and Cabanes [Ca] for SU).

1.B. Generation of the derived category. — One of the two key steps in [BoRo1]
was the proof that the category of perfect complexes for OGF is generated by the
complexes RΓc (YB), where B runs over Borel subgroups of G with an F -stable maxi-
mal torus. We show here a more precise result of generation of the derived category
of OGF . Let E be the set {RΓc (YB)⊗

L

O TF M }, where T runs over F -stable maximal tori
of G, B over Borel subgroups of G containing T, and M over isomorphism classes of
O TF -modules.

Theorem 1.2. — The set E generates D b (OGF ) (as a thick subcategory) if and only if all

elementary abelian ℓ-subgroups of GF are contained in tori.

This, in turn, requires an extension of the results of Broué-Michel [BrMi] on the
compatibility between Deligne-Lusztig series of characters and the Brauer mor-
phism, to disconnected groups. We are able to achieve this by refining our result
on the generation of the category of perfect complexes to a generation of the cat-
egory of ℓ-permutation modules whose vertices are contained in tori (the crucial
case is that of connected groups). Such a result allows us to obtain a generating re-
sult for the full derived category, under the assumption that all elementary abelian
ℓ-subgroups are contained in tori.

Note that the condition on elementary abelian ℓ-subgroups is automatically sat-
isfied if G=GLn (F) or if ℓ is very good for G.

1.C. Independence of the Deligne-Lusztig induction of the parabolic in a given

series. — It is known in most cases, and conjectured in general, that the map R G

L⊂P

is actually independent of P ( [DeLu, Lu2] when L is a torus and [BoMi] when q > 2

and F is a Frobenius endomorphism over Fq ). On the other hand, the functor RG

L⊂P

does depend on P. Our main new geometrical result proves the independence after
truncating by a suitable series.
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Let P1 and P2 be two parabolic subgroups admitting a common Levi complement
L. Denote by V∗

i
the unipotent radical of the parabolic subgroup of G∗ corresponding

to Pi .

Theorem 1.3. — Let s be a semi-simple element of L∗F of order prime to ℓ. If

CV
∗
1∩

F ∗V
∗
1
(s ) ⊂CV

∗
2
(s ) and CV

∗
2∩

F ∗V
∗
2
(s ) ⊂CF ∗V

∗
1
(s )

then there is an isomorphism of functors between

RG

L⊂P1
: Db (ΛL

F e L
F

s
)−→Db (ΛG

F e G
F

s
)

and RG

L⊂P2
[m ] : Db (ΛL

F e LF

s
)−→Db (ΛG

F e GF

s
),

where m = dim(YG

P2
)−dim(YG

P1
).

This is the key result to prove Theorem 1.1. This result shows that when C ◦
G∗
(s ) ⊂

L∗, the (OGF ,O LF )-bimodule Hdim YP(YP,O )e LF

s
is independent of P, a question left

open in [BoRo1]. We deduce that the bimodule is stable under the action of N =

NGF (LF , e L
F

s
). Using an embedding in a group with connected center, we show that

the obstruction for extending the action of LF to N does vanish.

1.D. Structure of the article. — We begin in §3 with the study of generation of
the category of perfect complexes, then we move to complexes of ℓ-permutation
modules and finally we derive our result on the derived category. A key tool, due
to Rickard, is that the Brauer functor applied to the complex of cohomology of a
variety is the complex of cohomology of the fixed point variety.

Section §4 is devoted to the study of rational series and their compatibility with
local block theory. Broué and Michel proved a commutation formula between
generalized decomposition maps and Deligne-Lusztig induction. We need to ex-
tend the compatibility between Brauer and Deligne-Lusztig theory to disconnected
groups, and check that the local blocks obtained from a series satisfying C ◦

G∗
(s ) ⊂ L∗

also satisfy a similar assumption C ◦
(C ◦

G
(Q ))∗
(s ) ⊂ (L∩C ◦

G
(Q ))∗.

From §5 onwards, the group G is assumed to be connected. Sections §5 and §6
are devoted to the study of the dependence of the Deligne-Lusztig induction of the
parabolic subgroup. The first section is devoted to the particular case of varieties
associated with Borel subgroups (and generalizations involving sequences of ele-
ments). It is convenient there to work with a reference torus. This is the crucial
case, from which the general one is deduced in the second section, where we go
back to non-standard Levi subgroups.

The final section §7 is devoted to the Jordan decomposition. We start by provid-
ing an extension of the action of N on the cohomology bimodule by proving that the
cocycle obstruction would survive in a similar setting for a group with connected
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center, where the action does exist. The Rickard equivalence is obtained inductively,
and that induction requires working with disconnected groups.

In an appendix, we provide some results on the homotopy category of complexes
of ℓ-permutation modules for a general finite group.

2. Notations

2.A. Modules. — Let ℓ be a prime number, K a finite extension ofQℓ large enough
for the finite groups considered, O its ring of integers over Zℓ and k its residue field.
We will denote by Λ a ring that is either K , O or k .

Given C an additive category, we denote by Compb (C ) the category of bounded
complexes of objects of C and by Hob (C ) its homotopy category.

Let A be a Λ-algebra, finitely generated and projective as a Λ-module. We denote
by Aopp the algebra opposite to A. We denote by A-mod the category of finitely
generated A-modules and by A-proj its full subcategory of projective modules. We
denote by G0(A) the Grothendieck group of A-mod.

We put Compb (A) =Compb (A-mod), D b (A) =D b (A-mod) and Hob (A) =Hob (A-mod).
We denote by A-perf ⊂D b (A) the thick full subcategory of perfect complexes (com-
plexes quasi-isomorphic to objects of Compb (A-proj)).

Let C ∈Compb (A). There is a unique (up to a non-unique isomorphism) complex
C red which is isomorphic to C in the homotopy category Hob (A) and which has no
non-zero direct summand that is homotopy equivalent to 0. Note that C ≃ C red⊕C ′

for some C ′ homotopy equivalent to zero.
We denote by End•

A
(C ) the total Hom-complex, with degree n term

⊕

j−i=n HomA(C
i , C j ).

Let B be Λ-algebra, finitely generated and projective as a Λ-module. Let C be a
bounded complex of (A ⊗Λ B opp)-modules, finitely generated and projective as left
A-modules and as right B -modules. We say that C induces a Rickard equivalence

between A and B if the canonical map B → End•
A
(C ) is an isomorphism in Ho(B ⊗Λ

B opp) and the canonical map A→ End•
B opp (C )

opp is an isomorphism in Ho(A⊗Λ Aopp).

2.B. Finite groups. — Let G be a finite group. We denote by G opp the opposite
group to G . We put ∆G = {(g , g −1)|g ∈G } ⊂G ×G opp. Given g ∈G , we denote by |g |
the order of g .

Let H be a subgroup of G and x ∈ G . We denote by x∗ the equivalence of cate-
gories

x∗ :Λ(x−1H x )-mod
∼
−→ ΛH -mod
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where x∗(M ) =M as a Λ-module and the action of h ∈ H on x∗(M ) is given by the
action of x−1h x on M . We also denote by x∗ the corresponding isomorphism of
Grothendieck groups

x∗ : G0(Λ(x
−1H x ))

∼
−→ G0(ΛH ).

We assume Λ=O or Λ= k in the remainder of §2.B.
An ℓ-permutation ΛG -module is defined to be a direct summand of a finitely gener-

ated permutation module. We denote by ΛG -perm the full subcategory of ΛG -mod

with objects the ℓ-permutation ΛG -modules.
Let Q be an ℓ-subgroup Q of G . We consider the Brauer functor BrQ : ΛG -perm→

k [NG (Q )/Q ]-perm. Given M ∈ ΛG -perm, we define BrQ (M ) as the image of M Q in
(k M )Q , where (k M )Q is the largest quotient of k M = k⊗ΛM on which Q acts trivially.

We denote by brQ : (ΛG )Q → k CG (Q ) the algebra morphism given by brQ (
∑

g∈G λg g ) =
∑

g∈CG (Q )
λg g where λg ∈ Λ for g ∈ G . Given M ∈ ΛG -perm and e ∈ Z (ΛG ) an idem-

potent, we have BrQ (M e ) =BrQ (M )brQ (e ).

Let H be a subgroup of G , let b be an idempotent of Z (ΛG ) and c an idempotent
of Z (ΛH ). Let C ∈ Compb (ΛG b ⊗ (ΛH c )opp). We say that C is splendid if the C i ’s
are ℓ-permutation modules whose indecomposable direct summands have a vertex
contained in ∆H .

2.C. Varieties. — Let p be a prime number different from ℓ and F an algebraic
closure of Fp . By variety, we mean a quasi-projective algebraic variety over F.

Let X be a variety acted on by a finite group G . We denote by GΓc (X,Λ) the complex
of étale Λ-cohomology with compact support of X constructed as τ¶ 2dim X of the
Godement resolution (cf [Rou1, §2], [DuRou, §1.2], and [Ri]). This is an object
of Hob (ΛG -perm), well defined up to a unique isomorphism. We will denote by
RΓc (X,Λ) its image in D b (ΛG ).

Assume Λ = O or k and let Q be an ℓ-subgroup of G . The inclusion XQ ,→ X

induces an isomorphism [Ri, Theorem 4.2]

GΓc (X
Q , k )

∼
−→BrQ (GΓc (X,Λ)) in Hob (k NG (Q )-perm).

2.D. Reductive groups. — Let G be a (possibly disconnected) reductive algebraic
group endowed with an endomorphism F , a power F δ of which is a Frobenius
endomorphism defining a rational structure over a finite field Fq of characteristic
p . We refer to [DigMi2, DigMi3] for basic results on disconnected groups.

A parabolic subgroup P of G is a subgroup containing a parabolic subgroup P◦

of G◦ and normalizing P◦ (then P◦ = P◦). Let V be the unipotent radical of P◦. A
Levi complement to V in P is a subgroup of P of the form NP(L◦), where L◦ is a Levi
complement of V in P◦ (then L◦ = L◦ and P= V⋊L).
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We denote by ∇(G, F ) the set of pairs (T,θ ) where T is an F -stable maximal torus
of G and θ is an irreducible character of TF .

Given an integer d , we denote by ∇d ′(G, F ) the set of pairs (T,θ ) ∈ ∇(G, F ) such
that the order of θ is prime to d . We put ∇Λ(G, F ) =∇(G, F ) if Λ = K and ∇Λ(G, F ) =

∇ℓ′(G, F ) if Λ=O or k .

2.E. Deligne-Lusztig varieties. — Given P a parabolic subgroup of G with unipo-
tent radical V and F -stable Levi complement L, we define the Deligne-Lusztig vari-
ety

YV = Y
G

V
= YP = Y

G

P
= {g V ∈G/V | g −1F (g ) ∈V · F (V)}.

This is a smooth variety, with a left action by multiplication of GF and a right action
by multiplication of LF (note that the left and right actions of Z (G)F coincide). This
provides a triangulated functor

(2.1)
RG

L⊂P
: D b (ΛLF ) −→ D b (ΛGF )

M 7−→ R Γc (YV,Λ)⊗L
ΛLF M

and a morphism
R G

L⊂P
= [RG

L⊂P
] : G0(ΛL

F )→G0(ΛG
F ).

We put XG

P
= {g P ∈G/P | g −1F (g ) ∈ P · F (P)}= YG

P
/LF .

3. Generation

The aim of this section is to extend [BoRo1, Theorem A] to the case of discon-
nected groups, and to deduce a generation theorem for the derived category.

In this section §3, G is a (possibly disconnected) reductive algebraic group.

3.A. Centralizers of ℓ-subgroups. — Let P be a parabolic subgroup of G admitting
an F -stable Levi complement L, and let V denote the unipotent radical of P. It is
easily checked [DigMi2, Proof of Proposition 2.3] that

(3.1) Y
G

V
=
∐

g∈GF /G◦F

g Y
G◦

V
.

It follows immediately from (3.1) that

(3.2) RG

L⊂P
◦ IndL

F

L◦F
≃RG

L◦⊂P◦
≃ IndG

F

G◦F
◦RG◦

L◦⊂P◦
.

If G=P ·G◦, then we have

(3.3) RG◦

L◦⊂P◦
◦ResLF

L◦F
≃ResGF

G◦F
◦RG

L⊂P
.
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Proposition 3.4. — Let Q be an ℓ-subgroup of LF . Then:

(a) The group CG(Q ) is reductive.

(b) CP(Q ) is a parabolic subgroup of CG(Q ) whose unipotent radical is CV(Q ) and admit-

ting CL(Q ) as an F -stable Levi complement. In particular, CV(Q ) is connected.

(c) The natural map CG(Q )/CV(Q )→ (G/V)∆Q is an isomorphism of (CG(Q ), CL(Q ))-varieties.

(d) (V · F V)∆Q =CV(Q ) ·
F CV(Q ).

(e) The natural map Y
CG(Q )

CV(Q )
→ (YG

V
)∆Q is an isomorphism of (CG(Q )

F , CL(Q )
F )-varieties.

Proof. — Every non-trivial finite ℓ-group contains a non-trivial normal central sub-
group. So an easy induction argument shows that it is enough to prove all the
statements of this proposition whenever Q is cyclic. So let l ∈ LF be an ℓ-element
and let Q = 〈l 〉.

(a) and (b) follow from [DigMi2, Proposition 1.3, Theorem 1.8, Proposition 1.11].

(c) Note that that both varieties are smooth (for (G/V)∆Q , this follows from the fact
that Q is a p ′-group and G/V is smooth). The injectivity of the map is clear.

Let us prove the surjectivity. Let g V ∈ (G/V)∆Q . Then, g −1l g l −1 ∈ V or, in other
words, g −1l g ∈ Vl = l V. But g −1l g is an ℓ-element, so it is semisimple, hence it nor-
malises a maximal torus of P◦ (see [St, Theorem 7.5]). We deduce that g −1l g belongs
to the unique Levi complement L′ of P containing this maximal torus (see [St, The-
orem 7.5]). Since all Levi complements are conjugate under the action of V, there
exists v ∈ V such that v −1g −1l g v ∈ L. But v −1g −1l g v ∈ l V, so g v ∈ CG(l ) = CG(Q ), as
desired.

The tangent space at V of (G/V)∆Q is the ∆Q -invariant part of the tangent space
of G/V at V. That last tangent space is a quotient of the tangent space of G at the
origin. It follows that the canonical map CG(Q ) = G∆Q → (G/V)∆Q induces a surjec-
tive map between tangent spaces at the origin. Consequently, the canonical map
CG(Q )/CV(Q )→ (G/V)∆Q induces a surjective map between tangent spaces at the ori-
gin. We deduce that the map is an isomorphism.

(d) The number of F -stable maximal tori of L is a power of p (see [St, Corol-
lary 14.16]). Since Q is an ℓ-group, it normalizes some F -stable maximal torus. Us-
ing now the root system with respect to this maximal torus, we deduce that there
exists a Q -stable subgroup V′ of V such that V=V′ · (V∩F (V)) and V′∩F (V) = 1. There-
fore, V · F (V) =V′ · F (V) and the result follows.

(e) follows immediately from (c) and (d).

To complete the previous proposition, note the following result.
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Lemma 3.5. — Let P be an ℓ-subgroup of GF × (LF )opp such that (YG

V
)P 6= ∅. Then there

exists an ℓ-subgroup Q of LF such that P and ∆Q are conjugate under the action of GF ×1.

Proof. — Let Q ⊂ LF (respectively R ⊂GF ) denote the image of P through the second
(respectively first) projection and let y V ∈ (YG

V
)P .

If g ∈ R , then there exists l ∈Q such that (g , l ) ∈ P . Therefore, g y l V = y V, hence
y −1g y V = l −1V. This implies that y −1R y ⊂ Q V. We denote by η : R → Q the com-
position R

∼
−→ y −1R y ,→ Q V ։ Q . Since R (respectively Q ) acts freely on G/V, the

previous computation shows that η is an isomorphism, and that

P = {(g ,η(g )) | g ∈R }.

Now, there exists a positive integer m such that F m (P) = P and y −1R y ⊂ PF m .
So y −1R y acts by left translation on PF m

/LF m . Since y −1R y is a finite ℓ-group and
|PF m

/LF m

|= |VF m

| is a power of p , it follows that y −1R y has a fixed point in PF m

/LF m .
Consequently, there exists v ∈ V such that y −1l y v L = v L for all l ∈ R . In other
words, (y v )−1R (y v ) ⊂ L. This means that, by replacing y by y v if necessary, we
may assume that y −1R y ⊂ L. Therefore, y −1R y =Q and P = {(y l y −1, l ) | l ∈Q}.

Now, y −1F (y ) ∈ V · F (V) but, since F (y l y −1) = y l y −1 for all l ∈Q , we deduce that
y −1F (y ) ∈CG(Q ). So

y −1F (y ) ∈ (V · F (V))∩CG(Q ) =CV(Q ) · F (CV(Q ))⊂C ◦
G
(Q )

(see Proposition 3.4(b) and (d)). So, by Lang’s Theorem, there exists x ∈ C ◦
G
(Q ) such

that y −1F (y ) = x−1F (x ). This implies that h = y x−1 ∈GF , and

P = {(hl h−1, l ) | l ∈Q},

as expected.

3.B. Perfect complexes and disconnected groups. — Given M a simpleΛGF -module,
we denote byY (M ) the set of pairs (T, B) such that T is an F -stable maximal torus of
G and B is a Borel subgroup of G containing T such that RHom•

ΛGF (R Γc (YB,Λ), M ) 6= 0.
We then set d (M ) = min(T,B)∈Y (M )dim(YB). The following two theorems are proved
in [BoRo1, Theorem A] whenever G is connected.

Theorem 3.6. — Let M be a simple ΛGF -module. Then Y (M ) 6= ∅. Moreover, given

(T, B) ∈Y (M ) such that d (M ) = dim(YB), we have

HomDb (ΛGF )(R Γc (YB,Λ), M [−i ]) = 0

for all i 6= d (M ).
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Proof. — By (3.2), we have

HomDb (ΛGF )(R Γc (Y
G

B
,Λ), M [−i ]) =HomDb (ΛG◦F )(R Γc (Y

G
◦

B
,Λ), ResG

F

G◦F
M [−i ]).

Since M is simple and G◦F Ã GF , it follows that ResGF

G◦F
M is semisimple. Since the

theorem holds in G◦F (see [BoRo1, Proof of Theorem A]), we know that Y (M ) is not
empty. The second statement follows from the fact that, if two simple ΛG◦F -modules
M1 and M2 occur in the semisimple module ResG

F

G◦F
M , then they are conjugate under

GF , and so d (M1) = d (M2) = d (M ).

Theorem 3.7. — The triangulated categoryΛGF -perf is generated by the complexes R Γc (YB,Λ),

where T runs over the set of F -stable maximal tori of G and B runs over the set of Borel sub-

groups of G containing T.

3.C. Generation of the derived category. — In this section §3.C, we assume Λ=O
or k .

Let Q be an ℓ-subgroup of GF and let M be an indecomposable ℓ-permutation
Λ[GF ×Q opp]-module with vertex ∆Q . We denote by Y [M ] the set of pairs (T, B)

such that T is an F -stable maximal torus of G contained in a Borel subgroup B of G

such that Q normalizes (T, B) and such that M is a direct summand of a term of the
complex
�

ResGF ×TF opp

GF ×Q opp GΓc (YB,Λ)
�red

. We set d [M ] =min(T,B)∈Y [M ]dim(Y
C ◦

G
(Q )

C ◦
B
(Q )).

Lemma 3.8. — If Q normalizes a pair (T ⊂ B) where T is an F -stable maximal torus and

B a Borel subgroup of G, then Y [M ] 6= ∅. Moreover, given (T, B) ∈ Y [M ] such that

d [M ] = dim(YC ◦
B
(Q )), the degree i term of the complex

�

ResG
F ×T

F opp

GF ×Q opp GΓc (YB,Λ)
�red

has no

direct summand isomorphic to M if i 6= d [M ].

Proof. — Note that NGF ×Q opp(∆Q ) = (CG(Q )
F × 1)∆Q , and we identify CG(Q )

F with
NGF ×Q opp (∆Q )/∆Q via the first projection. Let V be an indecomposable projective
k CG(Q )

F -module such that M(∆Q , V ) ≃ M (cf Appendix), and let L be the simple
quotient of V .

Now, let BQ be a Borel subgroup of CG(Q ) admitting an F -stable maximal torus
TQ . Let B be a Borel subgroup of G containing BQ (then BQ =C ◦

B
(Q )).

We set D =
�

Res
CG(Q )

F ×T
F opp
Q

CG(Q )F ×1 GΓc (Y
CG(Q )
BQ

, k )
�red

. By Proposition 3.4(e), we have

Br∆Q (GΓc (Y
G

B
,Λ))≃GΓc

�

(YG

B
)∆Q , k
�

≃GΓc (Y
CG(Q )
BQ

, k )≃D
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in Hob (k CG(Q )
F ). It follows from Lemma A.2 that M is a direct summand of the i -th

term of
�

Res
GF ×T

F opp
Q

GF ×Q opp GΓc (Y
G

B
,Λ)
�red

if and only if V is a direct summand of D i . So the
result follows from Theorem 3.6. Note that d [M ] = d [V ] = d (L ) = dim Y

CG(Q )
BQ

.

Let A be the thick subcategory of Hob (ΛGF ) generated by the complexes of the
form

GΓc (YB,Λ)⊗ΛP L ,

where

– T runs over F -stable maximal tori of G

– B runs over Borel subgroups of G containing T

– P is an ℓ-subgroup of NGF (T, B)

– and L is an ΛP -module, free of rank 1 over Λ.

Let B be the full subcategory of ΛGF -mod consisting of modules whose inde-
composable direct summands have a one-dimensional source and a vertex P which
normalizes a pair (T ⊂ B) where T is an F -stable maximal torus and B a Borel sub-
group of G.

Theorem 3.9. — We haveA =Hob (B ).

Proof. — Given N an indecomposable ΛGF -module with a one-dimensional source
L and a vertex P which normalizes a pair (T ⊂ B), where T is an F -stable maximal
torus and B a Borel subgroup, we set d [N ] to be the minimum of the numbers d [M ],
where M runs over the set of indecomposable ℓ-permutation Λ(GF ×P opp)-modules
with vertex ∆P and such that N is a direct summand of M ⊗ΛP L .

Note that if M is an indecomposable ℓ-permutation Λ(GF × P opp)-module with
vertex properly contained in ∆P , then the indecomposable direct summands of
M ⊗ΛP L have vertices of size < |P |. Since the Λ(GF ×P opp)-module ΛG is a direct sum
of indecomposable modules with vertices contained in ∆P , we deduce that there is
an indecomposable ℓ-permutation Λ(GF ×P opp)-module M with vertex∆P and such
that N is a direct summand of M ⊗ΛP L .

We now proceed by induction on the pair (|P |, d [N ]) (ordered lexicographically)
to show that N ∈A . Fix M an indecomposable ℓ-permutation Λ(GF ×P opp)-module
M with vertex ∆P and such that N is a direct summand of M ⊗ΛP L , with d [N ] =

d [M ]. Let (T, B) ∈Y [M ] be such that dim(YB) = d [M ] and let D =
�

Res
G

F ×NG(T,B)F opp

GF ×P opp GΓc (Y
G

V
,Λ)
�red

.
If i 6= d [M ], then Lemma 3.8 shows that the indecomposable direct summands

M ′ of D i have vertices of size < |P |, or have vertex ∆P and satisfy d [M ′] < d [M ].
Therefore, the indecomposable direct summands N ′ of D i ⊗ΛP L have vertices of
size < |P | or have vertex P and satisfy d [N ′]< d [N ]. We deduce from the induction
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hypothesis that D i⊗ΛP L ∈A for i 6= d [N ]. Since N is a direct summand of D d [N ]⊗ΛP L

and D ⊗ΛP L ∈A by construction, we deduce that N ∈A .

Corollary 3.10. — Assume that every elementary abelian ℓ-subgroup of GF normalizes

a pair (T ⊂ B) where T is an F -stable maximal torus and B a Borel subgroup of G. Then

D b (ΛGF ) is generated, as a triangulated category closed under direct summands, by the

complexes RG

T⊂B
(IndTF

Q
L ), where T runs over the set of F -stable maximal tori of G, B runs

over the set of Borel subgroups of G containing T, Q runs over the set of ℓ-subgroups of TF

and L runs over the set of (isomorphism classes) of ΛQ -modules which are free of rank 1

over Λ.

Proof. — Since the category Db (ΛGF ) is generated, as a triangulated category closed
under taking direct summands, by indecomposable modules with elementary abelian
vertices and one-dimensional source [Rou3, Corollary 2.3], the statement follows
from Theorem 3.9.

Remark 3.11. — It is easy to show conversely that if D b (ΛGF ) is generated by the
complexes RG

T⊂B
(IndT

F

Q
L ) as in Corollary 3.10, then Db (ΛGF ) is generated by inde-

composable modules with a one-dimensional source and an elementary abelian
vertex that normalizes a pair (T ⊂ B) where T is an F -stable maximal torus and B

a Borel subgroup
In particular, the generation assumption for Λ = k implies that all elementary

abelian ℓ-subgroups of GF are contained in maximal tori.
The particular case GF =GLn (Fq ) (for arbitrary n) is enough to ensure that Db (H )

is generated by indecomposable modules with elementary abelian vertices and one-
dimensional source, for any finite group H — this fact is a straightforward conse-
quence of Serre’s product of Bockstein’s Theorem, but we know of no other proof.
It would be interesting to find a direct proof of that result for GLn (Fq ).

Recall that an element of G0(ΛGF ) is uniform if it is in the image of
∑

T
R G

T
(G0(ΛTF )),

where T runs over the set of F -stable maximal tori of G.
One can actually describe exactly which complexes are “uniform”.

Corollary 3.12. — Let T be the full triangulated subcategory of D b (ΛGF ) generated by

the complexes RG

T⊂B
(M ), where T runs over the set of F -stable maximal tori of G, B runs

over the set of Borel subgroups of G containing T and M runs over the set of (isomorphism

classes) of ΛTF -modules. Assume that every elementary abelian ℓ-subgroup of GF normal-

izes a pair (T⊂B) where T is an F -stable maximal torus and B a Borel subgroup of G.

An object C of Db (ΛGF ) is in T if and only if [C ] ∈G0(ΛGF ) is uniform.
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Proof. — The statement follows from Corollary 3.10 and from Thomason’s classifi-
cation of full triangulated dense subcategories [Tho, Theorem 2.1].

Remark 3.13. — Note that Corollary 3.12 holds also for Λ= K : in the proof, Corol-
lary 3.10 is replaced by Theorem 3.7.

Examples 3.14. — (1) If G=GLn (F) or SLn (F), then all abelian subgroups consisting
of semisimple elements are contained in maximal tori. This just amounts to the
classical result in linear algebra which says that a family of commuting semisimple
elements always admits a basis of common eigenvectors.

(2) Assume G is connected. Let π1 (respectively π2) denote the set of prime
numbers which divide |Z(G∗)/Z(G∗)◦| (respectively which are bad for G), cf [BoRo1,
End of §11]. We set π = π1 ∪π2. Now, if ℓ 6∈ π and is t is an ℓ-element of GF , then
CG(t ) is connected and is a Levi subgroup of G. An induction argument then allows
to show the following fact.

(3.15) If ℓ 6∈π, then all abelian ℓ-subgroups of G
F are contained in maximal tori.

So Corollary 3.10 can be applied if ℓ 6∈π. This generalises (1).

Counter-example 3.16. — Assume here, and only here, that ℓ = 2 (so that p 6= 2)

and that G = PGL2(F). Let t (respectively t ′) denote the class of the matrix
�

1 0

0 −1

�

(respectively
�

0 1

1 0

�

) in G. Then 〈t , t ′〉 is an elementary abelian 2-subgroup of G

which is not contained in any maximal torus of G (indeed, since G has rank 1, all
finite subgroups of maximal tori of G are cyclic).

4. Rational series

4.A. Rational series in connected groups. — We assume in this section §4.A that
G is connected.

Let (T,θ ) ∈∇(G, F ) and let Φ (respectively Φ∨) denote the root (respectively coroot)
system of G relative to T.

Let d be a positive integer divisible by δ and such that (w F )d (t ) = t q d/δ for all
t ∈T and w ∈NG(T). Let ζ be a generator of F×

q d/δ . Recall that the map

N : Y (T) −→ TF

λ 7−→ NF d /F (λ(ζ)) =λ(ζ)
F (λ(ζ)) · · · F

d−1

(λ(ζ))
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is surjective. We set θ Y = θ ◦N : Y (T)→ K × and

Φ
∨(θ ) = Φ∨∩Ker(θ Y ).

Note that Φ∨(θ ) is closed and symmetric, hence it defines a root system. We de-
note by W ◦

G
(T,θ ) its Weyl group. It is a subgroup of the Weyl group NG(T)/T and it

is contained in the stabilizer WG(T,θ ) of θ Y .
This can be translated as follows in the dual group. Let (G∗, T∗, F ∗) be a triple dual

to (G, T, F ) [DeLu, Definition 5.21]. Let s ∈ T∗F
∗ be the element corresponding to θ .

This provides an identification of the coroot system Φ
∨ with the root system of G∗

and, through this identification,

Φ
∨(θ ) = {α∨ ∈Φ∨ | α∨(s ) = 1}.

The group W ◦
G
(T,θ ) is identified with the Weyl group W ◦(T∗, s ) of C ◦

G∗
(s ) relative to

T∗ while WG(T,θ ) is identified with the Weyl group W (T∗, s ) of CG∗ (s ).

Recall that (T1,θ1) and (T2,θ2) are in the same geometric series if there exists x ∈ G

such that (T2,θ Y
2
) = x (T1,θ Y

1
) and x−1F (x )T1 ∈ W (T1,θ1). The pairs are in the same

rational series if in addition the element s2 ∈ T∗F
∗

1
corresponding to x−1

θ2 is G∗F
∗-

conjugate to s1. We have now a direct description of rational series.

Proposition 4.1. — The pairs (T1,θ1) and (T2,θ2) are in the same rational series if and

only if there exists x ∈G such that (T2,θ Y
2
) = x (T1,θ Y

1
) and x−1F (x )T1 ∈W ◦

G
(T1,θ1).

Proof. — Note that given x ∈G such that x T1 is F -stable, then x−1F (x ) ∈NG1
(T1).

Let T∗
i

be an F ∗-stable maximal torus of G∗ and let si ∈ T∗F
∗

i
be such that the G∗F

∗-
orbit of (T∗

i
, si ) corresponds to the GF -orbit of (Ti ,θi ). Then the statement of the

proposition is equivalent to the following:

(∗) s1 and s2 are G∗F
∗
-conjugate if and only if there exists x ∈ G∗ such that (T∗

2
, s2) =

x (T∗
1
, s1) and x−1F ∗(x )T∗

1
∈W ◦(T∗

1
, s1).

So let us prove (∗).

First, if s1 and s2 are G∗F
∗-conjugate, then there exists x ∈G∗F

∗ such that s2 = x s1 x−1.
Then T∗

1
and x−1T∗

2
x are two maximal tori of C ◦

G∗
(s1), so there exists y ∈ C ◦

G∗
(s1) such

that y T∗
1

y −1 = x−1T∗
2
x . Then (T∗

2
, s2) =

x y (T∗
1
, s1) and

(x y )−1F ∗(x y ) = y −1F ∗(y ) ∈C ◦
G∗
(s1),

as desired.

Conversely, assume that there exists x ∈G∗ such that (T∗
2
, s2) =

x (T∗
1
, s1) and x−1F ∗(x )T∗

1
∈

W ◦(T∗
1
, s1). By Lang’s Theorem applied to the connected group C ◦

G∗
(s1), there exists

y ∈ C ◦
G∗
(s1) such that x−1F ∗(x ) = y −1F ∗(y ). Then x y −1 ∈ G∗F

∗ and s2 = x y −1s1 y x−1.
The proof of (∗) is complete.
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We can now translate the properties of regularity and super-regularity defined
in [BoRo1, §11.4]. Let P be a parabolic subgroup of G and let L be a Levi subgroup
of P. We assume that L is F -stable. LetX ⊂∇(L, F ) be a rational series.

Proposition 4.2. — The rational seriesX is (G, L)-regular (respectively (G, L)-super-regular)

if and only if W ◦
G
(T,θ )⊂ L (respectively WG(T,θ )⊂ L) for some (or any) pair (T,θ )∈X .

Proof. — This follows immediately from [BoRo1, Lemma 11.6].

4.B. Coroots of fixed points subgroups. — We consider now again a non-necessarily
connected reductive group G.

We fix an element g ∈ G which stabilizes a pair (T, B) where B is a Borel sub-
group of G and T is a maximal torus of B. Such an element is called quasi-semisimple

in [DigMi2] and [DigMi3]. For instance, any semisimple element of G is quasi-
semisimple. Recall from [DigMi2, Theorem 1.8] that (Gg )◦ is a reductive group, that
(Bg )◦ = Bg ∩ (Gg )◦ is a Borel subgroup of Gg and that (Tg )◦ = T∩ (Gg )◦ is a maximal
torus of Bg . We shall be interested in determining the coroot system of the fixed
points subgroup (Gg )◦.

Let Φ (respectively Φ∨) be the root (respectively coroot) system of G◦ relative to T.
Let Φ(g ) (respectively Φ∨(g )) denote the root (respectively coroot) system of (Gg )◦ rel-
ative to (Tg )◦. If Ω is a g -orbit in Φ, we denote by cΩ ∈F

× the scalar by which g |Ω| acts
on the one-parameter unipotent subgroup associated with α (through any identifi-
cation of this one-parameter subgroup with the additive group F). We denote by
(Φ/g )a the set of g -orbits Ω in Φ such that there exist α, β ∈Ω such that α+β ∈Φ. We
denote by (Φ/g )b the set of other orbits. We set

Φ[g ] = {Ω ∈ (Φ/g )a | cΩ =±1}∪ {Ω ∈ (Φ/g )b | cΩ = 1}.

Finally, if Ω ∈ (Φ/g )a (respectively Ω ∈ (Φ/g )b ), let Ω
∨
= 2
∑

α∈Ωα
∨ (respectively Ω

∨
=

∑

α∈Ωα
∨). Note that Ω

∨
is g -invariant, so it belongs to Y (T)g = Y ((Tg )◦).

Proposition 4.3. — Φ
∨(g ) = {Ω

∨
| Ω ∈Φ[g ]}.

Proof. — The statement depends only on the automorphism induced by g on G◦

and can be proved with assuming that G◦ is semisimple. Since this automorphism
can then be lifted uniquely to the simply-connected covering of G◦ (see [St, 9.16]),
we may also assume that G◦ is simply-connected. Therefore, g permutes the ir-
reducible components of G◦ so an easy reduction argument shows that we may
assume that G◦ is quasi-simple. Let U denote the unipotent radical of B, U− the



18 C. BONNAFÉ, J.-F. DAT & R. ROUQUIER

unipotent radical of the opposite Borel subgroup and, if α ∈Φ, let Uα denote the cor-
responding one-parameter unipotent subgroup. We also denote by Gα the subgroup
generated by Uα and U−α: it is isomorphic to SL2(F) because G◦ is simply-connected.

Let us first assume that (Φ/g )a =∅. Then, if Ω ∈ Φ/g , the subvariety UΩ =
∏

α∈ΩUα

of U or U− does not depend on the order chosen on Ω to compute this product.
Moreover, it is an abelian g -stable algebraic group and U

g

Ω
6= 1 if and only if cΩ = 1.

The subgroup 〈UΩ, U−Ω〉 is a direct product of groups isomorphic to SL2(F)which are
permuted by g . It then follows that the coroot corresponding to the one-parameter
subgroup U

g

Ω
(if cΩ = 1) is equal to Ω

∨
. The fact that these U

g

Ω
are all the one-

parameter unipotent subgroups of (Gg )◦ follows from [St, Proof of Theorem 8.2].
Let us now assume that (Φ/g )a 6= ∅. Then it follows from the classification of

simple root systems that G◦ is of type A2n and g acts on T by the automorphism
t 7→ w0t −1, where w0 is the longest element of the Weyl group of G◦ relative to T. A
straightforward computation gives the result in this case.

Remark 4.4. — If Ω ∈ (Φ/g )a , then it follows from the classification that |Ω| is even,
and so the order of g is even.

4.C. Centralizers and rational series. — Let g ∈GF be a quasi-semisimple element
of G. Let (S,θ ) ∈ ∇(C ◦

G
(g ), F ). We then set S+ = CG◦ (S). It follows from [DigMi2,

Theorem 1.8(iv)] that S+ is a maximal torus of G◦ (containing S). It is stable under
the action of g , so we have a map Lg : S+ → S+, t 7→ t −1g t g −1 = [g , t ] (which is
a morphism of groups because S+ is abelian). If t = Lg (s ), then t g t g 2

t · · · g
m−1

t =

Lg m (s ). In particular, if t ∈ (S+)g = KerLg , then t m = Lg m (s ). This shows that any
element of (S+)g ∩Lg (S

+) has order dividing the order of g . Consequently, since
((S+)g )◦ = S (see [DigMi2, Theorem 1.8(iii)]), we get

(4.5) S
+ = S ·Lg (S

+) and S∩Lg (S
+) is finite of exponent dividing the order of g .

Now, if H is a g -stable finite subgroup of S+ of order prime to the order of g then
H g ⊂ S◦ (because (S+)g /S is of order dividing the order of g by [DigMi2, Proposi-
tion 1.28]) and

(4.6) H =H g ×Lg (H ).

So, if the linear character θ has order prime to the order of g , then it can be extended
canonically to a linear character θ + of S+F as follows: θ + is trivial on Lg (S

+F ), is
trivial on elements of S+F of order prime to the order of θ and coincides with θ on
SF . The fact that θ + is trivial on Lg (S

+F ) is equivalent to

(4.7) θ + is g -stable.
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Note that, since S+∩C ◦
G
(g ) = S by [DigMi2, Theorem 1.8], we may identify the Weyl

group of C ◦
G
(g ) relative to S to a subgroup of the Weyl group of G◦ relative to S+.

Through this identification, we get:

Lemma 4.8. — If the order of θ is prime to the order of g , then WC ◦
G
(g )(S,θ )⊂WG◦(S

+,θ +)

and W ◦
C ◦

G
(g )
(S,θ )⊂W ◦

G◦
(S+,θ +).

Proof. — Let w ∈WC ◦
G
(g )(S,θ ). Then w stabilizes S+ = CG◦ (S) and its action on S com-

mutes with the action of g . So it follows from the construction of θ + that w stabilizes
θ +.

Let us now prove the second statement. Let α∨ be a coroot of C ◦
G
(g ) relative to S

such that θ Y (α∨) = 1. Let sg ,α denote the corresponding reflection in W ◦
C ◦

G
(g )
(S,θ ). It is

sufficient to prove that sg ,α ∈W ◦
G◦
(S+,θ +). Then it follows from Proposition 4.3 that

there exists a coroot β∨ of G◦ relative to S and m ∈ {1, 2} such that

α∨ =m

r−1
∑

i=0

g i (β∨),

where r ¾ 1 is minimal such that g r (β∨) = β∨. It follows from Remark 4.4 that, if
m = 2, then g has even order. Now,

1= θ +Y (α∨) =

r−1
∏

i=1

θ +(g i (β∨))m = θ +Y (β∨)m r ,

because θ + is g -stable. Since m and r divide the order of g , m r is prime to the order
of θ +, so this implies that θ +(β∨) = 1. In particular,

sβ , sg (β ), . . . , sg r−1(β ) ∈W ◦
G◦
(S+,θ +).

It follows from [St, Proof of Theorem 8.2, Statement (2′′′)] that then sg ,α belongs to
the subgroup generated by sβ , sg (β ),. . . , sg r−1(β ).

Let (T1,θ1), (T2,θ2) ∈ ∇(G, F ). We say that (T1,θ1) and (T2,θ2) are geometrically con-

jugate (resp. in the same rational series) if there is t ∈ NGF (T1) such that (T1, tθ1) and
(T2,θ2) are geometrically conjugate (resp. in the same rational series) for ∇(G◦, F ).
We denote by ∇(G, F )/≡ the set of rational series.

Let Q be the subgroup of G generated by g .

Corollary 4.9. — Let (S1,θ1), (S2,θ2) ∈∇|g |′(NG(Q ), F ) .

(a) If (S1,θ1) and (S2,θ2) are geometrically conjugate in NG(Q ), then (S+
1

,θ +
1
) and (S+

2
,θ +

2
)

are geometrically conjugate in G.

(b) If (S1,θ1) and (S2,θ2) are in the same rational series of NG(Q ), then (S+
1

,θ +
1
) and (S+

2
,θ +

2
)

are in the same rational series of G.
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So, the injective map ∇|g |′(NG(Q ), F )→∇|g |′(G, F ), (S,θ ) 7→ (S+,θ +) induces a map

i G

Q
:∇|g |′(NG(Q ), F )/≡ −→ ∇|g |′(G, F )/≡ .

Proof. — (a) If (S1,θ1) and (S2,θ2) are geometrically conjugate in NG(Q )
◦ =C ◦

G
(g ) then,

by definition, there exists x ∈ C ◦
G
(g ) such that S2 =

x S1 and θ Y
2
= xθ Y

1
= F (x )θ Y

1
(as

linear characters of Y (S2)). Since x commutes with g , it sendsLg (S
+
1
) toLg (S

+
2
), so it

is immediately checked that θ +Y
2
= xθ +Y

1
= F (x )θ +Y

1
. The case of geometric conjugacy

in NG(Q ) and G follows immediately.

(b) If (S1,θ1) and (S2,θ2) are in the same rational series of C ◦
G
(g ), then, by Proposi-

tion 4.1, there exists x ∈ C ◦
G
(g ) such that T2 =

x T1, θ Y
2
= xθ Y

1
(as linear characters of

Y (S2)) and x−1F (x ) ∈W ◦
C ◦

G
(g )
(S1,θ1). So the result follows from (a) and from Proposi-

tions 4.1 and 4.3. The case of rational series in NG(Q ) and G follows immediately.

Let L be an F -stable Levi complement of a parabolic subgroup P of G containing
g . Then CL(g ) is an F -stable Levi complement of CP(g ).

Corollary 4.10. — Let X ∈ ∇|g |′(C
◦

L
(g ), F )/ ≡ be a rational series. If X + is (G◦, L◦)-

regular (respectively (G◦, L◦)-super regular), then X is (C ◦
G
(g ), C ◦

L
(g ))-regular (respectively

(C ◦
G
(g ), C ◦

L
(g ))-super regular).

Proof. — This follows from Proposition 4.2 and Lemma 4.8.

The results above extend by induction to general nilpotent p ′-subgroups. Let Q

be a nilpotent subgroup of GF of order prime to p . Fix a sequence 1 = Q0 ⊂ Q1 ⊂

· · · ⊂Qr =Q of normal subgroups of Q such that Qi/Qi−1 is cyclic for 1 ¶ i ¶ r . Let
Gi =NG(Q1 ⊂ · · · ⊂Qi ).

The construction above defines a map

(4.10) ∇|Q |′(Gi+1/Qi , F ) =∇|Q |′(NGi /Qi
(Qi+1/Qi ), F )→∇|Q |′(Gi/Qi , F )

that preserves rational and geometric series.
Fix 0 ¶ j ¶ i ¶ r . Let (T,θ ) ∈ ∇|Q |′(Gi , F ). Since θ is trivial on Q j ∩ TF , it factors

through a character θ ′ of (T/(T∩Q j ))
F = TF /(TF ∩Q j ). We obtain a pair (T/(T∩Q j ),θ

′) ∈

∇|Q |′(Gi/Q j , F ). This correspondence defines a bijection ∇|Q |′(Gi , F )
∼
−→∇|Q |′(Gi/Q j , F )

that preserves rational and geometric series.
Composing those bijections with the map in (4.10), we obtain a map

∇|Q |′(Gi+1, F )→∇|Q |′(Gi , F )

and composing all those maps, we obtain a map

∇|Q |′(NG(Q1 ⊂ · · · ⊂Qr ), F )→∇|Q |′(G, F ).
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Finally, composing with the canonical map∇|Q |′(CG(Q ), F )→∇|Q |′(NG(Q1 ⊂ · · · ⊂Qr ), F ),
we obtain a map

∇|Q |′(CG(Q ), F )→∇|Q |′(G, F )

that preserves rational and geometric series. Note that this map depends not only
on Q , but on the filtration Q1 ⊂ · · · ⊂Qr . Summarizing, we have the following propo-
sition.

Proposition 4.11. — Let Q be a nilpotent subgroup of GF of order prime to p . Fix a

sequence 1 =Q0 ⊂Q1 ⊂ · · · ⊂Qr =Q of normal subgroups of Q such that Qi/Qi−1 is cyclic

for 1 ¶ i ¶ r .

The constructions above define a map

i G

Q•
:∇|Q |′(CG(Q ), F )/≡ → ∇|Q |′(G, F )/≡

Let L be an F -stable Levi complement of a parabolic subgroup P of G containing Q . Let

X ∈∇|Q |′(CL(Q ), F )/≡ be a rational series. Then

– CL(Q ) is an F -stable Levi complement of CP(Q )

– if i L

Q•
(X ) is (G◦, L◦)-regular thenX is (C ◦

G
(Q ), C ◦

L
(Q ))-regular

– if i L

Q•
(X ) is (G◦, L◦)-super regular thenX is (C ◦

G
(Q ), C ◦

L
(Q ))-super regular.

The map i G

Q•
is actually independent of the choice of the filtration of Q , cf Remark

4.15.

4.D. Generation and series. — Given (T,θ ) ∈ ∇Λ(G, F ), we denote by e ◦
θ

the block
idempotent of ΛTF not vanishing on θ .

We have now a generalization of [BoRo1, Théorème A].
GivenX ∈∇Λ(G, F )/≡, letCX be the thick subcategory of (ΛGF )-perf generated by

the complexes RΓc (YB)e
◦
θ

where (T,θ ) runs over X and B runs over Borel subgroups
of G◦ containing T.

Note that we obtain the same thick subcategory by taking instead the complexes
RΓc (YB)eθ where eθ =

∑

t ∈N
GF (T,B)/CN

GF (T,B)(θ )
e ◦tθ .

Theorem 4.12. — LetX ∈∇Λ(G, F )/≡. There is a (unique) central idempotent eX of ΛGF

such that CX = (ΛGF eX )-perf.

We have a decomposition in central orthogonal idempotents of ΛGF

1=
∑

X∈∇Λ(G,F )/≡

eX .

Proof. — Note first that the theorem holds for G◦ by [BoRo1, Théorème A]. Let
(Ti ,θi ) ∈∇Λ(G, F ) for i ∈ {1, 2}. We have

Hom•
ΛGF (RΓc (Y

G

B1
)e ◦
θ1

, RΓc (Y
G

B2
)e ◦
θ2
)≃Hom•

ΛG◦F
(RΓc (Y

G◦

B1
)e ◦
θ1

,
⊕

t ∈N
GF (T2,B2)/T

F
2

RΓc (Y
G◦

B2
)e ◦t θ2
).
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The connected case of the theorem shows this is 0 unless (T1,θ1) and (T2, tθ2) are in
the same rational series of (G◦, F ) for some t .

We have shown that the categories CX1
and CX2

are othogonal for X1 6=X2. The
theorem follows now from [BoRo1, Proposition 9.2] and Theorem 3.7.

Let X ∈∇Λ(G, F )/ ≡. Let AX be the thick subcategory of Hob (ΛGF ) generated by
the complexes of the form

GΓc (YB,Λ)eθ ⊗ΛP L ,

where

– (T,θ ) runs overX
– B runs over Borel subgroups of G◦ containing T

– P is an ℓ-subgroup of NGF (T, B)

– and L is a ΛP -module, free of rank 1 over Λ.

LetBX be the full subcategory of ΛGF eX -mod consisting of modules whose inde-
composable direct summands have a one-dimensional source and a vertex P which
normalizes a pair (T ⊂ B) where T is an F -stable maximal torus and B a Borel sub-
group of G.

Theorem 4.13. — LetX ∈∇ℓ′(G, F )/≡. We haveAX =Hob (BX ).

Proof. — By Theorem 4.12, we have GΓc (YV,Λ)eθ ⊗ΛP L ∈ Hob (BY ) if (T,θ ) ∈ Y . It
follows that AY ⊂ Hob (BY ) and A =

⊕

Y ∈∇ℓ′ (G,F )/≡AY . Consequently, the theorem
follows from Theorem 3.9.

4.E. Decomposition map and Deligne-Lusztig induction. — The following result
generalizes [BrMi, Théorème 3.2] to non-cyclic ℓ-subgroups and to disconnected
groups (needed to handle the non-cyclic case by induction).

Theorem 4.14. — Let Q be an ℓ-subgroup of GF . The map i G

Q•
(cf Proposition 4.11) is

independent of the filtration of Q and we denote it by iQ = i G

Q
.

LetX ∈∇ℓ′(G, F )/≡. We have

brQ (eX ) =
∑

Y ∈i−1
Q (X )

eY .
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Proof. — Assume first that Q is cyclic. Let b be a block idempotent of k CGF (Q ) such
that brQ (eX )b 6= 0. Let V be a projective indecomposable b k (CGF (Q )/Q )-module and
M =M (Q , V ). There is a unique block idempotent c of k GF such that brQ (c )b 6= 0.
We have eX c 6=0. Note that M c = M , hence M eX = M . By Theorem 4.13 and
its proof, there exists (T,θ ) ∈ X , B a Borel subgroup of G◦ containing T with Q ⊂

NGF (T, B) such that V is isomorphic to a direct summand of a component of BrQ (GΓc (YB, k )eθ⊗kQ

k ). It follows that b BrQ (GΓc (YB′ , k )eθ ⊗kQ k ) 6= 0, hence b brQ (eθ ) 6= 0. This shows that
the rational series Y of (CG(Q ), F ) containing b contains (TQ ,θ ′), where TQ = C ◦

T
(Q )

and θ ′ is the restriction to TF
Q

of a NGF (T, B)-conjugate of θ . It follows that i (Y ) =X .
So, we have shown that given Y ∈ ∇ℓ′(CG(Q ), F )/ ≡ with eY brQ (eX ) 6= 0, then Y ∈

i −1(X ). Since
∑

X∈∇ℓ′ (G,F )/≡brQ (eX ) = 1 =
∑

Y ∈∇ℓ′ (CG(Q ),F )/≡
eY , it follows that brQ (eX ) =

∑

Y ∈i−1
g (X )

eY .
By transitivity of brQ , we obtain the formula for brQ for a general Q by induction

on |Q |, with iQ replaced by iQ•
. This shows that actually iQ•

is independent of the
chosen filtration of Q .

Remark 4.15. — Let Q =Q ′ ×Q ′′ be a product of two cyclic groups of coprime or-
ders. Fix a filtration Q1 =Q ′ and Q2 =Q . We have iQ•

= iQ . It is easy to deduce now
from Theorem 4.14 that iQ•

is independent of Q for any nilpotent p ′-group Q .

Broué-Michel’s proof of Theorem 4.14 for G connected and Q cyclic relies on the
compatibility of Deligne-Lusztig induction with generalized decomposition maps.
This does generalize to disconnected groups, as we explain below. A direct ap-
proach along the lines of Broué-Michel is possible, based on the results of [DigMi3].
While we will not use the results in the remaining part of this section, they might
be useful for character theoretic questions.

Let π be a set of prime numbers not containing p . An element of finite order of G

is a π-element (resp. a π′-element) if its order is a product of primes in π (resp. not
in π).

Let g be an automorphism of finite order of an algebrac variety X. Write g = l x =

x l where l is a π-element and x a π′-element. The following result is an immediate
consequence of [DeLu, Theorem 3.2]:

(4.16)
∑

i ¾ 0

(−1)i Tr(g , Hi
c
(X,Qℓ)) =
∑

i ¾ 0

(−1)i Tr(x , Hi
c
(Xl ,Qℓ)).

Proof. — Write x = s u = u s , where s has order prime to p and u has order a power
of p . Then l , s and u commute and have coprime orders. By [DeLu, Theorem 3.2],
we have

∑

i ¾ 0

(−1)i Tr(g , Hi
c
(X,Qℓ)) =
∑

i ¾ 0

(−1)i Tr(u , Hi
c
(Xl s ,Qℓ))
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and
∑

i ¾ 0

(−1)i Tr(x , Hi
c
(Xl ,Qℓ)) =
∑

i ¾ 0

(−1)i Tr(u , Hi
c
((Xl )s ,Qℓ)).

So the result follows from the fact that Xl s = (Xl )s because 〈l s 〉= 〈l , s 〉.

Given H a finite group and h ∈H a π-element, we have a generalized decomposi-
tion map from the vector space of class functions H → K to the vector space of class
functions on π′-elements of CH (h ) given by d H

h
(f )(u ) = f (h u ) for u a π′-element of

CH (h ).

The following result generalizes the character formula for R G

L
[DigMi2, Proposi-

tion 2.6], which corresponds to the case where π is the set of all primes distinct from
p ,

Proposition 4.17. — Let P be a parabolic subgroup of G, let V be its unipotent radical, let

L be a Levi complement of P and assume that L is F -stable. Let g ∈GF be a π-element. We

have

d GF

g
◦RG

L⊂P
=
∑

x∈CG(g )
F \GF /LF

g∈x L

R
CG(g )

C x L(g )⊂C x P(g )
◦d

xLF

g
◦ x∗.

Proof. — Given H a finite group, we denote by Hπ (respectively Hπ′) the set of π-
elements (resp. π′-elements) of H . The proof follows essentially the same argument
as the proof of the character formula (see for instance [DigMi1, Proposition 12.2]).
Let λ be a class function on LF and let u ∈CG(g )

F
π′

be an π′-element. By definition of
the Deligne-Lusztig induction and by using (4.16), we get

RG

L⊂P
(λ)(g u ) =

1

|LF |

∑

l∈L
F
π

∑

v∈CL(l )
F
π′

λ(l v )
∑

i ¾ 0

(−1)i Tr((g u , l v ), Hi
c
(YV,Qℓ)).

=
1

|LF |

∑

l∈L
F
π

∑

v∈CL(l )
F
π′

λ(l v )
∑

i ¾ 0

(−1)i Tr((u , v ), Hi
c
(Y
(g ,l )

V
,Qℓ)).

But it follows from Lemma 3.5 that Y
(g ,l )

V
6= ∅ if and only if there exists x ∈ GF such

that x−1g x = l . Moreover, in this case, then Y
(g ,l )

V
≃ Y

CG(g )

C x V(g )
by Proposition 3.4. There-

fore,

RG

L⊂P
(λ)(g u ) =

1

|LF | · |CG(g )F |

∑

x∈G
F

g∈x L

∑

v∈CL(l )
F
π′

λ(x−1g x v )
∑

i ¾ 0

(−1)i Tr((u , v ), Hi
c
(Y
(g ,x−1g x )

V
,Qℓ)).

=
1

|LF | · |CG(g )F |

∑

x∈GF

g∈x L

∑

v∈C x L(g )
F
π′

d
xL

g
(x∗(λ))(v )
∑

i ¾ 0

(−1)i Tr((u , v ), Hi
c
(Y

CG(g )

C x V(g )
,Qℓ)).
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Now, if x ∈GF is such that g ∈ x L, then

|CG(g )
F x L

F |=
|CG(g )

F | · |LF |

|C x L(g )F |
.

So the result follows.

5. Comparing Y-varieties

From now on, and until the end of this article, we assume G is connected.

The aim of this section is to prove the preliminary statements necessary for our
proof of Theorem 1.3. Roughly speaking, the main result of this section (Theo-
rem 5.16) is almost equivalent to Theorem 1.3 whenever L is a maximal torus. As
Theorem 1.3 will be proved by reduction to this case, Theorem 5.16 may be seen
as the crucial step. In the course of the proof, we will also obtain Corollary E as a
consequence of some of our geometrical results.

In this section §5, we fix an F -stable torus T contained in an F -stable Borel sub-
group B and we denote by U its unipotent radical. We put W =NG(T)/T. We denote
by Φ the associated root system, by Φ+ the set of positive roots and by ∆ the basis
of Φ. Let α ∈ Φ, we denote by sα ∈W the corresponding reflection and by α∨ ∈ Φ∨

the corresponding coroot. We put Tα∨ = Im(α∨) ⊂ T and we denote by Uα the one-
parameter subgroup of G normalized by T and associated with α. We define Gα as
the subgroup of G generated by Uα and U−α.

5.A. Dimension estimates and further. — We fix in this section four parabolic
subgroups P1, P2, P3 and P4 admitting a common Levi complement L. We denote
by V1, V2, V3 and V4 the unipotent radicals of P1, P2, P3 and P4 respectively.

We define the varieties

Y 1,2,3 = {(g1V1, g2V2, g3V3) ∈G/V1×G/V2×G/V3 | g
−1
1

g2 ∈ V1 ·V2 and g −1
2

g3 ∈V2 ·V3},

Y
cl
1,2,3
= {(g1V1, g2V2, g3V3) ∈Y 1,2,3 | g

−1
1

g3 ∈V1 ·V3}

and Y 1,3 = {(g1V1, g3V3) ∈G/V1×G/V3 | g
−1
1

g3 ∈V1 ·V3}.

We denote by i1,3 :Y cl
1,2,3
,→Y 1,2,3 the closed immersion and we define

π1,3 : Y
cl
1,2,3

−→ Y 1,3

(g1V1, g2V2, g3V3) 7−→ (g1V1, g3V3).

All these varieties are endowed with a diagonal action of G, and the morphisms i1,3

and π1,3 are G-equivariant.

Proposition 5.1. — We have:
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(a) dim(V1) = dim(V2) = dim(V3).

(b) dim(Y 1,2,3)−dim(Y 1,3) = dim(V1)+dim(V1 ∩V3)−dim(V1 ∩V2)−dim(V2 ∩V3).

(c) dim(Y 1,2,3)−dim(Y 1,3) = 2
�

dim(V1 ∩V3)−dim(V1 ∩V2 ∩V3)
�

.

Proof. — (a) is well-known. Also,

dim(Y 1,2,3) = dim(G/V1)+dim(V1 ·V2/V2)+dim(V2 ·V3/V3)

= dim(G/V1)+dim(V1)−dim(V1 ∩V2)+dim(V2)−dim(V2 ∩V3)

while

dim(Y 1,3) = dim(G/V1)+dim(V1 ·V3/V3)

= dim(G/V1)+dim(V1)−dim(V1 ∩V3).

So (b) follows from the two equalities (and from (a)).

Let us now prove (c). For this, we may assume that T⊂ L. Let Φi denote the set of
roots α ∈Φ such that Uα ⊂Vi . Then Φ1 ∪−Φ1 = Φ2∪−Φ2 = Φ3∪−Φ3. In particular,

Φ1∪−Φ1 = (Φ1 ∪Φ2 ∪Φ3)∪−(Φ1 ∩Φ2 ∩Φ3).

Therefore
2|Φ1|= |Φ1 ∪Φ2 ∪Φ3|+ |Φ1∩Φ2 ∩Φ3|.

On the other hand, by general facts about the cardinality of a union of finite sets,

|Φ1∪Φ2 ∪Φ3|= |Φ1|+ |Φ2|+ |Φ3| − |Φ1∩Φ2| − |Φ1∩Φ3| − |Φ2∩Φ3|+ |Φ1∩Φ2 ∩Φ3|.

Hence (c) follows from (a), (b) and from these last two equalities.

Let d1,3 = dim(V1 ∩V3)−dim(V1 ∩V2 ∩V3). By Proposition 5.1, we have

d1,3 =
1

2

�

dim(Y 1,2,3)−dim(Y 1,3)
�

.

Let
κ1,3 : G/(V1∩V3) −→ Y 1,3

g (V1 ∩V3) 7−→ (g V1, g V3)

and
κcl

1,2,3
: G/(V1 ∩V2 ∩V3) −→ Y

cl
1,2,3

g (V1 ∩V2 ∩V3) 7−→ (g V1, g V2, g V3).

Both maps are G-equivariant morphisms of varieties.

Proposition 5.2. — The maps κ1,3 and κcl
1,2,3

are isomorphisms of varieties.
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Proof. — The fact that κ1,3 is an isomorphism is clear. It is also clear that κcl
1,2,3

is a
closed immersion. It is so sufficient to prove that κcl

1,2,3
is surjective.

So, let (g1V1, g2V2, g3V3) ∈ Y
cl
1,2,3

. Using the G-action and the fact that κ1,3 is an
isomorphism, we may assume that g1 = g3 = 1. Therefore,

g2 ∈ (V1 ·V2)∩ (V3 ·V2).

By the uniqueness of the factorisation of elements in a big cell, we have

(V1 ·V2)∩ (V3 ·V2) = (V1 ∩V3) ·V2.

So there exists h ∈V1∩V3 such that hV2 = g2V2. It is then clear that (g1V1, g2V2, g3V3) =

κcl
1,2,3
(h ), as desired.

Corollary 5.3. — The map π1,3 is a smooth morphism with fibers isomorphic to the affine

space of dimension d1,3. Moreover,

dim(Y 1,2,3)−dim(Y cl
1,2,3
) = dim(Y cl

1,2,3
)−dim(Y 1,3) = d1,3.

Proof. — Using the isomorphisms κ1,3 and κcl
1,2,3

of Proposition 5.2, the map π1,3

may be identified with the canonical projection G/(V1 ∩V3) −։ G/(V1 ∩V2 ∩V3). The
corollary follows.

Let us now define

Y
cl
1,2,3,4

= {(g1V1, g2V2, g3V3, g4V4) ∈G/V1×G/V2×G/V3×G/V4 |

g −1
1

g2 ∈ V1 ·V2, g −1
2

g3 ∈V2 ·V3, g −1
3

g4 ∈V3 ·V4

and g −1
1

g4 ∈V1 ·V4},

Y
cl,2
1,2,3,4

= {(g1V1, g2V2, g3V3, g4V4) ∈Y
cl
1,2,3,4
| g −1

1
g3 ∈V1 ·V3},

and Y
cl,3
1,2,3,4

= {(g1V1, g2V2, g3V3, g4V4) ∈Y
cl
1,2,3,4
| g −1

2
g4 ∈V2 ·V4}.

Then:

Corollary 5.4. — Assume that at least one of the following holds:

(1) V1 ⊂V4 ·V2.

(2) V2 ⊂V1 ·V3.

(3) V3 ⊂V2 ·V4.

(4) V4 ⊂V3 ·V1.

Then Y cl,2
1,2,3,4 =Y

cl,3
1,2,3,4.
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Proof. — Using the fact that the map (g1V1, g2V2, g3V3, g4V4) 7→ (g4V4, g1V1, g2V2, g3V3)

induces an isomorphism Y cl
1,2,3,4
≃ Y cl

4,1,2,3
(with obvious notation), we see that it is

sufficient to prove only one of the statements.
So let us assume that V2 ⊂ V1 ·V3. Let (g1V1, g2V2, g3V3, g4V4) ∈Y

cl
1,2,3,4

. Then g −1
1

g3 =

(g −1
1

g2)(g
−1
2

g3) ∈ V1 ·V2 ·V3 = V1 ·V3 and so Y cl,2
1,2,3,4 =Y

cl
1,2,3,4

. So it remains to prove that
(g1V1, g2V2, g3V3, g4V4) ∈ Y

cl,3
1,2,3,4. Using the action of G and the isomorphism κcl

1,3,4
of

Proposition 5.2, we may assume that g1 = g3 = g4 = 1. But then g −1
2

g4 = g −1
2
∈ V2 ⊂

V2 ·V4, as desired.

Remark 5.5. — Let w1, w2 and w3 be three elements of W and let us assume here
that V1 =U, V2 =

w1V1, V3 =
w1w2V1 and V4 =

w1w2w3V1. Then the conditions (1), (2), (3)
and (4) of Corollary 5.4 are respectively equivalent to:

(1) l (w2w3) = l (w1w2w3)+ l (w1).
(2) l (w1w2) = l (w1)+ l (w2).
(3) l (w2w3) = l (w2)+ l (w3).
(4) l (w1w2) = l (w1w2w3)+ l (w3).

5.B. Setting. — We fix a positive integer r . Given a family of objects m1, . . . , mr

belonging to a structure acted on by F , we put m j+e r = F e (m j ) for 1 ¶ j ¶ r and
e ¾ 0.

Let n= (n1, . . . , nr ) be a sequence of elements of NG(T). We denote by wi the image
of ni in W and we put w =w1 · · ·wr .

We define

Y(n) = {(g1U, g2U, . . . , g r U) ∈ (G/U)r | g j

n j
g j+1 ∀1 ¶ j ¶ r }

where g j
n j g j+1 means g −1

j
g j+1 ∈Un j U. This variety has a left action by multipli-

cation of GF and a right action by multiplication of Tw F .
We fix a positive integer m such that F m (ni ) = ni for all i . The action of F m on

(G/U)r restricts to an action on Y(n).
Given Z a variety of pure dimension n , we put RΓdim

c
(Z,Λ) = RΓc(Z,Λ)[n ](n/2),

where (n/2) denotes a Tate twist.

Given 2 ¶ j ¶ r , we denote by Ycl
j
(n) the F m -stable closed subvariety of Y(n) de-

fined by

Y
cl
j
(n) = {(g1U, g2U, . . . , g r U) ∈ Y(n) | g −1

j−1
g j+1 ∈Un j−1n j U}



DERIVED CATEGORIES AND DELIGNE-LUSZTIG VARITIES 29

and we denote by Y
op

j (n) its open complement. They are both stable under the action
of GF ×Tw F . We denote by π j : (G/U)r → (G/U)r−1 the morphism of varieties which
forgets the j -th component and we set

c j (n) = (n1, n2, . . . , n j−2, n j−1n j , n j+1, . . . , nr )

and d j (n) =
l (w j−1)+ l (w j )− l (w j−1w j )

2
.

Let in, j : Ycl
j
(n) ,→ Y j (n) denote the closed immersion and

πn, j : Y
cl
j
(n)→ Y(c j (n))

denote the restriction of π j . Note that πn, j is (GF , Tw F )-equivariant and commutes
with the action of F m . The next lemma follows from Corollary 5.3.

Lemma 5.6. — If 2 ¶ j ¶ r , then πn, j is a smooth morphism with fibers isomorphic to an

affine space of dimension d j (n). Moreover, the codimension of Ycl
j
(n) in Y(n) is also equal to

d j (n).

The mapπn, j induces a quasi-isomorphism of complexes of (ΛGF ,ΛTw F )-bimodules

(5.7) RΓc(Y
cl
j
(n),Λ)

∼
−→ RΓc(Y(c j (n)),Λ)[−2d j (n)](−d j (n)).

Composing this isomorphism with the morphism i ∗
n, j

: RΓc(Y(n),Λ) → RΓc(Y
cl
j
(n),Λ),

we obtain a morphism of complexes of (ΛGF ,ΛTw F )-bimodules

Ψn, j : RΓdim
c
(Y(n),Λ)−→RΓdim

c
(Y(c j (n)),Λ)

which commutes with the action of F m , and whose cone is quasi-isomorphic to
RΓdim

c
(Y

op

j (n),Λ)[1].

5.C. Preliminaries. — We first recall some results from [BoRo1].

We denote by B the braid group of W , and by σ : W → B the unique map (not
a group morphism) that is a right inverse to the canonical map B → W and that
preserves lengths. We extend it to sequences of elements of W by σ(w1, . . . , wr ) =

σ(w1) · · ·σ(wr ).
We denote by n 7→ n̄ : NG(T) →W the quotient map. We fix σ̇ : NG(T) → B ⋉ T a

map (not a group morphism) such that σ̇(n t ) = σ̇(n )t for all t ∈T and such that the
image of σ̇(n ) in B = (B⋉T)/T is equal toσ(n̄ ). We extend it to sequences of elements
of NG(T) by σ̇(n1, . . . , nr ) = σ̇(n1) · · ·σ̇(nr ).

The following result is [BoRo1, Proposition 5.4].

Lemma 5.8. — Let n′ be a sequence of elements of NG(T). Then:
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(a) If σ̇(n) = σ̇(n′) (they are elements of B ⋉ T), then the varieties Y(n) and Y(n′) are

canonically isomorphic GF -varieties-Tw F .

(b) If σ(n) = σ(n′) (they are elements of B ), then the varieties Y(n) and Y(n′) are (non-

canonically) isomorphic GF -varieties-Tw F .

Proof. — (a) is proved in [BoRo1, 5.5], while (b) is [BoRo1, Proposition 5.4].

Using Lemma 5.8(a), we shall now write Y(n) = Y(n′) when σ̇(n) = σ̇(n′). Strictly
speaking, Lemma 5.8(a) says that these two varieties are only isomorphic but, since
this isomorphism is canonical, we shall use the symbol = to simplify the exposition.

We define the cyclic shift sh(n) of n by

sh(n) = (n2, . . . , nr , F (n1)).

The next result is proved in [DigMiRo, Proposition 3.1.6] for the varieties X(w) and
X(w′). The same proof shows the more precise result below.

Lemma 5.9. — The map

Y(n) −→ Y(sh(n))

(g1U, . . . , g r U) 7−→ (g2U, . . . , g r U, F (g1)U)

induces an equivalence of étale sites. Moreover, it is a morphism of GF -varieties-Tw F , where

t ∈Tw F acts on Y(sh(n)) by right multiplication by n−1
1

t n1. Consequently, the diagram

Db (ΛTw −1
1 w F (w1)F )

n1,∗ //

Rsh(n)

##F
FF

FF
FF

FF
FF

FF
FF

FF
FF

Db (ΛTw F )

Rn

~~}}
}}
}}
}}
}}
}}
}}
}}
}

Db (ΛGF )

is commutative.

Assume in the remaining part of §5.C that 3 ¶ j ¶ r (in particular, r ¾ 3). Note
that c j−1(c j (n)) = c j−1(c j−1(n)). Consider the diagram

(5.10)

RΓdim
c
(Y(n),Λ)

Ψn, j
//

Ψn, j−1

��

RΓdim
c
(Y(c j (n)),Λ)

Ψc j (n), j−1

��

RΓdim
c
(Y(c j−1(n)),Λ)

Ψc j−1(n), j−1

// RΓdim
c
(Y(c j−1(c j (n)),Λ).
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It does not seem reasonable to expect that the diagram (5.10) is commutative in
general. However, it is in some cases.

Let us first define the folowing two varieties:

Y
cl
j , j−1
(n) = Y

cl
j−1
(c j (n))×Y(c j (n))

Y
cl
j
(n)

and Y
cl
j−1, j
(n) = Y

cl
j−1
(c j−1(n))×Y(c j−1(n))

Y
cl
j−1
(n).

More concretely, they are the closed subvarieties of Y(n) defined by

Y
cl
j , j−1
(n) = {(g1U, . . . , g r U)∈ Y(n) | g j−2U

n j−2n j−1n j
g j+1U and g j−1U

n j−1n j
g j+1U}

and
Y

cl
j−1, j
(n) = {(g1U, . . . , g r U) ∈ Y(n) | g j−2U

n j−2n j−1n j
g j+1U and g j−2U

n j−2n j−1
g j U}.

Lemma 5.11. — If Ycl
j , j−1
(n) = Ycl

j−1, j
(n), then the diagram (5.10) is commutative.

Proof. — For the purpose of this proof, we also define

INT j (n) = Y
cl
j , j−1
(n)∩Y

cl
j−1, j
(n)

and FIB j (n) = Y
cl
j−1
(c j−1(n))×Y(c j−1(c j (n)))

Y
cl
j−1
(c j (n)).

Again, concretely,

FIB j (n) = {(g1U, g2U, . . . , g r U) ∈ (G/U)r |

(g1U, . . . , g j−2U, g j U, . . . , g r U)∈ Y(c j−1(n)),

(g1U, . . . , g j−1U, g j+1U, . . . , g r U)∈ Y(c j (n))

and g j−2U
n j−2n j−1n j

g j+1U}

and INT j (n) = {(g1U, g2U, . . . , g r U) ∈ FIB j (n) | g j−1U
n2

g j U}.

This shows that all these varieties fit into the following commutative diagram, in
which all the arrows of the form ,−→ are closed immersions and all the arrows of
the form −։ are smooth morphisms with fibers isomorphic to an affine space:
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(5.12) Y(n)

Ycl
j−1
(n)

$ �

in, j−1

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

πn, j−1

����

Ycl
j
(n)

9 Y

in, j

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

πn, j

����

Ycl
j−1, j
(n)

6 V

i
iiSSSSSSSSSSSSSSSSS

π

����

Ycl
j , j−1
(n)

( �

i ′
55llllllllllllllll

π′

����

� INT j (n)
U5

ggPPPPPPPPPPPP * 


77ooooooooooo

� _

��

�

Y(c j−1(n)) FIB j (n)

wwwwnnn
nn
nn
nn
nn
n

'' ''OO
OO

OO
OO

OO
O

Y(c j (n))

Ycl
j−1
(c j−1(n))

6 V

ic j−1(n), j−1
iiSSSSSSSSSSSSSSS

πc j−1(n), j−1 '' ''PP
PP

PP
PP

PP
P

� Ycl
j−1
(c j (n))

( �

ic j (n), j−1
55lllllllllllllll

πc j (n), j−1wwwwooo
oo
oo
oo
oo

Y(c j−1(c j (n)))

Note that the three squares marked with the symbol � are cartesian. By the proper
base change Theorem, the composition Ψc j−1(n), j−1 ◦Ψn, j−1 is obtained as the compo-
sition of (in, j−1 ◦ i )∗ with the inverse of the isomorphism induced by (πc j−1(n), j−1 ◦π)

∗.
Similarly, the composition Ψc j (n), j−1◦Ψn, j is equal to the composition of (in, j ◦ i

′)∗ with
the inverse of the isomorphism induced by (πc j (n), j−1 ◦π

′)∗. The lemma follows.

Lemma 5.13. — Assume that one of the following holds:

(1) l (w j−2w j−1) = l (w j−2)+ l (w j−1).

(2) l (w j−1w j ) = l (w j−1)+ l (w j ).

(3) l (w j−2w j−1) = l (w j−2w j−1w j )+ l (w j ).

(4) l (w j−1w j ) = l (w j−2)+ l (w j−2w j−1w j ).

Then the diagram (5.10) is commutative.

Proof. — It is sufficient, by Lemma 5.11, to prove that, if (1), (2), (3) or (4) holds,
then Ycl

j , j−1
(n) = Ycl

j−1, j
(n). This follows, after base change, from Corollary 5.4.

5.D. Comparison of complexes. — We start with the description of varieties of
the form Y

op

1 (n
′) in a very special case, which will be the fundamental step in the

proof of Theorem 5.16.
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Let w= n̄= (w1, . . . , wr ). Given α ∈∆, we define a subgroup of Tr+1

S(α, w) = {(a1, . . . , ar+1) ∈T
r+1 | a−1

1
sαa2s−1

α
∈ Tα∨ , a−1

i
wi−1ai+1w −1

i
= 1 for 2 ¶ i ¶ r

and a−1
r+1

wr F (a1)w
−1
r
= 1}.

Let x ∈ {1, sα}. The group morphism

T→T
r+1, a 7→ (a , x a x−1, w1 x a x−1w −1

1
, . . . , wr−1 · · ·w1 x a x−1w −1

1
· · ·w −1

r−1
)

restricts to an embedding of Tx w F in S(α, w).

Given a= (a1, . . . , am ) and b= (b1, . . . , bn ) two sequences, we denote the concatena-
tion of the sequences by a •b= (a1, . . . , am , b1, . . . , bn ).

Lemma 5.14. — Let α ∈∆ and and let ṡ be a representative of sα in NG(T)∩Gα. We assume

that Gα ≃ SL2(F). There exists a closed immersion Y(ṡ •n) ,→ Y
op

2 ((ṡ , ṡ−1) •n) and an action

of S(α, w) on Y
op

2 ((ṡ , ṡ−1) •n) such that

Y
op

2 ((ṡ , ṡ−1) •n)≃ Y(ṡ •n)×Tsαw F S(α, w),

as GF -varieties-Tw F .

Proof. — Given i ∈ {1, . . . , r }, consider a reduced decomposition wi = si ,1 · · ·si ,di
. We

put w̃ = (s1,1, . . . , s1,d1
, s2,1, . . . , s2,d2

, . . . , sr,1, . . . , sr,dr
). Note that S(α, w) is isomorphic to

the group S(sα • w̃, 1 • w̃) defined in [BoRo1, §4.4.3]:

S(sα • w̃, 1 • w̃)
∼
−→ S(α, w), (a1, . . . , a1+d1+···+dr

) 7→ (a1, a2, a2+d1
, a2+d1+d2

, . . . , a2+d1+···+dr−1
).

The following computation in SL2(F)≃Gα

(#)

�

1 x

0 1

��

0 1

−1 0

��

1 y

0 1

��

0 −1

1 0

��

1 z

0 1

�

=

�

1− x y x + z − x y z

−y 1− y z

�

shows that the map

Uα× (Uα \ {1})×Uα −→ UαTα∨ ṡ Uα

(u1, u2, u3) 7−→ u1 ṡ u2 ṡ−1u3

is an isomorphism of varieties. Therefore, one may forget the second coordinate in
the definition of the variety Y

op

2 ((ṡ , ṡ−1) •n) and we get

(5.15)
Y

op

2 ((ṡ , ṡ−1) •n) ≃ {(g U, g1U, . . . , g r U) | g −1g1 ∈UTα∨ ṡ U and

g1U
n1 g2U

n2 · · ·
nr−1 g r U

nr F (g )U}.

We will use this description of Y
op

2 ((ṡ , ṡ−1) •n) towards the end of this proof.
This description shows that the group S(α, w) acts on Y

op

2 ((ṡ , ṡ−1)•n) (as the restric-
tion of the action by right multiplication of Tr+1 on (G/U)r+1). Also, as Uṡ U is closed
in UTα∨ ṡ U, the natural map Y(ṡ •n) ,→ Y

op

2 ((ṡ , ṡ−1)•n) is a closed immersion. We have
embeddings TsαnF ,→ S(α, w) and TnF ,→ S(α, w) and

S(α, w) = T
sαw F ·S(α, w)◦ = S(α, w)◦ ·Tw F
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(see [BoRo1, Proposition 4.11]). The stabilizer of the closed subvariety Y(ṡ •n) under
this action is Tsαw F so it is readily checked that this induces an isomorphism of GF -
varieties-Tw F

Y(ṡ •n)×Tsαw F S(α, w)
∼
−→ Y

op

2 ((ṡ , ṡ−1) •n),

as desired.

The next theorem is the main result of this section. It provides a sufficient condi-
tion for Ψn, j to induce a quasi-isomorphism RΓdim

c
(Y(n),Λ)eθ

∼
−→ RΓdim

c
(Y(c j (n)),Λ)eθ .

Given x , y ∈W , we put

Φ
+(x , y ) = {α ∈Φ+ | x−1(α) ∈−Φ+ and (x y )−1(α) ∈ Φ+}.

We define Nw : Y (T)→ Tw F , λ 7→NF d /w F (λ(ζ)) (cf §4.A).

Theorem 5.16. — Let θ : Tw F → Λ× be a character. Let j ∈ {2, 3, . . . , r } and assume that

θ (Nw (w1 · · ·w j−2(α
∨))) 6= 1 for all α ∈Φ+(w j−1, w j ). We have RΓc(Y

op

j (n),Λ)eθ = 0 and

Ψn, j ,θ : RΓdim
c
(Y(n),Λ)eθ

∼
−→ RΓdim

c
(Y(c j (n)),Λ)eθ

is a quasi-isomorphism of complexes of (ΛGF ,ΛTw F )-bimodules commuting with the action

of F m .

Proof. — If 2 ¶ j ¶ r , we denote by P (n, j ,θ ) the following property:

P (n, j ,θ ) For all α ∈Φ+(w j−1, w j ), we have θ (Nw (w1 · · ·w j−2(α
∨))) 6= 1.

We want to prove that P (n, j ,θ ) implies that RΓc(Y
op

j (n),Λ)eθ = 0. By [BoRo1, Propo-
sition 5.19 and Remark 5.21], it is sufficient to prove it whenever G = Ĝ, so we will
assume that G= Ĝ.

So assume from now that P (n, j ,θ ) holds. We will prove by induction on l (w j−1)

that RΓc(Y
op

j (n),Λ)eθ = 0. Note that the induction hypothesis does not depend on
r . But, first, note that, if j ¾ 3, then P (n, j ,θ ) is equivalent to P (sh(n), j − 1,θ ◦

n1) and that the morphism constructed in Lemma 5.9 sends Y
op

j (n) to Y
op

j−1(sh(n)).
Thus RΓc(Y

op

j (n),Λ)eθ = 0 is equivalent to RΓc(Y
op

j−1(sh(n)),Λ)eθ ◦n1
= 0. By successive

applications of this remark, this shows that we may assume that j = 2.

First case: Assume that l (w1) = 0. This means that n1 ∈T and it follows from Lemma 5.6
(or Lemma 5.8(a)) that Y

op

2 (n) =∅. So the result follows in this case.

Second case: Assume that l (w1) = 1 and n1n2 = 1. Let α ∈ ∆ be such that w1 = sα and
we may assume that n1 = ṡ is a representative of sα lying in Gα. Note also that, since
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we assume that Ĝ=G, we have Gα ≃ SL2(F). Define S= S(α, (w3, . . . , wr )). Lemma 5.14
shows that

RΓc(Y
op

2 (n),Λ)eθ = RΓc(Y(ṡ , n3, . . . , nr ),Λ)⊗ΛTsαw F RΓc(S,Λ)eθ .

But Φ+(w1, w2) = Φ
+(sα, sα) = {α}, so θ (Nw (α

∨)) 6= 1 by hypothesis. Note also that
Tw F ∩S◦ acts trivially on the cohomology groups of the complex RΓc(S

◦), as its action
extends to the connected group S◦. Since Nw (α

∨) ∈ S◦ (see [BoRo1, Proof of Proposi-
tion 4.11, Equality (a)]), this proves that RΓc(S,Λ)eθ = 0 and so RΓc(Y

op

2 (n),Λ)eθ = 0, as
desired.

Last case: Assume that l (w1) ¾ 1. So let us assume now that l (w1) ¾ 1. Let α ∈ ∆ be
such that w1 = sαw ′

1
, with l (w ′

1
) = l (w1)− 1. Let ṡ be a representative of sα in Gα and

let n ′
1
= ṡ−1n1. We will write n′ = (n ′

1
, n2, . . . , nr ). Then n ′

1
is a representative of w ′

1
and,

by Lemma 5.8(a), we have Y(n) = Y(ṡ •n′) (see also the remark following Lemma 5.8).
It is well-known that Φ+(w1, 1) = {α}

∐

sα(Φ
+(w ′

1
, 1)). Therefore

(#) Φ
+(w1, w2) =

�

sα
�

Φ+(w ′
1
, w2)
�

if l (w ′
1
w2)< l (w1w2),

{α}
∐

sα
�

Φ
+(w ′

1
, w2)
�

if l (w ′
1
w2)> l (w1w2).

Let us now consider the diagram (5.12) with n replaced by ṡ •n′ and j is replaced
by 3. We can apply Lemma 5.13 (since the hypothesis (1) holds), so we only need to
prove that RΓc(Y

op

3 (ṡ •n
′),Λ)eθ =RΓc(U ,Λ)eθ = 0, whereU is the complement of Ycl

3,2
(ṡ •

n′) in Ycl
3
(ṡ •n′). But the fact that RΓc(Y

op

3 (ṡ •n′),Λ)eθ = 0 follows from the induction
hypothesis (indeed, by (#), the Property P (ṡ • n′, 3,θ ) is fulfiled. So it remains to
show that RΓc(U ,Λ)eθ = 0. Using the fact that the square (i ′,π′,πṡ•n′,3, ic3(ṡ•n′),3

) of the
diagram (5.12) is cartesian, and using also Lemma 5.6, it amounts to prove that
RΓc(Y

op

2 (c3(ṡ •n′),Λ)eθ = 0. Note that c3(ṡ •n′) = ṡ • c2(n
′). Two cases may occur:

• Assume first that l (w ′
1
w2) < l (w1w2). Then Y

op

2 (c3(ṡ •n′) = ∅, and the result fol-
lows.

• Assume now that l (w ′
1
w2) > l (w1w2). Then, again by Lemma 5.8(a), we have

Y(ṡ •c2(n
′)) = Y((ṡ , ṡ−1)•c2(n)) and, through this identification, Y

op

2 (c3(ṡ•n
′)) is identified

with Y
op

2 ((ṡ , ṡ−1) • c2(n)). So the result now follows from the second case (thanks to
(#)).

Remark 5.17. — Theorem 5.16 provides a comparison of modules, together with
the Frobenius action. Consider the case Λ = K . We have an isomorphism of K GF -
modules, compatible with the Frobenius action

H i
c
(Y(n), K )⊗K Tw F Kθ ≃H i−2r

c
(Y(c j (n)), K )⊗K Tw F Kθ (−r ).

where r = d j (n).
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Following the same lines as in the proof of Theorem 5.16, we obtain a new proof
of the following classical result.

Theorem 5.18. — If Λ is a field, then Rn =Rw .

Proof. — By [BoRo1, Proposition 5.19 and Remark 5.21], it is sufficient to prove the
Theorem whenever G = Ĝ, so we will assume that G= Ĝ. Also, by proceeding step-
by-step, it is enough to prove that Rn = Rc j (n)

. For this, let RΓ
op

n, j denote the class of
the complex RΓc(Y

op

j (n),Λ) in G0(ΛGF ⊗ΛTw F ). We only need to prove that RΓ
op

n, j = 0.
Proceeding by induction on l (w j ) as in the proof of Theorem 5.16, and following

the same strategy and arguments, we see that it is enough to prove Theorem 5.18
whenever j = 1, n1 = ṡ = n−1

2
, where ṡ is a representative in Gα of sα (for some

α ∈ ∆). By Lemma 5.14, it is sufficient to prove that the class RΓα,w of the complex
RΓc(S(α, w),Λ) in G0(ΛTsαw F ⊗ΛTw F ) is equal to 0.

Now, let T denote the subgroup of Tsαw F ×Tw F consisting of pairs (t1, t2) such that
t1t2 ∈ S(α, w)◦ and let RΓ◦ denote the class of the complex RΓc(S(α, w)◦) in G0(ΛT ).
Then RΓα,w = IndTsαw F ×Tw F

T
R◦. But the action of T on S(α, w) extends to an action of a

connected group, hence T acts trivially on the cohomology groups of S(α, w)◦. Since
the Euler characteristic of a torus is equal to 0, this gives RΓ◦ = 0, and consequently
RΓα,w = 0, as desired.

Corollary 5.19. — Let n′ = (n ′
1
, n ′

2
, . . . , n ′

r ′
) be a sequence of elements of NG(T), let x ∈W

and let w ′ denote the image of n ′
1
n ′

2
· · ·n ′

r ′
in W . We assume that Λ is a field and that

w ′ = x−1w F (x ). Then the diagram

G0(ΛTn
′F )

x∗ //

Rn′

��@
@@

@@
@@

@@
@@

@@
@@

@
G0(ΛTnF )

Rn

����
��
��
��
��
��
��
��

G0(ΛGF )

is commutative.

Proof. — Let n′′ = (ẋ−1, n1, n2, . . . , nr , F (ẋ )). Then, by Lemma 5.9,

Rn′′ =Rn•(F (ẋ ),F (ẋ )−1) ◦ x∗.

But, by Theorem 5.18, Rn′′ =Rw ′ =Rn′ and Rn•(F (ẋ ),F (ẋ )−1) = Rw = Rn.
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Corollary 5.20. — Let T′ be an F -stable maximal torus of G and let B′ and B′′ be two

Borel subgroups of G containing T′. Then RG

T′⊂B′
(θ ′) =RG

T′⊂B′′
(θ ′) for all θ ′ ∈ Irr(T′F ).

Proof. — Let g ′ and g ′′ be two elements of G such that B′ = g ′B, B′′ = g ′′B and T′ =
g ′T = g ′′T. Let n ′ = g ′−1F (g ′) and n ′′ = g ′′−1F (g ′′), and n = g ′−1g ′′. Then n , n ′, n ′′ ∈

NG(T) and n ′′ = n−1n ′F (n ). The result follows now from Corollary 5.19 and [BoRo1,
§11.1].

Remark 5.21. — Corollary 5.20 is well-known. In [DeLu, Corollary 4.3], this result
is first proved “geometrically” for θ ′ = 1 [DeLu, Theorem 1.6] by relating the vari-
eties XG

B′
and XG

B′′
, and extended to the general case using the character formula [DeLu,

Theorem 4.2]. Note that this result is then used in [DeLu, Theorem 6.8] to deduce
the Mackey formula for Deligne-Lusztig induction functors.

In [Lu2], Lusztig proposed another argument: the Mackey formula is proved
“geometrically” and a priori [Lu2, Theorem 2.3], and Corollary 5.20 follows [Lu2,
Corollary 2.4].

Our argument relies neither on the Mackey formula nor on the character for-
mula: we lift Deligne-Lusztig’s comparison of XG

B′
and XG

B′′
to a relation between

the varieties YG

U′
and YG

U′′
(here U′ and U′′ are the unipotent radicals of B′ and B′′

respectively).

Remark 5.22. — Some of the results in [BoRo2] (Lemma 4.3, Proposition 4.5 and
Theorem 4.6) rely on a disjointness result used in [BoRo2, Line 16 of Page 30]. This
disjointness result was “proved” using the isomorphism in [BoRo2, Line 18 of Page 30]:
it has been pointed out to the attention of the authors by H. Wang that this equality
is false. However, Wang provided a complete proof of this disjointness result [Wa,
Proposition 3.4.3], so [BoRo2, Lemma 4.3, Proposition 4.5 and Theorem 4.6] remain
valid.

Another proof of this disjointness result has been obtained independently by
Nguyen [Ng] (with slightly different methods). Using a version of Remark 5.17,
Wang and Nguyen have been able to keep track of the Frobenius eigenvalues.

6. Independence on the parabolic subgroup

We assume in this section §6 that G is connected. We fix an F -stable maximal
torus T of G and we denote by (G∗, T∗, F ∗) a triple dual to (G, T, F ).

We fix a family of parabolic subgroups P1, P2,. . . , Pr admitting L as a Levi com-
plement. Given 1 ¶ j ¶ r , we denote by V j the unipotent radical of P j . We denote
by V• the sequence (V1, . . . , Vr ).
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The identification of the root system of G with the coroot system of G∗ allows
us to define parabolic subgroups P∗

1
, P∗

2
,. . . , P∗

r
, admitting a common F ∗-stable Levi

complement L∗ and such that L∗ and P∗
j

and are dual to L and P j respectively. We
denote by V j and V∗

j
the unipotent radicals of P j and P∗

j
respectively.

Finally, we fix a semisimple element s ∈ L∗F
∗ whose order is invertible in Λ.

6.A. Isomorphisms. — As announced in the introduction, the isomorphism of
functors described in Theorem 1.3 is canonical. So, before giving the proof, we will
explain how it is realized. For this, let us define

YV•
= {(g1V1, . . . , g r Vr ) ∈G/V1× · · ·×G/Vr | ∀ j ∈ {1, 2, . . . , r }, g −1

j
g j+1 ∈ V j ·V j+1}

and, if 2 ¶ j ¶ r , we set

Y
cl
V•, j
= {(g1V1, g2V2, . . . , g r Vr ) ∈ YV•

| g −1
j−1

g j ∈ Vi−1 ·V j+1}.

It is a closed subvariety of YV•
and we denote by iV•, j : Ycl

V•, j
,→ YV•

the closed im-
mersion. Let Y

op

V•, j denote its open complement. We define the sequence c j (V•) as
obtained from the sequence V• by removing the j -th component. We then define

πV•, j : Y
cl
V•, j
−→ Yc j (V•)

as the map which forgets the j -th component and we set

d j (V•) = dim(V j−1∩V j+1)−dim(V j−1∩V j ∩V j+1).

Note that GF acts diagonally on YV•
by left translation, that LF acts diagonally by

right translation, and that this endows YV•
with a structure of GF -variety-LF . The

varieties Ycl
V•

and Y
op

V•
are stable under these actions, and the morphisms iV•, j and

πV•, j are equivariant. As for their analogues in, j and πn, j defined in §5.B, we have
the following properties, which follow from Corollary 5.3 by base change.

Lemma 6.1. — The map πV•, j is smooth with fibers are isomorphic to an affine space of

dimension d j (V•). The codimension of Ycl
V•

in YV•
is also equal to d j (V•).

We deduce that πV•, j induces a quasi-isomorphism of complexes of (ΛGF ,ΛLF )-
bimodules

RΓc(Y
cl
V•, j

,Λ)≃RΓc(Yc j (V•)
,Λ)[−2d j (V•)](−d j (V•)).

The closed immersion iV•, j : Ycl
V•, j
,→ YV,V′ induces a morphism of complexes of (ΛGF ,ΛLF )-

bimodules
i ∗

V•, j
: RΓc(YV•, j ,Λ)−→ RΓc(Y

cl
V•, j

,Λ)

which, composed with the previous isomorphism, induces a morphism

ΨV•, j : RΓdim
c
(YV•

,Λ)−→ RΓdim
c
(Yc j (V•)

,Λ).
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The main result of this section is the following.

Theorem 6.2. — Let j ∈ {2, 3, . . . , r } such that CV
∗
j−1∩V

∗
j+1
(s ) ⊂CV

∗
j
(s ). We have

RΓc(Y
op

V•, j ,Λ)e LF

s
= 0,

hence ΨV•, j induces a quasi-isomorphism of complexes of (ΛGF ,ΛLF )-bimodules

ΨV•, j ,s : RΓdim
c
(YV•, j ,Λ)e LF

s

∼
−→ RΓdim

c
(Yc j (V•)

,Λ)e LF

s
.

Proof. — The proof will proceed in two steps. We first prove the theorem when L is
a maximal torus: in fact, it will be shown that it is a consequence of Theorem 5.16.
We then use [BoRo1, Theorem A’] to deduce the general case from this particular
one.

First step: Assume here that L is a maximal torus. Let a1,. . . , ar be elements of G such
that (L, Pi ) =

ai (T, B) for all i ∈ {1, 2, . . . , r }). As usual, we set ar+1 = F (ar ). Now,
let ni = a−1

i
ai+1. It follows from the definition of the ai ’s that ni ∈ NG(T). We set

n = (n1, . . . , nr ). Note that n1n2 · · ·nr = a−1
1

F (a1). We denote by wi the image of ni in
W and we set w =w1w2 · · ·wr . It is then easily checked that the map

(g1V1, . . . , g r Vr ) 7−→ (g1V1a1, . . . , g r Vr ar )

induces an isomorphism of varieties

YV•

∼
−→ Y(n)

which sends Ycl
V•, j

to Ycl
j
(n). Moreover, conjugacy by a1 induces an isomorphism

Tw F ≃ LF and it is easily checked that the above isomorphism is (GF , LF )-equivariant
through this idenfication. Now, to s is associated a linear character of LF which,
through the identification Tw F ≃ LF , defines a linear character θ : Tw F →Λ×.

By Theorem 5.16, we only need to prove that Condition CV
∗
j−1∩V

∗
j+1
(s ) ⊂ CV

∗
j
(s ) is

equivalent to P (n, j ,θ ). So let us prove this last fact. The property P (n, j ,θ ) can be
rewritten as follows:

Property P (n, j ,θ ). If α ∈ Φ+ is such that θ (Nw (w1 · · ·w j−2(α
∨))) = 1 and

(w j−1w j )
−1(α) ∈Φ+, then w −1

j−1
(α) ∈Φ+.

If we set s ′ = a−1
1

s a1 ∈Tw F , then P (n, j ,θ ) becomes equivalent to

Cw1...w j−2U∗ (s
′)∩ w1···w j U

∗ ⊂ w1···w j−1U
∗.

By conjugating by a1, and since a1n1···ni U∗ = V∗
i
, we get that P (n, j ,θ ) is equivalent to

CV
∗
j−1
(s )∩V∗

j+1
⊂V∗

j
, as desired.

Second step: The general case. Let us now come back to the general case: we no longer
assume that L is a maximal torus. Since RΓc(Y

op

V•, j ,Λ)e L
F

s
= RΓc(Y

op

V•, j ,Λ)⊗ΛLF ΛLF e L
F

s
,
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and since ΛLF e L
F

s
lives in the category generated by the complexes RL

T′⊂B′
(ΛT′F e T

′F

s
),

where B′ runs over the set of Borel subgroups of L admitting an F -stable maximal
torus T′ whose dual torus contains s (see [BoRo1, Theorem A’]), it is sufficient to
prove that

(?) RΓc(Y
op

V•
,Λ)⊗ΛLF R

L

T′⊂B′
(ΛT
′F e T′F

s
) = 0.

So let (T′, B′) be a pair as above. Let U′ denote the unipotent radical of B′, let T′∗ be
an F ∗-stable maximal torus of L∗, containing s and dual to T′ and let B′∗ be a Borel
subgroup of L∗ containing T′∗ and dual to B′. It is immediately checked that

YV•
×LF Y

L

U′
≃ YU′V•

,

(as GF -varieties-T′F ). Here, we have set U′V• = (U
′V1, . . . , U′Vr ). Moreover, through

this isomorphism, Y
op

V•, j×LF YL

U′
is sent to Y

op

U′V•, j hence, by applying the first step of this
proof, we only need to prove that CU′∗V

∗
j−1∩U′∗V

∗
j+1
(s ) ⊂ CU′∗V

∗
j
(s ). This follows directly

from the assumption.

Remark 6.3. — Theorem 6.2 provides a comparison of modules, together with the
Frobenius action. We have an isomorphism of (ΛGF ,ΛLF )-bimodules compatible
with the Frobenius action

H i
c
(YV, j ,Λ)e LF

s
≃H i−2r

c
(Yc j (V•)

,Λ)e LF

s
(−r ).

where r = d j (V•).

Let sh(V•) = (V2, . . . , Vr , F V1). The map

shV•
: YV•

−→ Ysh(V•)

(g1V1, . . . , g r Vr ) 7−→ (g2V2, . . . , g r Vr , F (g1V1))

is (GF , LF )-equivariant and induces an equivalence of étale sites. Therefore, it in-
duces a quasi-isomorphism of complexes of bimodules

sh∗
V•

: RΓc(Ysh(V•)
,Λ)

∼
−→ RΓc(YV•

,Λ).

Applying twice Theorem 6.2, we obtain the following result.

Corollary 6.4. — Let j ∈ {2, . . . , r } and assume that

CV
∗
j−1∩V

∗
j+1
(s )⊂ CV

∗
j
(s ) and CV

∗
j∩V
∗
j+2
(s )⊂ CV

∗
j+1
(s ).

The map ΨV•, j ,s◦sh∗
V•
◦Ψ−1

sh(V•), j ,s
is a quasi-isomorphism of complexes of (ΛGF ,ΛLF )-bimodules

RΓdim
c
(Yc j (sh(V•))

,Λ)e LF

s

∼
−→ RΓdim

c
(Yc j (V•)

,Λ)e LF

s
.

In the case r = 2, Corollary 6.4 becomes the following result.
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Corollary 6.5. — Assume

CV
∗
1∩

F ∗V
∗
1
(s )⊂ CV

∗
2
(s ) and CV

∗
2∩

F ∗V
∗
2
(s )⊂CF ∗V

∗
1
(s ).

The map ΨV1,V2,2,s ◦ sh∗
V1,V2
◦Ψ−1

V2,F (V1),2,s
is a quasi-isomorphism of complexes of (ΛGF ,ΛLF )-

bimodules

RΓdim
c
(YV2

,Λ)e LF

s

∼
−→ RΓdim

c
(YV1

,Λ)e LF

s
.

As a consequence, we obtain a quasi-isomorphism of functors between

RG

L⊂P1
[dim(YV1

)] : Db (ΛL
F e LF

s
)−→Db (ΛG

F e GF

s
)

and RG

L⊂P2
[dim(YV2

)] : Db (ΛL
F e LF

s
)−→Db (ΛG

F e GF

s
).

Remark 6.6. — The isomorphism of functors of Corollary 6.5 comes with a Tate
twist. Keeping track of this twist has important applications [Wa], [Ng].

Remark 6.7. — Let us make here some comments about the condition

(CV1 ,V2
) CV

∗
1∩

F ∗V
∗
1
(s )⊂ CV

∗
2
(s ) and CV

∗
2∩

F ∗V
∗
2
(s )⊂CF ∗V

∗
1
(s ).

Note that if CV
∗
1
(s ) = CV

∗
2
(s ), then Condition (CV1 ,V2

) is satisfied.
Since CV

∗
i
(s ) is connected, it follows that if C ◦

G∗
(s ) ⊂ L∗, then Condition (CV1 ,V2

) is
satisfied.

Example 6.8. — Of course, Condition (CV1,V1
) is fulfiled for all s . Gluing the quasi-

isomorphisms obtained from Corollary 6.5, we get a quasi-isomorphism of com-
plexes of bimodules

ΘV1,V1
: RΓc(YV1

,Λ)
∼
−→ RΓc(YV1

,Λ).

But, since Y
op

V1,V1
=∅, it is readily checked that ΘV1,V1

= IdRΓc(YV1
,Λ).

Example 6.9. — Similarly, Condition (CV1 ,F (V1)
) is fulfiled for all s . Gluing the quasi-

isomorphisms obtained from Corollary 6.5, we obtain a quasi-isomorphism of com-
plexes of bimodules

ΘV1,F (V1)
: RΓc(YV1

,Λ)
∼
−→ RΓc(YF (V1)

,Λ).

But, since Y
op

V1,F (V1)
=∅, it is readily checked that ΘV1,F (V1)

= F .
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Remark 6.10. — If (CV1 ,V2
) holds, we denote by

ΘV1,V2,s : RΓdim
c
(YV2

,Λ)e LF

s

∼
−→ RΓdim

c
(YV1

,Λ)e LF

s

the quasi-isomorphism defined by ΘV1,V2,s = ΨV1,V2,2,s ◦ sh∗
V1 ,V2
◦ Ψ−1

V2,F (V1),2,s
. Assume

moreover that (CV1 ,V3
) and (CV2,V3

) hold, so that the quasi-isomorphisms of com-
plexes ΘV1,V3,s and ΘV2,V3,s are also well-defined. It is natural to ask the following

Question. When does the equality ΘV1,V3,s =ΘV1,V2,s ◦ΘV2,V3,s hold?

For instance, taking Example 6.8 into account, when does the equality Θ−1
V1,V2,s

=

ΘV2,V1,s hold?
We do not know the answer to this question, but we can just say that the equality

does not always hold. Indeed, if m is minimal such that F m (V1) = V1, then the
isomorphisms ΘV1,F (V1),s

, ΘF (V1),F 2(V1),s
,. . . , ΘF r−1(V1),V1

are well-defined and all coincide
with the Frobenius endomorphism F (see Example 6.9), and so

ΘV1,F (V1),s
◦ΘF (V1),F 2(V1),s

◦ · · · ◦ΘF r−1(V1),V1
= F r 6= Id=ΘV1,V1,s

(see Example 6.8).

Example 6.11. — Let P0 be a parabolic subgroup admitting an F -stable Levi sub-
group L0 containing L. We denote by V0 the unipotent radical of P0 and L∗

0
the corre-

sponding Levi subgroup of a parabolic subgroup of G∗ containing L∗, which is dual
to L0. We assume in this example that C ◦

G∗
(s )⊂ L∗

0
. Then it follows from [BoRo1, The-

orem 11.7], Corollary 6.5 and Remark 6.7 that we have an isomorphism of (ΛGF ,ΛLF )-
bimodules

Hd0

c
(YV0

,Λ)⊗ΛL
F
0

RΓdim
c
(Y

L0

V∩L0
,Λ)e LF

s
≃RΓdim

c
(YV,Λ)e LF

s
,

where d0 = dim(YV0
).

Remark 6.12. — Let us consider the Harish-Chandra case: assume that V1 and V2

are F -stable. The functors RG

L⊂P1
and RG

L⊂P2
are isomorphic without truncating by

any series [DipDu, HoLe].
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6.B. Transitivity. — We will provide here an analogue to Lemma 5.13 in the more
general context of this section. Assume in this subsection, and only in this sub-
section, that 3 ¶ j ¶ r (in particular, r ¾ 3). Since c j−1(c j (V•)) = c j−1(c j−1(V•)), we can
build a diagram

(6.13)

RΓdim
c
(YV•

,Λ)
ΨV•, j

//

ΨV•, j−1

��

RΓdim
c
(Yc j (V•)

,Λ)

Ψc j (V•), j−1

��

RΓdim
c
(Yc j−1(V•)

,Λ)
Ψc j−1(V•), j−1

// RΓdim
c
(Yc j−1(c j (V•)

,Λ).

It does not seem reasonable to expect that the diagram (6.13) is commutative in
general. However, we have the following result, obtained from the results of section
§ 5.A below by copying the proof of Lemma 5.13.

Lemma 6.14. — Assume that one of the following holds:

(1) V j−2 ⊂V j+1 ·V j−1.

(2) V j−1 ⊂V j−2 ·V j .

(3) V j ⊂V j−1 ·V j+1.

(4) V j+1 ⊂V j ·V j−2.

Then the diagram (6.13) is commutative.

7. Jordan decomposition and quasi-isolated blocks

In this section, we assume G is connected. We fix an F -stable maximal torus T of
G and we denote by (G∗, T∗, F ∗) a triple dual to (G, T, F ).

We start in §7.A with a recollection of some of the results of [BoRo1] on the van-
ishing on the truncated cohomology of certain Deligne-Lusztig varieties outside the
middle degree. We fix an F -stable Levi subgroup L and consider s ∈ G∗F

∗ of order
invertible in Λ such that C ◦

G∗
(s ) ⊂ L∗ (and we take L minimal with that property). We

show that the corresponding middle degree (ΛGF ,ΛLF )-bimodule Hdim(YP)
c

(YP,Λ)e L
F

s

does not depend on the choice of the parabolic subgroup P, up to isomorphism,
thanks to the results of §6. In particular, it is stable under the action of the stabilizer
N of e LF

s
in NGF (L).

Section §7.B develops some Clifford theory tools in order to extend the action of
ΛLF on Hdim(YP)

c
(YP,Λ)e LF

s
to an action of N . We apply this in §7.C by embedding G
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in a group G̃ with connected center. This provides a Morita equivalence, extending
the main result of [BoRo1] to the quasi-isolated case.

In section §7.D, we show that the action of LF on the complex of cohomology
C =GΓc (YP,Λ)e LF

s
also extends to N , and the resulting complex provides a splendid

Rickard equivalence. This relies on checking that given Q an ℓ-subgroup of LF ,
the complex Br∆Q (C ) arises in a Jordan decomposition setting for CG(Q ), and then
applying the results of the Appendix. The main difficulty is to prove that brQ (e

L
F

s
)

is a sum of idempotents associated to a Jordan decomposition setting for CG(Q ). An
added difficulty is that the group CG(Q ) need not be connected.

7.A. Quasi-isolated setting. — We fix a semisimple element s ∈G∗F
∗ whose order

is invertible in Λ. Let L∗ = CG∗

�

Z(C ◦
G∗
(s ))◦
�

, an F ∗-stable Levi complement of some
parabolic subgroup P∗ of G∗. Note that L∗ is a minimal Levi subgroup with respect
to the property of containing C ◦

G∗
(s ) and ℓ6 |[CG∗ (s ) : C ◦

G∗
(s )].

We denote by (L, P) a pair dual to (L∗, P∗). Note that P is a parabolic subgroup of
G admitting L as an F -stable Levi complement. The unipotent radical of P will be
denoted by V. We put d = dim(YV).

The group CG∗ (s ) normalises L∗ and we set N∗ = CG∗ (s )
F ∗ · L∗: it is a subgroup

of NG∗ (L
∗) containing L∗. Via the canonical isomorphism between NG∗ (L

∗)/L∗ and
NG(L)/L, we define the subgroup N of NG(L) containing L such that N/L corresponds
to N∗/L∗. Note that N∗ is F ∗-stable and so N is F -stable.

Let us first derive some consequences of these assumptions. Note that N∗/L∗ =

(N∗/L∗)F
∗
= N∗F

∗
/L∗F

∗ , so that N/L = (N/L)F = NF /LF . Also, N∗F
∗ is the stabilizer, in

NG∗F
∗ (L∗), of the L∗F

∗-conjugacy class of s . Therefore

(7.1) N
F is the stabilizer of e LF

s
in NGF (L).

It follows that e LF

s
is a central idempotent of ΛNF . By [BoRo1, Theorem 11.7], we

have

Hi
c
(YV,Λ)e LF

s
= 0 for i 6=d .

Our first result on the Jordan decomposition is the independence of the choice of
parabolic subgroups.

Theorem 7.2. — Given P′ a parabolic subgroup of G with Levi complement L and unipo-

tent radical V′, then Hdim(YV)
c

(YV,Λ)e LF

s
≃Hdim(YV′ )

c
(YV′ ,Λ)e

LF

s
as (ΛGF ,ΛLF )-bimodules.

The (ΛGF ,ΛLF )-bimodule Hd
c
(YV,Λ)e LF

s
is NF -stable.

Proof. — The first result follows from Remark 6.7 and Corollary 6.5.
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Let n ∈NF . The isomorphism of varieties G/V
∼
−→ G/nV, g V 7→ g Vn−1 induces an

isomorphism of varieties YV

∼
−→ YnV. As a consequence, we have an isomorphism of

(ΛGF ,ΛLF )-bimodules

Hd
c
(YV,Λ)≃ n∗
�

Hd
c
(YnV,Λ)
�

,

where n∗
�

Hd
c
(YnV,Λ)
�

= Hd
c
(YnV,Λ) as a left ΛGF -module and the right action of a ∈

ΛLF on n∗
�

Hd
c
(YnV,Λ)
�

is given by the right action of na n−1 on Hd
c
(YnV,Λ).

Since n fixes e L
F

s
, we deduce that

Hd
c
(YV,Λ)e LF

s
≃ n∗
�

Hd
c
(YnV,Λ)e LF

s

�

.

On the other hand, the first part of the theorem shows that

Hd
c
(YV,Λ)e LF

s
≃Hd

c
(YnV,Λ)e LF

s
.

It follows that Hd
c
(YV,Λ)e LF

s
≃ n∗
�

Hd
c
(YV,Λ)e LF

s

�

.

Recall that, if NF = LF (that is, if CG∗ (s )
F ∗ ⊂ L∗), then Hd

c
(YV,Λ)e LF

s
induces a Morita

equivalence between ΛGF e GF

s
and ΛLF e LF

s
by [BoRo1, Theorem B’]. Note that the

assumption in [BoRo1, Theorem B’] is CG∗ (s ) ⊂ L∗, but it can easily be seen that
the proof requires only the assumption CG∗ (s )

F ∗ ⊂ L∗. Theorem 7.2 shows that this
Morita equivalence does not depend on the choice of a parabolic subgroup.

We will generalize the Morita equivalence to our situation. The main difficulty is
to extend the action of LF on Hd

c
(YV,Λ)e L

F

s
to NF .

7.B. Clifford theory. — Let us recall some basic facts of Clifford theory. Let k be
field. Let Y be a finite group and X a normal subgroup of Y . Let M be a finitely
generated kX -module that is Y -stable.

Given y ∈ Y , let Ny be the set of φ ∈ Endk(M )
× such that φ(x m ) = y x y −1φ(m ) for

all x ∈ X and m ∈M . Note that Ny Ny ′ =Ny y ′ for all y , y ′ ∈ Y .
Let N =
⋃

y ∈Y Ny , a subgroup of Endk(M )
× containing N1 = EndkX (M )

× as a normal
subgroup. The action of x ∈ X on M defines an element of Nx , and this gives a
morphism X → N . The Y -stability of M gives a surjective morphism of groups
Y →N /N1, y 7→Ny .

Let Ŷ = Y ×N /N1
N . There is a diagonal embedding of X as a normal subgroup

of Ŷ . There is a commutative diagram whose horizontal and vertical sequences are
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exact:

1

��

1

��

X

��

X

��

1 // EndkX (M )
× // Ŷ //

��

Y //

��

1

1 // EndkX (M )
× // Ŷ /X //

��

Y /X

��

// 1

1 1

The action of X on M extends to an action of Y if and only if the canonical mor-
phism of groups Ŷ → Y has a splitting that is the identity on X . This is equivalent
to the fact that the canonical morphism of groups Ŷ /X → Y /X is a split surjection.

There is a split extension of groups

1→ 1+ J (EndkX (M ))→ EndkX (M )
×→ EndkX (M )

×/(1+ J (EndkX (M )))→ 1.

If ℓ6 |[Y : X ], then every group extension 1 → 1+ J (EndkX (M )) → Z → Y /X → 1

splits, since 1+ J (EndkX (M ) is the finite extension of abelian groups

(1+ J (EndkX (M ))
i )/(1+ J (EndkX (M ))

i+1)≃ J (EndkX (M ))
i /J (EndkX (M ))

i+1,

and those are k(Y /X )-modules. Consequently, if [Y : X ] ∈ k×, then the action of X

on M extends to an action of Y if and only if the extension

1→ EndkX (M )
×/(1+ J (EndkX (M )))→ Ŷ /X (1+ J (EndkX (M )))→ Y /X → 1

splits.

Consider now Ỹ a finite group with Y and X̃ two normal subgroups such that
X = Y ∩ X̃ and Ỹ = Y X̃ . Let M̃ = IndX̃

X
(M ). We define Ñy , Ñ and ˆ̃Y as above,

replacing M by M̃ .
We define a map ρ : Ny → Ñy , φ 7→ (a ⊗m 7→ y a y −1 ⊗ φ(m )) for a ∈ kX̃ and

m ∈M . This gives a morphism of groups N → Ñ extending the canonical morphism
EndkX (M )→ EndkX̃ (M̃ ) and a morphism of groups Ŷ /X → ˆ̃Y /X̃ giving a commuta-
tive diagram

1 // EndkX (M )
× //

� _

��

Ŷ /X //

��

Y /X

∼

��

// 1

1 // EndkX̃ (M̃ )
× // ˆ̃Y /X̃ // Ỹ /X̃ // 1
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It induces a commutative diagram

1 // EndkX (M )
×/(1+ J (EndkX (M ))) //

� _

��

Ŷ /X (1+ J (EndkX (M ))) //

��

Y /X

∼

��

// 1

1 // EndkX̃ (M̃ )
×/(1+ J (EndkX̃ (M̃ ))) // ˆ̃Y /X̃ (1+ J (EndkX̃ (M̃ ))) // Ỹ /X̃ // 1

Assume the inclusion

EndkX (M )
×/(1+ J (EndkX (M ))) ,→ EndkX̃ (M̃ )

×/(1+ J (EndkX̃ (M̃ )))

splits (this happens for example if EndkX̃ (IndX̃

X
(M ))/J
�

EndkX̃ (IndX̃

X
(M ))
�

≃ kn for some

n). If the surjection ˆ̃Y /X̃ (1+ J (EndkX̃ (M̃ )))→ Ỹ /X̃ splits, then the surjection Ŷ /X (1+

J (EndkX (M )))→ Y /X splits.
As a consequence, we have the following proposition.

Proposition 7.3. — Let Ỹ be a finite group and Y , X̃ be two normal subgroups of Ỹ . Let

X = Y ∩ X̃ . We assume Ỹ = Y X̃ . Let k be a field with [Y : X ] ∈ k×.

Let M be a finitely generated kX -module that is Y -stable. We assume that

EndkX̃ (IndX̃
X
(M ))/J
�

EndkX̃ (IndX̃
X
(M ))
�

≃ k
n for some n .

If IndX̃
X
(M ) extends to Ỹ , then M extends to Y .

7.C. Embedding in a group with connected center and Morita equivalence. —

We fix a connected reductive algebraic group G̃ containing G as a closed subgroup,
with an extension of F to an endomorphism of G̃ such that F δ is a Frobenius en-
domorphism of G̃ defining an Fq -structure, and such that G̃ = G · Z (G̃) and Z (G̃) is
connected (cf [DeLu, proof of Corollary 5.18]).

Let T̃ = T · Z (G̃), an F -stable maximal torus of G̃. Fix a triple (G̃∗, T̃∗, F ∗) dual to
(G̃, T̃, F ). The inclusion i : G ,→ G̃ induces a surjection i ∗ : G̃∗։G∗. Let L̃= L ·Z (G̃), so
that L̃∗ = (i ∗)−1(L∗). Let Ñ=NL̃.

Let J be a set of representatives of conjugacy classes of ℓ′-elements t̃ ∈ G̃∗F
∗ such

that i ∗(t̃ ) = s . Note that J ⊂ L̃∗F
∗ .

Lemma 7.4. — We have e GF

s
=
∑

t̃∈J e G̃F

t̃
and e LF

s
=
∑

n∈NF /LF

∑

t̃ ∈J ne L̃F

t̃
n−1.

Proof. — The first statement is a classical translation from G∗ to G, cf for instance
[Bo3, Proposition 11.7].

Let s̃ be a semisimple element of G̃∗F
∗ such that i ∗(s̃ ) = s . If Λ 6= K , we will assume

that s̃ has order prime to ℓ (this is always possible as we may replace s̃ by its ℓ′-part
if necessary). Note that s̃ ∈ L̃∗F

∗ .
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Let n ∈ Ñ∗F
∗ such that n s̃ n−1 is L̃∗F

∗-conjugate to s̃ . Then n ∈ L̃∗F
∗
· CG̃∗ (s̃ ). Since

i ∗(CG̃∗ (s̃ )) ⊂ C ◦
G∗
(s ) ⊂ L∗, it follows that i ∗(n ) ∈ L∗F

∗ . We have N∗F
∗
/L∗F

∗
= Ñ∗F

∗
/L̃∗F

∗ ,
hence n ∈ L̃∗F

∗ .
It follows that N∗F

∗
/L∗F

∗ acts freely on the set of conjugacy classes of L̃∗F
∗ whose

image under i ∗ is the L∗F
∗-conjugacy class of s . Through the identification of N∗F

∗
/L∗F

∗

with NF /LF , this shows that given t̃ ∈ J , the stabilizer in NF of e L̃ F

t̃
is LF .

Theorem 7.5. — The action of k GF e GF

s
⊗(k LF e LF

s
)opp on Hd

c
(YV, k )e LF

s
extends to an action

of k GF e GF

s
⊗ (k NF e LF

s
)opp. The resulting (k GF e GF

s
, k NF e LF

s
)-bimodule induces a Morita

equivalence.

Proof. — Let P̃=P ·Z (G̃) and let P̃∗ = i ∗−1(P∗). Note that L̃ (resp. L̃∗) is a Levi comple-
ment of P̃ (resp. P̃∗) and it is F -stable (resp. F ∗-stable) and the pair (L̃∗, P̃∗) is dual to
(L̃, P̃).

We put

X = (GF × (LF )opp) ·∆L̃
F , Y = (GF × (NF )opp) ·∆Ñ

F ,

X̃ = G̃
F × (L̃F )opp and Ỹ = G̃

F × (ÑF )opp.

Let ỸV = YG̃

V
. The stabilizer in X̃ of the subvariety YV of ỸV is X , hence we have an

isomorphism of X̃ -varieties IndX̃
X

YV

∼
−→ ỸV.

Let M =Hd
c
(YV, k )e LF

s
, a (k X (e GF

s
⊗e LF

s
))-module. Let M̃ = IndX̃

X
M , a (k X̃ (e GF

s
⊗e LF

s
))-

module. We have an isomorphism of (k X̃ (e GF

s
⊗ e LF

s
))-modules M̃

∼
−→Hd

c
(ỸV, k )e LF

s
.

We put e =
∑

t̃∈J e L̃F

t̃
. We have e LF

s
=
∑

n∈ÑF /L̃F ne n−1 and e is a central idempotent
of k L̃F (Lemma 7.4).

The k X -module M is NF -stable (Theorem 7.2), hence the k X̃ -module M̃ is NF -
stable as well. It follows that given t̃ ∈ J and n ∈ NF , we have n∗(H

d
c
(Ỹ)e L̃ F

t̃
) ≃

Hd
c
(Ỹ)e L̃ F

n t̃ n−1 as k X̃ -modules. The classical Mackey formula for induction and re-
striction in finite groups shows now that

Hd
c
(ỸV, k )
�

∑

n∈NF /LF

e L̃ F

n t̃ n−1

�

≃ResỸ
X̃

IndỸ

X̃

�

Hd
c
(Ỹ)e L̃ F

t̃

�

,

hence

M̃ ≃ResỸ
X̃

IndỸ
X̃

�

M̃ e ).

Lemma 7.4 shows that M̃ e induces a Morita equivalence between k G̃F e GF

s
and

k L̃F e (cf [BoRo1, Theorem B’]). In particular, it is a direct sum of indecomposable
modules no two of which are isomorphic.

Since e k ÑF induces a Morita equivalence between k L̃F e and k ÑF e LF

s
, we deduce

that the right action of L̃F on M̃ ≃ M̃ e ⊗k L̃e e k ÑF extends to an action of ÑF com-
muting with the left action of G̃F and the extended bimodule M̃ ′ induces a Morita
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equivalence between k G̃F e G
F

s
and k ÑF e L

F

s
. It follows that

Endk X̃ (M̃ )≃ Endk (ÑF ×(L̃F )opp)(k Ñ
F e LF

s
).

Given n1, n2 ∈ ÑF with n1 6∈n2L̃F , the central idempotents n1e n−1
1

and n2e n−1
2

of
k L̃F are orthogonal. It follows that

Endk (ÑF ×(L̃F )opp (k Ñ
F e LF

s
)≃
∏

n∈NF /LF

Endk (ÑF ×(L̃F )opp)(k Ñ
F ne n−1)≃
�

Z (k L̃
F e )
�[NF /LF ]

.

We deduce that Endk X̃ (M̃ )
×/
�

1+ J (Endk X̃ (M̃ ))
�

≃ (k×)r for some r . Since [Y : X ] = [N :

L] is prime to ℓ, it follows from Proposition 7.3 that the action of X on M extends
to an action of Y . Denote by M ′ the extended module. We have ResỸ

X̃
IndỸ

Y
(M ′)e ≃

M̃ e ≃ ResỸ
X̃
(M̃ ′)e , hence IndỸ

Y
(M ′) ≃ M̃ ′. It follows that IndỸ

Y
(M ′) induces a Morita

equivalence between k G̃F e GF

s
and k ÑF e LF

s
. We have

Endk G̃F (IndỸ

Y
(M ′))≃ Endk G̃F (k G̃

F⊗k GF M )≃Homk GF (M , M⊗k NF k Ñ
F )≃ Endk GF (M )⊗k NF k Ñ

F .

The canonical map k ÑF e LF

s
→ Endk G̃F (IndỸ

Y
M ′) is an isomorphism, hence the canon-

ical map k NF e LF

s
→ Endk GF (M ′) is an isomorphism as well. Also, M is a faithful

k GF e GF

s
-module, since M̃ = IndG̃F

GF M is a faithful k G̃F e GF

s
-module. We deduce that

M ′ induces a Morita equivalence between k GF e GF

s
and k NF e LF

s
.

7.D. Splendid Rickard equivalence and local structure. —

Theorem 7.6. — The action of k GF e GF

s
⊗ (k LF e LF

s
)opp on GΓc (YV, k )e LF

s
extends to an ac-

tion of k GF e GF

s
⊗ (k NF e LF

s
)opp. The resulting complex induces a splendid Rickard equiva-

lence between k GF e GF

s
and k NF e LF

s
.

Proof. — • Step 1: Identification of End•
k GF (GΓc (YV, k )e LF

s
) in Hob (k (LF × (LF )opp)).

Let C = (GΓc (YV, k )e LF

s
)red. The vertices of the indecomposable direct summands of

components of C are contained in ∆LF by Lemma 3.5. Let Q be an ℓ-subgroup of
LF . We have Br∆Q (C ) ≃GΓc (Y

CG(Q )

CV(Q )
, k )brQ (e

L
F

s
) in Hob (k (CGF (Q )×CLF (Q )opp)) by Propo-

sition 3.4. Let X be the rational series of (L, F ) corresponding to s , so that e LF

s
= eX .

Theorem 4.14 shows that
brQ (eX ) =
∑

Y ∈(i L

Q )
−1(X )

eY .

Let X ′ be the rational series of (G, F ) corresponding to s . We have X ⊂ X ′.
Given Y ∈ (i L

Q
)−1(X ), let Y ′ be the rational series of (C ◦

G
(Q ), F ) containing Y . We

have i G

Q
(Y ′) = X ′ and Proposition 4.11 shows that Y is (C ◦

G
(Q ), C ◦

L
(Q ))-regular. It

follows from [BoRo1, Theorem 11.7] that Hi
c
(Y

C ◦
G
(Q )

CV(Q )
, k )eY = 0 for i 6=dim Y

C ◦
G
(Q )

CV(Q )
, hence

Hi
c
(Y

CG(Q )

CV(Q )
, k )eY = 0 for i 6=dim Y

CG(Q )

CV(Q )
. We have shown that the cohomology of Br∆Q (C )

is concentrated in a single degree. Note that Resk C
GF (Q )(Br∆Q (C )) is a perfect complex,
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hence its homology is projective as a k CGF (Q )-module. We deduce from Theorem
A.4 that

End•
k GF (C )≃ EndD b (k GF )(C ) in Hob (k (LF × (LF )opp)).

• Step 2: Study of EndHob (k (GF ×(NF )opp))(Ind
GF ×(NF )opp

GF ×(LF )opp GΓc (YV, k )e LF

s
).

Let C ′ = Ind
GF ×(NF )opp

GF ×(LF )opp C . Let P be a complex of k (NF × (NF )opp)-proj with P i = 0 for
i > 0, together with a quasi-isomorphism P → k NF of k (NF × (NF )opp)-modules. As
the terms of C ′ are projective k GF -modules, we have a commutative diagram

EndHob (k (GF ×(NF )opp))(C
′) //

∼

��

EndD b (k (GF ×(NF )opp))(C
′)

∼

��

HomHob (k (NF ×(NF )opp))(k NF , End•
k GF (C

′)) // HomHob (k (NF ×(NF )opp))(P, End•
k GF (C

′))

Using the isomorphisms of complexes in Hob (k (NF × (NF )opp))

End•
k GF (C

′)≃ Ind
NF ×(NF )opp

LF ×(LF )opp (End•
k GF (C ))

and
EndD b (k GF )(C

′)≃ Ind
N

F ×(NF )opp

LF ×(LF )opp (EndD b (k GF )(C )),

we deduce that

End•
k GF (C

′)≃ EndD b (k GF )(C
′) in Hob (k (NF × (NF )opp)).

Now, the canonical map

HomHob (k (NF ×(NF )opp))(k N
F , EndD b (k GF )(C

′))→HomHob (k (NF ×(NF )opp))(P, EndD b (k GF )(C
′))

is an isomorphism, since EndD b (k GF )(C
′) is a complex concentrated in degree 0. It

follows that the top horizontal map in the commutative diagram above is an iso-
morphism, hence we have canonical isomorphisms

EndHob (k (GF ×(NF )opp))(C
′)
∼
−→ EndD b (k (GF ×(NF )opp))(C

′)
∼
−→ Endk (GF ×(NF )opp)(Ind

GF ×(NF )opp

GF ×(LF )opp Hd
c
(YV, k )).

• Step 3: Construction of a direct summand C̃ of Ind
GF ×(NF )opp

GF ×(LF )opp (GΓc (YV, k )e LF

s
).

We have shown (Theorem 7.5) that there is a direct summand M ′ of Ind
GF ×(NF )opp

GF ×(LF )opp Hd
c
(YV, k )

whose restriction to GF × (LF )opp is isomorphic to Hd
c
(YV, k ). Let i be the correspond-

ing idempotent of Endk (GF ×(NF )opp)(Ind
GF ×(NF )opp

GF ×(LF )opp Hc (YV, k )) and j its inverse image in
EndHob (k (GF ×(NF )opp))(C

′) via the isomorphisms above. We have a surjective homomor-
phism of finite-dimensional k -algebras

EndComp(k (GF ×(NF )opp))(C
′)։ EndHob (k (GF ×(NF )opp))(C

′).

Consequently, j lifts to an idempotent j ′ of EndComp(k (GF ×(NF )opp))(C
′). It corresponds

to a direct summand C̃ of C ′ quasi-isomorphic to M ′ and Res
GF ×(NF )opp

GF ×(LF )opp (C̃ ) is a direct

summand of Res
GF ×(NF )opp

GF ×(LF )opp (C
′)≃ C ⊕[N

F :LF ].
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• Step 4: C̃ lifts GΓc (YV, k )e L
F

s
.

Let C =
⊕

1 ¶ j ¶ n C j be a decomposition into a direct sum of indecomposable ob-
jects of Hob (k (GF × (LF )opp). This induces a decomposition M =

⊕

1 ¶ j ¶ n M j , where
M j = H d (C j ) and M j and M j ′ have no isomorphic indecomposable summands for
j 6= j ′ (cf proof of Theorem 7.5). We have Res

GF ×(NF )opp

GF ×(LF )opp (C̃ )≃
⊕

1 ¶ j ¶ n C
⊕a j

j in Hob (k (GF×

(LF )opp) for some integers a j ¾ 0 and
⊕

1 ¶ j ¶ n H d (C j )
⊕a j ≃M . It follows that a j = 1

for all j , hence Res
GF ×(NF )opp

GF ×(LF )opp (C̃ ) ≃ C in Hob (k (GF × (LF )opp). This shows the first state-
ment.

• Step 5: Rickard equivalence.

We have shown above that End•
k GF (C̃ )≃ EndD b (k GF )(C̃ ) in Hob (k (NF × (NF )opp)). On

the other hand, EndD b (k GF )(C̃ )≃ Endk GF (M ′)≃ k NF e L
F

s
. It follows from Corollary A.5

that C̃ induces a splendid Rickard equivalence.

We now summarize and complete the description of the Jordan decomposition of
blocks.

Theorem 7.7. — The complex of (OGF e GF

s
,O LF e LF

s
)-bimodules GΓc (YV,O )e LF

s
extends to

a complex C of (OGF e G
F

s
,ONF e L

F

s
)-bimodules. The complex C induces a splendid Rickard

equivalence between OGF e GF

s
and ONF e LF

s
.

There is a (unique) bijection b 7→ b ′ between blocks of OGF e GF

s
and ONF e LF

s
such that

b C ≃C b ′.

Given b a block of OGF e GF

s
, then:

– the bimodule H dim YV(b C b ′) induces a Morita equivalence between OGF b and ONF b ′

– the complex b C b ′ induces a splendid Rickard equivalence between OGF b and ONF b ′

– there is a (unique) equivalence (Q , b ′
Q
) 7→ (Q , bQ ) from the category of b ′-subpairs to

the category of b -subpairs such that bQ Br∆Q (C ) = Br∆Q (C )b
′

Q
. In particular, if D is a

defect group of b ′, then D is a defect group of b .

Proof. — Theorem 7.6 provides a complex C ′ of (k GF e GF

s
⊗ (k NF e LF

s
)opp)-modules

inducing a splendid Rickard equivalence. By Rickard’s lifting Theorem [Ri2, Theo-
rem 5.2], there is a splendid complex C of (OGF e GF

s
⊗ (ONF e LF

s
)opp)-modules, unique

up to isomorphism in Comp(O (GF × (NF )opp)), such that k C ≃ C ′. Also, [Ri2, proof
of Theorem 5.2] shows that GΓc (YV,O )e LF

s
is the unique splendid complex that lifts

GΓc (YV, k )e LF

s
. As a consequence,

Res
GF ×(NF )opp

GF ×(LF )opp (C )≃GΓc (YV,O )e LF

s
.

By [Ri2, Theorem 5.2], the complex C induces a splendid Rickard equivalence.

Since H d (b k C b ′) induces a Morita equivalence, it follows that H d (b C b ′) induces
a Morita equivalence (cf e.g. [Ri2, proof of Theorem 5.2]).
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The existence of the bijection between blocks follows from the isomorphism of al-
gebras Z (OGF e GF

s
)
∼
−→ Z (ONF e LF

s
) induced by the Morita equivalence, and the block-

wise statements on Morita and Rickard equivalence are clear.
By [Pu, Theorem 19.7], it follows that the Brauer categories of k GF b and k NF b ′

are equivalent, and in particular, k GF b and k NF b ′ have isomorphic defect groups.

Remark 7.8. — Assume CG∗ (s ) ⊂ L∗. Fix a block b of OGF e GF

s
. Kessar and Malle

have proven that if either b or b ′ has a defect group that is abelian modulo the ℓ-
center of GF , then b and b ′ have isomorphic defect groups [KeMa1, Theorem 1.3].

Example 7.9. — Assume in this example that C ◦
G∗
(s ) = L∗ and that (CG∗ (s )/C

◦
G∗
(s ))F

∗

is cyclic. The element s defines a linear character ŝ : LF → O × which induces an
isomorphism of algebra O LF e LF

s
≃O LF e LF

1
. The linear character ŝ is stable under the

action of NF so, since NF /LF is cyclic, it extends to a linear character ŝ+ : NF → O ×.
Again, ŝ+ induces an isomorphism of algebra ONF e LF

s
≃ ONF e LF

1
. Combined with

this, Theorem 7.5 provides a Morita equivalence between ONF e LF

1
and OGF e GF

s
.

Example 7.10 (Type A). — Assume in this example that all the simple components
of G are of type A (no assumption is made on the action of F ). Then C ◦

G∗
(s ) = L∗ and

CG∗ (s )/C
◦

G∗
(s ) is cyclic. Therefore, Example 7.9 can be applied to provide a Morita

equivalence between ONF e LF

1
and OGF e GF

s
.

Remark 7.11. — This article was announced at the end of the introduction of [BoRo1].
Unfortunately, we have not been able to settle the problem of finiteness of source
algebras. On the other hand, in addition to what was announced in [BoRo1], we
have provided an extension of the Jordan decomposition to the quasi-isolated case.
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Appendix A

About ℓ-permutation modules

Let us recall here some results of Broué and Puig, cf [Br1, §3.6]. Let G be a fi-
nite group and P an ℓ-subgroup of G . First, an indecomposable ℓ-permutation
OG -module M has a vertex containing P if and only if BrP (M ) 6= 0. Also, given V

an indecomposable projective k [NG (P )/P ]-module (it is then an ℓ-permutation kG -
module), there exists a unique indecomposable ℓ-permutation OG -module M(P, V )

such that BrP M(P, V ) ≃ V . Moreover, every indecomposable ℓ-permutation OG -
module with vertex P is isomorphic to such an M(P, V ).

The following lemma is a variant of [Bou, Proposition 6.4].

Lemma A.1. — Let M and N be ℓ-permutation kG -modules and let ψ ∈HomkG (M , N ).

Assume that all indecomposable summands of M (respectively N ) have a vertex contained

in P (respectively equal to P ), and that BrP (ψ) is a split surjection. Then ψ is a split

surjection.

Proof. — Proceeding by induction on the dimension of N , we can assume that N is
indecomposable. Fix a decomposition M =

⊕

i∈I Mi where Mi is indecomposable for
all i ∈ I and letψi : Mi →N denote the restriction of ψ. Since BrP (ψ) is a split surjec-
tion and BrP (N ) is indecomposable, we deduce that BrP (ψi ) : BrP (Mi )→ BrP (N ) is an
isomorphism for some i ∈ I (because BrP (Mi ) is equal to zero or is indecomposable).

By the above classification of indecomposable ℓ-permutation OG -modules, this
forces Mi to be isomorphic to N . Let ψ′ : N

∼
−→ Mi be an isomorphism. Then

BrP (ψiψ
′) = BrP (ψi )BrP (ψ

′) is an isomorphism, so it is not nilpotent. Therefore, ψiψ
′

does not belong to the radical of EndOG (N ), hence it is invertible (because EndOG (N )

is a local ring). So ψi is an isomorphism, as desired.

Lemma A.2. — Let C be a bounded complex of ℓ-permutation kG -modules, all of whose

indecomposable summands have a vertex contained in P . Let D be a bounded complex of

finitely generated projective k [NG (P )/P ]-modules. We assume that BrP (C ) is homotopy

equivalent to D .

Then there exists a bounded complex C ′ of ℓ-permutation kG -modules, all of whose direct

summands have a vertex contained in P , such that C ′ is homotopy equivalent to C and

BrP (C
′) is isomorphic (in Compb (kG )) to D .
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Proof. — Up to isomorphism in Hob (kG ), we may assume that C = C red. We write
C = (C •, d •). We will first show by induction on the length of C that BrP (C ) =

BrP (C )
red. So let n be maximal such that C n+1 6= 0. We fix a decomposition C n+1 =
⊕

i∈I Mi where Mi is indecomposable for all i ∈ I and we denote by pi : C n+1→Mi

the projection.
First, assume that the composition

BrP (C
n )

BrP (d
n )

// BrP (C
n+1))

BrP (pi ) // BrP (Mi )

is a split surjection for some i such that BrP (Mi ) 6= 0. Then it follows from Lemma A.1
that pi d n : C n →Mi is a split surjection: this contradicts the fact that C = C red. So the
complex

0 // BrP (C
n )

BrP (d
n )

// BrP (C
n+1) // 0

has no non-zero direct summand that is homotopy equivalent to 0. By the induction
hypothesis, the complex

· · · // BrP (C
n−1)

BrP (d
n−1)

// BrP (C
n ) // 0

has no non-zero direct summand that is homotopy equivalent to 0. It follows that
BrP (C ) = BrP (C )

red.
We deduce from this that D ≃BrP (C )⊕D ′, where D ′ is homotopy equivalent to 0.

So M is a sum of complexes of the form 0→M
IdM
−→M → 0 (up to a shift), hence there

is a bounded complex C ′ of ℓ-permutation kG -modules, all of whose indecompos-
able summands have vertex P , such that BrP (C

′)≃D ′. Therefore BrP (C ⊕C ′)≃D , as
desired.

The following lemma is close to [Bou, Proposition 7.9].

Lemma A.3. — Let G be a finite group and C a bounded complex of ℓ-permutation kG -

modules. Assume H i (BrQ (C )) = 0 for all i 6= 0 and all ℓ-subgroups Q of G .

Then C ≃H 0(C ) in Hob (kG ).

Proof. — Replacing C by C red, we can and will assume that C has no nonzero direct
summands that are homotopy equivalent to 0.

Let i > 0 be maximal such that C i 6=0. The map d i−1
BrQ (C )

= BrQ (d
i−1
C
) : BrQ (C

i−1) →

BrQ (C
i ) is surjective for all ℓ-subgroups Q . It follows from [Bou, Proposition 6.4]

that d i−1
C

is a split surjection: this contradicts our assumption on C . So C i = 0 for
i > 0. Replacing C by C ∗, we obtain similarly that C i

Q
= 0 for i < 0. The lemma

follows.

The following theorem is a variant of [Rou2, Theorem 5.6].
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Theorem A.4. — Let G be a finite group, H a subgroup of G and P a Sylow ℓ-subgroup

of H . Let C be a bounded complex of ℓ-permutation k (G ×H opp)-modules all of whose

indecomposable summands have a vertex contained in ∆H .

Assume HomD b (k CG (Q ))
(Br∆Q (C ), Br∆Q (C )[i ]) = 0 for all i 6= 0 and all ℓ-subgroups Q of

H .

Then End•
kG
(C ) is isomorphic to EndD b (kG )(C ) in Hob (k (H ×H opp)).

Proof. — Let R be an ℓ-subgroup of H ×H opp. By [Ri2, proof of Theorem 4.1], we
have BrR (End•

kG
(C )) = 0 if R is not conjugate to a subgroup of ∆H , and given Q ¶H

an ℓ-subgroup, we have

Br∆Q (End•
kG
(C ))≃ End•

k CG (Q )
(Br∆Q (C ))

in Comp(k (CH (Q )×CH (Q )
opp)).

Note that the terms of Br∆Q (C ) are projective for k CG (Q ), hence

H i (End•
k CG (Q )

(Br∆Q (C ))) ≃HomD b (k CG (Q ))
(Br∆Q (C ), Br∆Q (C )[i ])

and this vanishes for i 6= 0. Consequently,

Br∆Q (End•
kG
(C ))≃ EndD b (k CG (Q ))

(Br∆Q (C ))

in D b (k (CH (Q )×CH (Q )
opp)).

The conclusion of the theorem follows now from Lemma A.3 applied to the com-
plex End•

kG
(C ).

Corollary A.5. — Let G be a finite group, H a subgroup of G , b a block idempotent of OG ,

c a block idempotent of ΛH . Let C be a bounded complex of ℓ-permutation (ΛG b ,ΛH c )-

bimodules all of whose indecomposable summands have a vertex contained in ∆H . Assume

HomD b (k CG (Q ))
(Br∆Q (C ), Br∆Q (C )[i ]) = 0 for all i 6= 0 and all ℓ-subgroups Q of H and the

canonical map k H c → EndD b (kG )(k C ) is an isomorphism.

Then C induces a splendid Rickard equivalence between ΛG b and ΛH c .

Proof. — Theorem A.4 shows that the canonical map k H c → End•
kG
(k C ) is an iso-

morphism in Hob (k (H ×H opp)). It follows from [Ri2, Theorem 2.1] that k C induces
a Rickard equivalence between kG b and k H c . The result follows now from [Ri2,
proof of Theorem 5.2].
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