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INTRODUCTION

Taking dissipation mechanisms i.e. viscoacoustic or viscoelastic behavior into account is often important in fields that involve acoustic or elastic wave propagation. This has led to significant research effort for instance in seismology, seismic wave propagation and imaging in the oil and gas industry, non-destructive industrial evaluation based on ultrasonic waves, or medical imaging. A large number of articles can be found in the literature about modeling of viscoelastic media characterized by their quality factor Q, with recent reviews available for instance in [START_REF] Petersson | Stable and efficient modeling of anelastic attenuation in seismic wave propagation[END_REF] and [START_REF] Carcione | Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media[END_REF]. Of particular interest is the case of a Q factor that is constant over a wide range of frequencies because that is observed in many cases of practical interest (see e.g., [START_REF] Liu | Velocity dispersion due to anelasticity: implications for seismology and mantle composition[END_REF][START_REF] Dahlen | Theoretical Global Seismology[END_REF][START_REF] Komatitsch | Introduction to the spectral-element method for 3-D seismic wave propagation[END_REF].

In pioneering work, [START_REF] Liu | Velocity dispersion due to anelasticity: implications for seismology and mantle composition[END_REF] demonstrated that a finite and constant quality factor can be modeled by superimposing N standard linear solid (SLS) damping mechanisms. [START_REF] Day | Numerical simulation of attenuated wavefields using a Padé approximant method[END_REF] developed a Padé approximant of the viscoelastic modulus for time-domain wave propagation simulations. [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] then showed that the rheological model of a generalized Maxwell body can be used to represent the rational approximation of the viscoelastic modulus and developed a linear least-squares technique to compute the coefficients of the rational approximation involved (i.e., the points and weights that are needed in the case of time-domain simulations) in an optimized fashion. This latter work has resulted in an improved approximation of a viscoelastic solid having a given quality factor Q and has become the classical 2013). To some extent, this idea has some similarities with switching from Newton-Cotes (trapezoidal, Simpson...) quadrature to Gauss quadrature in numerical integration in order to get a more accurate integration rule by determining optimized points and weights instead of weights only. The methodology that we will introduce is independent of the numerical scheme used to solve the wave equation in time, i.e., it is general and can be used in numerical techniques as diverse as finite differences, finite elements, spectral elements, discontinuous Galerkin etc. The coefficients are computed once and for all in a preprocessing step.

The article is organized as follows: in Section 2.1 we briefly recall some elementary notions about viscoelasticity and discuss the decay of total energy with time. In Section 2.2 we recall the approach of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] and reformulate it within our framework. In Section 2.3 we introduce the nonlinear optimization approach that will allow us to define the new methodology. In Section 3 we perform numerical experiments to show the dispersion and quality factor curves obtained, which illustrates the improved accuracy of the results. Finally, in Section 4 we perform a numerical experiment for threedimensional wave propagation in a tabular medium, which confirms the robustness and the improved accuracy of the nonlinear optimization approach.

PHYSICAL MODELING

As mentioned above, viscoelastic models are widely used in the case of the propagation of acoustic or seismic waves in dissipative media, among other applications. The two-dimensional (2D) or three-dimensional (3D) linear viscoelastic wave equation then writes:

ρ ∂ 2 u ∂t 2 = ∇ • σ + f , ( 1 
)
where ρ is the distribution of density and u denotes the displacement field produced by the source f . The symmetric stress tensor σ is linearly related to the strain tensor ε = 1 2 (∇u + (∇u) T ) by Hooke's law, which in an elastic, anisotropic linear solid may be written in the form

σ = c : ε , (2) 
where the colon denotes a double tensor contraction operation. The elastic properties of the medium are determined by the fourth-order elastic tensor c, which in an isotropic medium is

c ijk = λ δij δ k + µ (δ ik δ j + δ i δ jk )
, where δ is the Kronecker delta symbol and λ and µ are the two Lamé parameters, related to the pressure and shear wave celerities and to density by µ = ρ c 2 s and λ = ρ c 2 p -2µ. In an attenuating medium, Hooke's law (2) needs to be modified such that the stress is determined by the entire strain history:

σ(t) = t -∞ ∂ ∂t c(t -t ) : ε(t ) dt . (3) 
In the one-dimensional (1D) case without attenuation this reduces to

ρ ∂ 2 u ∂t 2 = ∂σ ∂x + f ε = ∂u ∂x σ = (λ + 2 µ)ε (4) 
with scalar unknowns, and in an attenuating medium Hooke's law becomes

σ(t) = t -∞ ∂ ∂t (λ(t -t ) + 2 µ(t -t )) ε(t ) dt .
(5)

Constitutive law

Let us briefly recall elementary notions about viscoelasticity in 1D. In higher spatial dimensions, the discussion below is then straightforwardly applied to the compressional and shear relaxation functions, respectively. The reader is referred e.g. to [START_REF] Carcione | Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media[END_REF] for a detailed presentation. The integro-differential expression of 1D linear viscoelasticity writes

σ = ψ * ∂ε ∂t , (6) 
where * denotes time convolution. The relaxation function of the Zener model writes

ψ(t) = Er   1 - 1 N N =1 1 - τ ε τ σ e - t τσ    H(t), ( 7 
)
where Er is the relaxed modulus, N is the number of relaxation mechanisms, τ ε and τ σ are relaxation times, and H is the Heaviside step function. It is worth mentioning that the 1/N factor in ( 7) is not present in earlier publications [START_REF] Liu | Velocity dispersion due to anelasticity: implications for seismology and mantle composition[END_REF]Carcione et al. 1988a,b). This has been changed in [START_REF] Carcione | Wave fields in real media: Wave propagation in anisotropic, anelastic and porous media[END_REF] and [START_REF] Moczo | On the rheological models used for time-domain methods of seismic wave propagation[END_REF] as well as in many subsequent publications. The model with the 1/N factor is physically more meaningful because the model without it cannot be represented by mechanical elements, since it requires a spring with negative constant [START_REF] Casula | Generalized mechanical model analogies of linear viscoelastic behaviour[END_REF]; but calculations not shown here demonstrate that these two ways of expressing the Zener model are equivalent. Another issue that is sometimes found in the literature is that waves speed up instead of slowing down when attenuation is turned on because the reference used is the relaxed state instead of the more traditional unrelaxed state (e.g. in [START_REF] Carcione | Seismic modeling in viscoelastic media[END_REF]). At t = 0, the relaxation function ( 7) is equal to the unrelaxed modulus Eu

Eu = 1 N N =1 τ ε τ σ Er. (8) 
As time increases, ψ decreases monotonically from Eu to Er, and as frequency increases, the phase velocity increases monotonically from c0 to c∞ defined by

c0 = Er ρ , c∞ = Eu ρ . ( 9 
)
Instead of writing the constitutive law as a convolution product (6), one can equivalently use the differential form

                 σ = N =1 σ , σ + τ σ ∂σ ∂t = E r ε + τ ε ∂ε ∂t , = 1, • • • , N, E r = Er N . ( 10 
)
This form is useful to prove the decay of energy [START_REF] Bécache | A mixed finite element approach for viscoelastic wave propagation[END_REF]).

Property 1. Let us define

E = E1 + E2 + E3, (11) 
with

E1 = 1 2 R ρ v 2 dx, E2 = 1 2 R Er ∂u ∂x 2 dx, E3 = 1 2 N =1 R τ σ E r (τ ε -τ σ ) σ -E r ∂u ∂x 2 dx, (12) 
where v = ∂u ∂t is velocity and ρ is density. E1 corresponds to the kinetic energy, E2 to the elastic potential energy in the relaxed state, and E3 to the sum of the inelastic potential energies. The total energy E then obeys

dE dt = - N =1 R 1 E r (τ ε -τ σ ) σ -E r ∂u ∂x 2 dx. (13) 
To prove (13), the conservation of momentum in (4) combined with System (10) can be written as

                   ρ ∂v ∂t = ∂σ ∂x , (14a) 
σ = N =1 σ , (14b) 
σ + τ σ ∂σ ∂t = E r ∂u ∂x + τ ε ∂v ∂x , = 1, • • • , N. (14c) 
Let us multiply Equation (14a) by v and integrate by parts:

R ρ v ∂v ∂t dx + R ∂v ∂x σ dx = 0. ( 15 
)
We can then transform the stress σ into σ thanks to (14b)

R ρ v ∂v ∂t dx + N =1 R ∂v ∂x σ dx = 0, (16) 
and split the resulting equation into two terms:

R ρ v ∂v ∂t + Er ∂u ∂x ∂ ∂t ∂u ∂x ∆ 1 dx + N =1 R σ -E r ∂u ∂x ∂v ∂x ∆ 2 dx = 0. (17) Equation (14c) then yields σ -E r ∂u ∂x + τ σ ∂ ∂t σ -E r ∂u ∂x = E r (τ ε -τ σ ) ∂v ∂x , (18) 
and thus

∂v ∂x = 1 E r (τ ε -τ σ ) σ -E r ∂u ∂x + τ σ ∂ ∂t σ -E r ∂u ∂x . (19) 
Injecting ( 19) into ∆2 in (17) and using straightforward algebra recovers ( 13).

An important remark follows from Property 1: if 11) is a definite-positive quadratic form, and

τ ε > τ σ > 0 ∀ then E in (
dE dt < 0 . ( 20 
)
The condition τ ε > τ σ > 0 ∀ is therefore a sufficient condition to obtain a decreasing total energy. It is worth mentioning that we have not shown that it is necessary in the mathematical sense because we cannot exclude that there can be cases in which the sum in Equation ( 13) remains positive even if some of the coefficients are negative. In higher spatial dimensions a similar energy analysis can be performed; computations are slightly more involved but the conclusion is unchanged [START_REF] Bécache | A mixed finite element approach for viscoelastic wave propagation[END_REF]). Let us also mention that a standard linear solid in which τσ > τε instead of τε > τσ is sometimes called an anti-Zener body [START_REF] Mainardi | Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models[END_REF]. Such a body is noncausal, i.e. its energy in the unrelaxed state is smaller than its energy in the relaxed state; This means that one of its two springs has a negative modulus.

Linear optimization

The relaxation function of the generalized Zener model involves 2 N + 1 parameters. The relaxed modulus Er can be deduced from the phase velocity at zero frequency (9). Determination of the relaxation times τ ε and τ σ is more involved. The most classical approach originates in the work of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF], which we are going to briefly recall. For the sake of simplicity, we perform the calculations with new unknowns:

κ = 1 N τ ε τ σ -1 , θ = 1 τ σ , (21) 
from which the original coefficients can be recovered using:

τ ε = 1 + N κ θ , τ σ = 1 θ . ( 22 
)
These coefficients will also be useful in future sections because imposing τ ε > τ σ > 0 ∀ simply means imposing κ > 0 and θ > 0. The viscoelasticity modulus M = F( ∂Ψ ∂t ), where F is the Fourier transform in time, is deduced from (7):

M (ω) = Er 1 + i ω N =1 κ θ + i ω . ( 23 
)
We determine the relaxed modulus Er so that the phase velocity of the Zener model equals cr at a given reference frequency fr: c(ωr) ≡ cr, with ωr = 2 π fr. The wavenumber is

k = ρ ω 2 M (ω) 1/2 = ρ Er ω 1 + N =1 κ θ + iω -1/2 . ( 24 
)
Denoting (k) the real part of k, the phase velocity is

c(ω) = ω (k) = Er ρ F(ω), (25) 
with

F(ω) = 1/    1 + N =1 κ θ + iω -1/2    . ( 26 
)
The requirement c(ωr) ≡ cr is then reached by taking

Er = ρ c 2 r F(ωr) . ( 27 
)
The quality factor Q is defined as the ratio of the imaginary part to the real part of M . Its reciprocal writes

Q -1 (ω) = N =1 ω θ κ θ 2 + ω 2 1 + N =1 ω 2 κ θ 2 + ω 2 . ( 28 
)
The main idea in [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] is then to minimize the distance between Q -1 (ω) and a given Q -1 ref (ω) in a band of angular frequencies [ωmin, ωmax], which of course depends on the spectrum of the source under study, i.e., on the frequency content of the data or experiment that one wants to model. For this purpose in [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] the relaxation frequencies θ are evenly distributed over N points in logarithmic scale

θ = ωmin ωmax ωmin -1 N -1 , = 1, ..., N, (29) 
in the band of angular frequencies [ωmin, ωmax]. The coefficients κ are then obtained by identifying the reciprocal of the quality factor (28) with a given Q -1 ref (ω). From ( 28), one obtains the set of equations

N =1 ω k θ -ω k Q -1 ref (ω k ) θ 2 + ω 2 k κ = Q -1 ref (ω k ), k = 1, • • • , K, (30) 
where the angular frequencies are distributed linearly on a logarithmic scale of K points

ω k = ωmin ωmax ωmin k-1 K-1 , k = 1, • • • , K. (31) 
If K = N , one obtains a square linear system. The choice K = 2 N -1 is often made [START_REF] Groby | A time domain method for modeling viscoacoustic wave propagation[END_REF], leading to an over-determined system. Nothing in this method prevents from obtaining negative values κ < 0 when solving (30), yielding τ ε < τ σ via ( 22), which is unsuitable both physically and mathematically as mentioned in Property 1. In practice this can (and does) happen in particular when N is large, typically N ≥ 5 or so, as we will see in Section 3. [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] suggest that ω k /ω k-1 should be chosen equal to about 10 in practice, however such a choice is not always convenient or even possible in all situations, because it means that when the number of mechanisms N is large then the total bandwidth should be extremely large (10 N -1 ), while in some situations in order to improve accuracy one wants to have standard linear solids that are located much closer to one another and be able to increase N to improve the accuracy of the approximation without having to use a large distance ω k /ω k-1 10 between two mechanisms. Also, from a mathematical point of view imposing that ω k /ω k-1 be around 10 does not automatically ensure the positivity of the coefficients obtained; if positivity is not imposed explicitly as a constraint, there is no particular mathematical reason for it to be ensured in practice.

Optimization with constraints

Let us introduce the objective function

J ({κ , θ } ; N, K) = K k=1 N =1 ω k Q ref (ω k ) θ -ω k Q -1 ref (ω k ) θ 2 + ω 2 k κ -1 2 . ( 32 
)
Minimizing (32) with respect to the κ only recovers the [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] expressions ( 30). Here we propose to minimize (32) in terms of both variables, imposing decay of total energy with time as in Eq. ( 20), i.e. imposing τ ε > τ σ > 0 ∀ , which in turn means imposing the positivity constraints κ > 0 and θ > 0. We introduce the additional constraint θ < θmax in order to avoid too large values of θ , which could result in stiff equations and thus in numerical instabilities in the time-marching of memory variables [START_REF] Blanc | Biot-JKD model: Simulation of 1D transient poroelastic waves with fractional derivatives[END_REF]). These 3N constraints are relaxed by setting κ = κ 2 and θ = θ 2 and solving the following problem with only N constraints:

min J {κ ,θ } {κ 2 , θ 2 } ; N, K , with θ 2 ≤ θmax for = 1, . . . , N. (33) 
As Problem ( 33) is nonlinear and nonquadratic with respect to abscissas θ , to solve it we resort to the SolvOpt algorithm [START_REF] Kappel | An implementation of Shor's r-algorithm[END_REF][START_REF] Rekik | Optimization of the collocation inversion method for the linear viscoelastic homogenization[END_REF], which is based on the iterative Shor's method [START_REF] Shor | Minimization Methods for Non-Differentiable Functions[END_REF]. As starting values for that iterative optimization technique we use the values κ (0) and θ (0) obtained based on the [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] procedure ( 29)-(30) (even if some of them are negative, since our nonlinear optimization procedure will then ensure positivity).

To determine the 2N coefficients κ and θ , the minimal number of relaxation frequencies is K = 2N . In practice, we have observed better accuracy when taking the larger value K = 4N . The angular frequencies ω k are chosen evenly spaced in logarithmic scale over the optimization band [ωmin, ωmax], as in the linear approach, and thus Equation (31) remains valid.

NUMERICAL VALIDATION OF THE APPROACH

Approximation and coefficients obtained

Let us illustrate the improved accuracy of the approximation obtained as well as the fact that the coefficients κ and θ obtained are always positive. To do so, let us perform several numerical experiments with different numbers of relaxation mechanisms N . Optimization is performed over K = 4 N angular frequencies ω k (31), as explained in Section 2.3. We set the lower and upper bounds of the angular frequency range to ωmin = ωc/10, ωmax = 10 ωc,

where ωc = 2 π fc is the dominant angular frequency of the source. We first take a constant quality factor Q ref = 5 and a dominant frequency of the source fc = 1.5 Hz. Figure 1 shows the exact value of Q -1 ref and the numerical approximation (28) obtained using optimization based on N = 2 to N = 7 relaxation mechanisms in the angular frequency band [ωmin, ωmax]. In the interval of optimization, the linear approach of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] yields oscillations whereas the nonlinear optimization with constraints gives a curve that is almost constant and fits the exact value very well.

The numerical values of the coefficients κ and θ obtained with N = 6 are given in Table 1. The κ5 weight is negative in the linear [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] procedure, which could lead to unstable results if used in a numerical simulation, as illustrated in Section 4, because the set of coefficients does not necessarily honor the constraint of decay of energy with time of Equation (20).

To evaluate the effect of the optimization more quantitatively, it is useful to introduce the following quantities:

• u Q ex the unknown exact solution of the model with a truly constant Q ref factor, which obeys a fractional-order partial differential equation [START_REF] Carcione | Time-domain modeling of constant-Q seismic waves using fractional derivatives[END_REF];

• u Z ex the unknown exact solution of the Zener model approximation of that constant Q ref , which obeys a standard partial differential equation with memory variables;

• u Z num the known numerical solution of the partial differential equation with memory variables, obtained using the numerical scheme selected to solve the wave equation ( 1).

The triangular inequality then yields the total error

εt = ||u Q ex -u Z num || ≤ ||u Q ex -u Z ex || εm + ||u Z ex -u Z num || εn , (35) 
in which εn is the numerical error due to discretization. That error depends on the numerical scheme chosen to discretize the wave equation and can be analyzed using standard numerical analysis tools (which is classical in the literature and out of the scope of this article). Here we focus on the physical modeling error εm, which is related to the quality of the optimization process:

εm ∼ ||Q -1 ref (ω) -Q -1 (ω)||2 (36)
in the interval of optimization. Values of εm for Q ref = 5 and various values of the number of relaxation mechanisms N are given in Table 2. With N = 6 we get εm = 1.21% in the case of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] and εm = 0.0156% in the case of nonlinear optimization with constraints. When making the number of relaxation mechanisms N vary from 2 to 6 we get the relative errors of Table 2. For N = 2 we get improvement, for N = 3 the difference is less pronounced but then for N ≥ 4 the difference becomes significant again. These errors are displayed in Figure 2. When nonlinear optimization is used the error keeps decaying in a very significant fashion, while in the case of the linear approach of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] it does not.

Let us illustrate the effect of the physical modeling error εm on time-domain results of 1D wave propagation. The only linear and causal model of viscoelasticity having a constant quality factor Q was introduced by [START_REF] Kjartansson | Attenuation of seismic waves in rocks and applications in energy exploration[END_REF]. We compare the exact solution for the velocity obtained with that truly constant Q model (u Q ex ), which is the reference solution, with the exact solution obtained with the Zener model approximation of that constant Q (u Z ex ). These exact solutions are computed semi-analytically based on Fourier synthesis. Details about how to compute the solution in the case of the Zener model can be found in Appendix D of [START_REF] Favrie | Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations[END_REF]. We consider a homogeneous one-dimensional domain extending from xmin = -5000 m to xmax = +5000 m. The constant density is ρ = 2000 kg.m -3 , the reference frequency is fr = 1.5 Hz, and the celerity at that frequency is cr = 2000 m.s -1 . The source is a Ricker wavelet force with dominant frequency fc = fr located at x = 0. Figure 3 shows the time history of velocity recorded at two receivers r1 and r2 located in xr1 = 1000 m and xr2 = 3000 m respectively. Since dispersion is a cumulative effect, as expected the errors are more pronounced after a larger distance of propagation. In the case of linear optimization a visible error remains even when using N = 4 relaxation mechanisms; on the contrary an almost perfect agreement is obtained if nonlinear optimization is used with N = 4 relaxation mechanisms.

Dispersion curves

The dispersion of the [START_REF] Kjartansson | Attenuation of seismic waves in rocks and applications in energy exploration[END_REF] 

model is c(ω) = cr ω ωr 1 π arctan 1 Q . ( 37 
)
An important remark from ( 37) is that one can see that the phase velocity of this model is not bounded at infinite frequency, contrary to that of the Zener model. A consequence is that in such a model the reference velocity needs to be given at a finite frequency, it cannot be an unrelaxed value at infinite frequency as in the Zener model. Figure 4 compares the phase velocities of the Zener model (obtained with the two methods of optimization) with the reference phase velocity of the [START_REF] Kjartansson | Attenuation of seismic waves in rocks and applications in energy exploration[END_REF] model. The parameters used are cr = 2000 m.s -1 , fr = 1.5 Hz, and Q = 5. The optimization is performed in the frequency range [fc/10, 10fc], where fc = fr. The choice fr = fc is natural, it amounts to choosing the dominant frequency of the source as the reference frequency. For N = 2 relaxation mechanisms the linear optimization largely over-estimates the phase velocity of the Zener model (a), whereas nonlinear optimization under-estimates the phase velocity of the Zener model at f > fc (b). For N = 4 a good agreement is observed between the Zener model and the [START_REF] Kjartansson | Attenuation of seismic waves in rocks and applications in energy exploration[END_REF] model if nonlinear optimization is used (b).

Case of a non-constant Q factor

We now select a varying quality factor (e.g., [START_REF] Dahlen | Theoretical Global Seismology[END_REF])

Q(ω) = Q0 ω ω0 -α , ( 38 
)
with Q0 = 20, f0 = 1.5 Hz, ω0 = 2πf0, and α = 0.1. Since the exponent is negative, this leads to 1/Q increasing with frequency, i.e., to higher attenuation at higher frequency. As in Figure 1 for the case of a constant Q, in Figure 5 we show the exact value of Q -1 (ω) and the numerical approximation (28) obtained using optimization based on N = 2 to N = 7 relaxation mechanisms in the angular frequency band [ωmin, ωmax]. In the interval of optimization, the linear approach of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] yields more oscillations than the result obtained with the nonlinear optimization approach with constraints.

VALIDATION FOR THREE-DIMENSIONAL WAVE PROPAGATION IN A LAYER-CAKE MEDIUM

In Section 3, we have illustrated how the choice of the relaxation times in the Zener model affects the accuracy of time domain solutions of the viscoelastic wave equation in a homogeneous medium. Let us now turn to a more realistic example of three-dimensional propagation in a tabular medium with strong contrasts in viscoelastic properties. For this purpose, we consider the viscoelastic medium described in Table 3. The elastic version of this model was used by [START_REF] Chaljub | 3-D numerical simulations of earthquake ground motion in sedimentary basins: testing accuracy through stringent models[END_REF] to study the accuracy of numerical predictions of earthquake ground motion in the Mygdonian basin in northern Greece.

The model consists in a stiff elastic half-space overlaid by three sedimentary layers with lower seismic impedances, which cause large amplification of earthquake ground motion (so-called site effects). The shear quality factors in the sediments are approximated by a simple, frequency-independent scaling from the shear velocities, QS = VS/10, as done in site effect studies in the (general) situation in which no other constraints on intrinsic attenuation can be used; the P quality factors are defined by QP = 2 QS.

The viscoelastic medium is excited by a double-couple point source with a vertical strike-slip focal mechanism. The source is set at 80 m depth in order to excite high-frequency surface waves propagating within the sedimentary layers. In realistic cases, those surface waves would be generated locally by conversion of incoming body waves at strong lateral heterogeneities located close to the surface (for example at basin edges) and would contribute to the amplification and duration lengthening of ground motion. The source time function is a step with a rising time τ = 0.1 s. It radiates a far-field displacement with a flat spectrum up to 1 Hz and gradual decay between 1 Hz and 10 Hz.

The computations are performed with the AXITRA software package [START_REF] Coutant | Program of numerical simulation AXITRA[END_REF], which implements a discrete wavenumber method [START_REF] Bouchon | A simple method to calculate Green's functions for elastic layered media[END_REF]. As in Section 3 we compute the solutions for the truly constant Q model of [START_REF] Kjartansson | Attenuation of seismic waves in rocks and applications in energy exploration[END_REF], and for Zener models with different numbers of mechanisms, whose relaxation times are obtained based either on linear or nonlinear optimization. We use a reference frequency fr = 1 Hz and solve for the relaxation times of the Zener models in the two-decade frequency range [fr/10, 10fr].

Figure 6-a shows 25 seconds of horizontal ground acceleration computed at 4-km epicentral distance for the truly constant Q model (black line) and for the Zener models with N = 3 mechanisms and relaxation times inverted using linear (red line) or nonlinear (blue line) optimization. Note that the overall agreement between traces is quite good even for late surface waves, mainly because anchoring the dispersion of the different models at the reference frequency has the effect of minimizing phase misfit. The differences in amplitude can be analyzed by comparing Fourier amplitude spectra (Figure 6-b). The solutions of the Zener models either under-predict (around fr = 1 Hz) or over-predict (around 2.5 Hz) the amplitude of the constant Q solution, as expected from Figure 1. The maximum differences reach about 10 % around the dominant, reference frequency. A more precise measure is to quantify time-frequency misfits, or goodness-of-fit scores as proposed by [START_REF] Kristeková | Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals[END_REF]. When applied to very similar signals the envelope (resp. phase) misfits or goodness-of-fit scores mainly reflect the differences or similarities in amplitude (resp. phase) between the traces. In Figure 6-c we plot the envelope goodness-of-fit scores as a function of time. Each goodness-of-fit value g(t) corresponds to a frequency average over the range [0.2 Hz -5 Hz] of the envelope time-frequency misfit, m(t), which is further scaled to a score between 0 (no fit) and 10 (perfect fit) based on the nonlinear mapping g(t) = 10 exp [-m(t)]. The figure shows that nonlinear optimization of the relaxation times in the Zener model always yields a more accurate approximation of the constant Q model, even for N = 3.

From the analysis of Figure 1, we expect that this trend should be even more pronounced if we increase the number of relaxation mechanisms. This is indeed the case for the results obtained with N = 4 relaxation mechanisms, which are shown in Figure 7: the improvement of the prediction of the Zener model with nonlinear optimized relaxation times is clearly seen, both in the Fourier amplitude spectra and in the time evolution of the goodness-of-fit scores.

The global (i.e. time-and frequency-averaged) phase and envelope goodness-of-fit scores are given in Table 4 for N = 3, 4, 6, 10. They confirm (i) that the phase misfits are negligible after the adjustment of the physical dispersion at the reference frequency and (ii) that for N ≥ 4 mechanisms, the solution of the Zener model with nonlinear optimization of the relaxation times matches the solution of the constant Q model almost perfectly, whereas N ≥ 6 mechanisms are needed to obtain the same accuracy when the relaxation times are computed based on classical linear optimization.

CONCLUSIONS AND FUTURE WORK

We have developed a nonlinear methodology based on the SolvOpt algorithm of [START_REF] Kappel | An implementation of Shor's r-algorithm[END_REF] to optimize the coefficients of the Zener viscoelastic model that is significantly more accurate, for a given number of relaxation mechanisms, than the classical linear approach of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF], or equivalently that can reach similar accuracy for a smaller number of relaxation mechanisms. The approach also ensures the positivity of the coefficients obtained, thus always honoring the constraint of decay of total energy with time and resulting in a stable algorithm when used in viscoelasticity applications, even in the case of very strong attenuation. We have illustrated the improved accuracy obtained based on several numerical experiments, first for a simple wave pulse propagating in a homogeneous one-dimensional medium with strong attenuation and then for a more realistic three-dimensional wavefield propagating in a stratified medium with large contrasts in seismic velocities and attenuation.

In future work we plan to extend our applications of this technique to fitting a non-constant Q(ω) profile; such an extension could be useful e.g. for non destructive testing or in ocean acoustics. Since the approach used is not specific to the Zener model, we also plan to apply it to other, more complex or less classical models, which may even involve fractional derivatives (e.g., [START_REF] Zhu | Theory and modelling of constant-Q P-and S-waves using fractional spatial derivatives[END_REF]); in viscoelasticity one can think of the Andrade model (e.g., [START_REF] Jazia | Wave propagation in a fractional viscoelastic Andrade medium: Diffusive approximation and numerical modeling[END_REF], the fractional Kelvin-Voigt model [START_REF] Caputo | Linear models of dissipation whose Q is almost frequency independent: Part II[END_REF] or the fractional Zener model [START_REF] Nasholm | On a fractional Zener elastic wave equation[END_REF], and in poroelasticity of the widely-used model based on the Biot-Johnson-Koplik-Dashen theory (e.g., [START_REF] Blanc | Biot-JKD model: Simulation of 1D transient poroelastic waves with fractional derivatives[END_REF].

Our SEISMIC CPML finite-difference and SPECFEM spectral-element software packages are available open source at geodynamics.org; they both include our implementation of the SolvOpt technique presented in this article. 21) obtained when resorting to (a) the method of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] and (b) nonlinear optimization with constraints, for a quality factor Q = 5 modeled with N = 6 relaxation mechanisms. One can note that one gets a negative weight for = 5 in the case of the linear approach of [START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF]. 1.50 10 -1 = 1 +2.93 10 -1 9.18 10 -2 = 2 +1.29 10 -1 3.77 10 -1 = 2 +1.92 10 -1 3.57 10 -1 = 3 +1.07 10 -1 9.46 10 -1 = 3 +2.00 10 -1 1.01 10 0 = 4 +3.54 10 -1 2.38 10 0 = 4 +2.26 10 -1 2.75 10 0 = 5 -1.00 10 -1 5.97 10 0 = 5 +2.84 10 -1 7.75 10 0 = 6 +7.85 10 -1 1.50 10 1 = 6 +7.39 10 -1 3.38 10 1 

Figure 3 .

 3 Figure 3. Time history of velocity recorded at receivers r 1 (top) and r 2 (bottom), comparing the exact solution of the Kjartansson (1979) model (red curve) to the exact solution of the Zener model obtained with linear optimization (left row) and with nonlinear optimization (right row), for N = 2 (green curve) and N = 4 (blue curve) relaxation mechanisms.

Figure 4 .Figure 6 .Figure 7 .

 467 Figure 4. Dispersion curves obtained with linear optimization (a) and with nonlinear optimization (b) in the case of the Kjartansson (1979) model (red curve), the Zener model with N = 2 relaxation mechanisms (green curve), and the Zener model with N = 4 relaxation mechanisms (blue curve). The solid vertical line indicates the reference frequency fr = 1.5 Hz. The vertical dotted lines denote the frequency range [fc/10, 10fc] in which optimization is performed. The horizontal line denotes the celerity c(fr) = 2000 m.s -1 on which all the models are locked, i.e., where they are by definition identical.

Table 1 .

 1 Coefficients of Equation (

Table 2 .

 2 Relative physical modeling error of Equation (36) in the case of the linear approach of[START_REF] Emmerich | Incorporation of attenuation into time-domain computations of seismic wave fields[END_REF] and in the case of nonlinear optimization, when making the number of relaxation mechanisms vary from N = 2 to N = 7. Nonlinear optimization always leads to more accurate results.

	N	Linear optimization Nonlinear optimization
	2	εm = 34.2%	εm = 10.7%
	3	εm = 3.08%	εm = 2.17%
	4	εm = 1.99%	εm = 0.42%
	5	εm = 1.49%	εm = 0.08%
	6	εm = 1.21%	εm = 0.0156%
	7	εm = 0.86%	εm = 0.0030%

Table 3 .

 3 Layered viscoelastic model used in the validation examples of Section 4. The L i , i = 1 . . . 3 refer to the sedimentary layers and B to the surrounding bedrock. h stands for layer thickness, V S , V P , Q S , Q P stand for S and P seismic velocities and quality factors, and ρ stands for mass density.

		h (m)	V P (m/s)	V S (m/s) ρ (kg/m 3 ) Q P	Q S
	L 1	17.3	1500	200	2100	40	20
	L 2	72.5	1800	350	2100	70	35
	L 3	115.6	2500	650	2200	130	65
	B	-	4500	2600	2600	∞	∞

Table 4 .

 4 Average envelope (E) and phase (P) goodness-of-fits of horizontal ground acceleration for the Zener viscoelastic models with relaxation times obtained based on linear and nonlinear optimization.

	N	Linear optimization Nonlinear optimization
	3	E=9.36 P=9.76	E=9.57 P=9.82
	4	E=9.64 P=9.88	E=9.84 P=9.93
	6	E=9.83 P=9.90	E=9.90 P=9.95
	10	E=9.89 P=9.94	E=9.90 P=9.96
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, with Q 0 = 20, f 0 = 1.5 Hz, ω 0 = 2πf 0 , and α = 0.1.