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SUMMARY

This article concerns the numerical modeling of time-domain mechanical waves in vis-
coelastic media based on a generalized Zener model. To do so, classically in the literature
relaxation mechanisms are introduced, resulting in a set of so-called memory variables
and thus in large computational arrays that need to be stored. A challenge is thus to
accurately mimic a given attenuation law using a minimal set of relaxation mechanisms.
For this purpose, we replace the classical linear approach of Emmerich & Korn (1987)
with a nonlinear optimization approach with constraints of positivity. We show that
this technique is significantly more accurate than the linear approach. Moreover it en-
sures that physically-meaningful relaxation times that always honor the constraint of
decay of total energy with time are obtained. As a result these relaxation times can
always be used in a stable way in a modeling algorithm, even in the case of very strong
attenuation for which the classical linear approach may provide some negative and thus
unusable coefficients.

Key words: Seismic attenuation – Computational seismology – Numerical solutions
– Numerical approximations and analysis – Wave propagation – Body waves.

1 INTRODUCTION

Taking dissipation mechanisms i.e. viscoacoustic or viscoelastic behavior into account is often important in fields that involve

acoustic or elastic wave propagation. This has led to significant research effort for instance in seismology, seismic wave

propagation and imaging in the oil and gas industry, non-destructive industrial evaluation based on ultrasonic waves, or

medical imaging. A large number of articles can be found in the literature about modeling of viscoelastic media characterized

by their quality factor Q, with recent reviews available for instance in Carcione (2007) and Petersson & Sjögreen (2012). Of

particular interest is the case of a Q factor that is constant over a wide range of frequencies because that is observed in many

cases of practical interest (see e.g., Liu et al. 1976; Dahlen & Tromp 1998; Komatitsch & Tromp 1999).

In pioneering work, Liu et al. (1976) demonstrated that a finite quality factor can be modeled by superimposing N

standard linear solid (SLS) damping mechanisms. Day & Minster (1984) developed a Padé approximant of the viscoelastic

modulus for time-domain wave propagation simulations. Emmerich & Korn (1987) then showed that the rheological model of

a generalized Maxwell body can be used to represent the rational approximation of the viscoelastic modulus and developed a

linear least-squares technique to compute the coefficients of the rational approximation involved (i.e., the points and weights

that are needed in the case of time-domain simulations) in an optimized fashion. This latter work has resulted in an improved

approximation of a viscoelastic solid having a given quality factor Q and has become the classical way of representing such a

material. It has been used in numerous subsequent articles, e.g., Carcione et al. (1988a), Carcione et al. (1988b), Kristek &
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Moczo (2003), Komatitsch et al. (2004), Moczo & Kristek (2005), Käser et al. (2007), Martin & Komatitsch (2009), Savage

et al. (2010), Lombard & Piraux (2011), Dhemaied et al. (2011) and Petersson & Sjögreen (2012). It is also worth mentioning

that Moczo & Kristek (2005) proved the equivalence between the different rheological models mentioned previously. Because

of this equivalence, in what follows for simplicity we will call it the Zener model and will mostly refer to the formulation of

Carcione (2007) for that model.

In the context of time-domain simulations, these methods are often expensive in terms of memory storage when imple-

mented numerically because they require the use of so-called memory variables that need to be stored and marched in time

(see e.g., Moczo & Kristek 2005; Carcione 2007). To alleviate this, Day (1998), Day & Bradley (2001), Graves & Day (2003)

and van Driel & Nissen-Meyer (2014) have suggested spreading the relaxation mechanisms and thus the related memory

variables over adjacent grid points, using a single mechanism per grid point and trying to get a good approximation of the

damping behavior in average over a local volume, in particular when attenuation is weak (van Driel & Nissen-Meyer 2014).

However there are open questions regarding the overall accuracy of such an approach, in particular when propagating waves

over a large number of wavelengths, which is very often the case in practice. Kristek & Moczo (2003) have also pointed out

the fact that the presence of discontinuities, i.e. of interfaces in the material model under study, can lead to inaccuracies in

this spreading technique.

In practice, the Zener model requires fitting Q(ω) over a range of angular frequencies [ωmin, ωmax], which implies de-

termining a set of N points and N weights. As mentioned above, this is classically done based on the linear approach of

Emmerich & Korn (1987), in which one sets the N points and then optimizes and solves for the N weights. However, two

important drawbacks can appear with this technique. First, the accuracy of the approach can be relatively poor, i.e. the error

compared with the real constant Q can be large when the frequency range under study is large and/or when the number of

relaxation mechanisms N used is small. This amounts to introducing a physical modeling error, independent of the numerical

error induced in addition by the chosen numerical scheme. Second, some weights can be negative because the linear approach

of Emmerich & Korn (1987) does not enforce their positivity. This is particularly true when attenuation is strong (say Q < 20

or so), which is a case that can occur for instance in site effect and earthquake hazard assessment studies (poorly consolidated

sediments), in soil-structure interaction studies where values of the critical damping ratio ξ = 1
2Q

larger than 5 % are often

considered in the structures, as well as in non-destructive industrial testing or medical imaging. In such a case the physical

and also mathematical constraint of decay of total energy with time can be broken, as we will see in Section 2, and using

such negative weights can make wave propagation modeling algorithms become unstable. Peyrusse et al. (2014) pointed out

the problem of negative weights in the approach of Emmerich & Korn (1987), and proposed to impose their positivity in

the inversion. However, they did not invert jointly for the points and weights and found that their approach was at best as

accurate as that of Emmerich & Korn (1987).

Alternative approaches exist to represent viscoelastic damping mechanisms and to compute their coefficients. For instance,

Xu & McMechan (1998) used simulated annealing to find the weights of the Zener body, the relaxation times being evenly

distributed in logarithmic scale over N points in the band of angular frequencies. Russo & Zollo (2003) developed an analytical

approach for optimization of the relaxation times; however, they used a less general relaxation function by assigning the same

ratio of relaxed and unrelaxed moduli to all Zener bodies, and they did not introduce the positivity of the weights as a

constraint. Liu & Archuleta (2006) used a simulated annealing approach to compute the relaxation points and weights for

only two extreme values of the quality factor, Q = 5 and Q = 5000, and proposed a regression methodology to derive the

coefficients for intermediate values of Q. However, they also did not impose the positivity of the weights as a constraint and

their approximation of the Q values is limited to a 5 % accuracy. Furthermore, their expression of the viscoelastic modulus

is different from the classical one (of e.g. Moczo & Kristek (2005), Carcione (2007), Lombard & Piraux (2011) and Petersson

& Sjögreen (2012)). Bielak et al. (2011) introduced an internal friction model with optimized memory efficiency based on a

Kelvin-Voigt body put in parallel with two Maxwell bodies and managed to mimic an almost constant Q quality factor over

two decades in frequency. Other attempts at improving the coefficient optimization process can be found in the literature:

Robertsson et al. (1994) and Robertsson (1996) developed a quasi-analytical approach, but an important limitation is that it

is valid only when Q is large; Asvadurov et al. (2004) minimized the error in L∞ norm in an elegant way, but their approach

is quite involved and, more importantly, valid for a constant Q only.

In this article, our goal is thus to develop a nonlinear optimization technique that i/ will be significantly more accurate

than the classical approach of Emmerich & Korn (1987) and ii/ will always lead to physically-meaningful relaxation times that

honor the constraint of decay of total energy with time, by enforcing the positivity of all the coefficients obtained, including

in the case of strong attenuation, thus ensuring stable simulations. Compared to Emmerich & Korn (1987) we will not set

the points but rather solve and optimize for them jointly with the weights, imposing strict positivity as a constraint in the

process. Instead of solving for N unknowns, we will thus solve for 2N unknowns. Having more degrees of freedom to solve for,

we will be able to significantly improve the accuracy of the approximation. This strategy has successfully been used in other

fields such as viscoelastic models in solid mechanics (Rekik & Brenner 2011) and high-frequency poroelasticity (Blanc et al.

2013). To some extent, this idea has some similarities with switching from Newton-Cotes (trapezoidal, Simpson...) quadrature

to Gauss quadrature in numerical integration in order to get a more accurate integration rule by determining optimized points
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and weights instead of weights only. The methodology that we will introduce is independent of the numerical scheme used to

solve the wave equation in time, i.e., it is general and can be used in numerical techniques as diverse as finite differences, finite

elements, spectral elements, discontinuous Galerkin etc. The coefficients are computed once and for all in a preprocessing

step.

The article is organized as follows: in Section 2.1 we briefly recall some elementary notions about viscoelasticity and

discuss the decay of total energy with time. In Section 2.2 we recall the approach of Emmerich & Korn (1987) and reformulate

it within our framework. In Section 2.3 we introduce the nonlinear optimization approach that will allow us to define the

new methodology. In Section 3 we perform numerical experiments to show the dispersion and quality factor curves obtained,

which illustrates the improved accuracy of the results. Finally, in Section 4 we perform some numerical experiments of wave

propagation in more realistic viscoelastic models in 1D and 2D geometries, which confirm the robustness and the improved

accuracy of the nonlinear optimization approach.

2 PHYSICAL MODELING

As mentioned above, viscoelastic models are widely used in the case of the propagation of acoustic or seismic waves in

dissipative media, among other applications. The two-dimensional (2D) or three-dimensional (3D) linear viscoelastic wave

equation then writes:

ρ
∂2u

∂t2
= ∇ · σ + f , (1)

where ρ is the distribution of density and u denotes the displacement field produced by the source f . The symmetric stress

tensor σ is linearly related to the strain tensor ε = 1
2
(∇u + (∇u)T ) by Hooke’s law, which in an elastic, anisotropic linear

solid may be written in the form

σ = c : ε , (2)

where the colon denotes a double tensor contraction operation. The elastic properties of the medium are determined by the

fourth-order elastic tensor c, which in an isotropic medium is cijk` = λ δij δk` +µ (δik δj` + δi` δjk), where δ is the Kronecker

delta symbol and λ and µ are the two Lamé parameters, related to the pressure and shear wave celerities and to density by

µ = ρ c2s and λ = ρ c2p−2µ. In an attenuating medium, Hooke’s law (2) needs to be modified such that the stress is determined

by the entire strain history:

σ(t) =

∫ t

−∞

∂

∂t
c(t− t′) : ε(t′) dt′ . (3)

In the one-dimensional (1D) case without attenuation this reduces to

ρ
∂2u

∂t2
=

∂σ

∂x
+ f

ε =
∂u

∂x
σ = (λ+ 2µ)ε (4)

with scalar unknowns, and in an attenuating medium Hooke’s law becomes

σ(t) =

∫ t

−∞

∂

∂t
(λ(t− t′) + 2µ(t− t′)) ε(t′) dt′ . (5)

2.1 Constitutive law

Let us briefly recall elementary notions about viscoelasticity in 1D. In higher spatial dimensions, the discussion below is

then straightforwardly applied to the compressional and shear relaxation functions, respectively. The reader is referred e.g.

to Carcione (2007) for a detailed presentation. The integro-differential expression of 1D linear viscoelasticity writes

σ = ψ ∗ ∂ε
∂t
, (6)

where ∗ denotes time convolution. The relaxation function of the Zener model writes

ψ(t) = Er

1− 1

N

N∑
`=1

(
1− τε`

τσ`

)
e
− t

τσ`

 H(t), (7)

where Er is the relaxed modulus, N is the number of relaxation mechanisms, τε` and τσ` are relaxation times, and H is the

Heaviside step function. It is worth mentioning that the 1/N factor in (7) is not present in earlier publications (Liu et al.

1976; Carcione et al. 1988a,b). This has been changed in Carcione (2001) and Moczo & Kristek (2005) as well as in many
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subsequent publications; but calculations not shown here demonstrate that these two ways of expressing the Zener model

are equivalent. Another issue that is sometimes found in the literature is that waves speed up instead of slowing down when

attenuation is turned on because the reference used is the relaxed state instead of the more traditional unrelaxed state (e.g.

in Carcione (1993)).

At t = 0, the relaxation function (7) is equal to the unrelaxed modulus Eu

Eu =
1

N

N∑
`=1

τε`
τσ`

Er. (8)

As time increases, ψ decreases monotonically from Eu to Er, and as frequency increases, the phase velocity increases mono-

tonically from c0 to c∞ defined by

c0 =

√
Er
ρ
, c∞ =

√
Eu
ρ
. (9)

Instead of writing the constitutive law as a convolution product (6), one can equivalently use the differential form

σ =

N∑
`=1

σ`,

σ` + τσ`
∂σ`

∂t
= Er`

(
ε+ τε`

∂ε

∂t

)
, ` = 1, · · · , N,

Er` =
Er
N

.

(10)

This form is useful to prove the decay of energy (Bécache et al. 2004).

Property 1. Let us define

E = E1 + E2 + E3, (11)

with

E1 =
1

2

∫
R
ρ v2 dx,

E2 =
1

2

∫
R
Er

(
∂u

∂x

)2

dx,

E3 =
1

2

N∑
`=1

∫
R

τσ`
Er` (τε` − τσ`)

(
σ` − Er`

∂u

∂x

)2

dx,

(12)

where v = ∂u
∂t

is velocity and ρ is density. E then obeys

dE
dt

= −
N∑
`=1

∫
R

1

Er` (τε` − τσ`)

(
σ` − Er`

∂u

∂x

)2

dx. (13)

To prove (13), the conservation of momentum in (4) combined with System (10) can be written as

ρ
∂v

∂t
=
∂σ

∂x
, (14a)

σ =

N∑
`=1

σ`, (14b)

σ` + τσ`
∂σ`

∂t
= Er`

(
∂u

∂x
+ τε`

∂v

∂x

)
, ` = 1, · · · , N. (14c)

Let us multiply Equation (14a) by v and integrate by parts:∫
R
ρ v

∂v

∂t
dx+

∫
R

∂v

∂x
σ dx = 0. (15)

We can then transform the stress σ into σ` thanks to (14b)∫
R
ρ v

∂v

∂t
dx+

N∑
`=1

∫
R

∂v

∂x
σ` dx = 0, (16)

and split the resulting equation into two terms:∫
R

(
ρ v

∂v

∂t
+ Er

∂u

∂x

∂

∂t

(
∂u

∂x

))
︸ ︷︷ ︸

∆1

dx+

N∑
`=1

∫
R

(
σ` − Er`

∂u

∂x

)
∂v

∂x︸ ︷︷ ︸
∆2

dx = 0. (17)
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Equation (14c) then yields

σ` − Er`
∂u

∂x
+ τσ`

∂

∂t

(
σ` − Er`

∂u

∂x

)
= Er` (τε` − τσ`)

∂v

∂x
, (18)

and thus

∂v

∂x
=

1

Er` (τε` − τσ`)

(
σ` − Er`

∂u

∂x
+ τσ`

∂

∂t

(
σ` − Er`

∂u

∂x

))
. (19)

Injecting (19) into ∆2 in (17) and using straightforward algebra recovers (13).

An important remark follows from Property 1: if τε` > τσ` > 0 ∀` then E in (11) is a definite-positive quadratic form, and

dE
dt

< 0 . (20)

The condition τε` > τσ` > 0 ∀` is therefore a sufficient condition to obtain a decreasing total energy. It is worth mentioning

that we have not shown that it is necessary in the mathematical sense because we cannot exclude that there can be cases in

which the sum in Equation (13) remains positive even if some of the coefficients are negative. In higher spatial dimensions

a similar energy analysis can be performed; computations are more involved but the conclusion is unchanged (Bécache et al.

2004). Let us also mention that a standard linear solid in which τσ > τε instead of τε > τσ is sometimes called an anti-Zener

body (Mainardi 2010). Such a body is noncausal, i.e. its energy in the unrelaxed state is smaller than its energy in the relaxed

state; This means that one of its two springs has a negative modulus.

2.2 Linear optimization

The relaxation function of the generalized Zener model involves 2N + 1 parameters. The relaxed modulus Er can be deduced

from the phase velocity at zero frequency (9). Determination of the relaxation times τε` and τσ` is more involved. The most

classical approach originates in the work of Emmerich & Korn (1987), which we are going to briefly recall. For the sake of

simplicity, we perform the calculations with new unknowns:

κ` =
1

N

(
τε`
τσ`
− 1

)
, θ` =

1

τσ`
, (21)

from which the original coefficients can be recovered using:

τε` =
1 +N κ`

θ`
, τσ` =

1

θ`
. (22)

These coefficients will also be useful in future sections because imposing τε` > τσ` > 0 ∀` simply means imposing κ` > 0 and

θ` > 0. The viscoelasticity modulus M = F( ∂Ψ
∂t

), where F is the Fourier transform in time, is deduced from (7):

M(ω) = Er

(
1 + i ω

N∑
`=1

κ`
θ` + i ω

)
. (23)

We determine the relaxed modulus Er so that the phase velocity of the Zener model equals cr at a given reference frequency

fr: c(ωr) ≡ cr, with ωr = 2π fr. The wavenumber is

k =

(
ρω2

M(ω)

)1/2

=

√
ρ

Er
ω

(
1 +

N∑
`=1

κ`
θ` + iω

)−1/2

. (24)

Denoting <(k) the real part of k, the phase velocity is

c(ω) =
ω

<(k)
=

√
Er
ρ
F(ω), (25)

with

F(ω) = 1/<


(

1 +

N∑
`=1

κ`
θ` + iω

)−1/2
 . (26)

The requirement c(ωr) ≡ cr is then reached by taking

Er =
ρ c2r
F(ωr)

. (27)

The quality factor Q is defined as the ratio of the imaginary part to the real part of M . Its reciprocal writes

Q−1(ω) =

N∑
`=1

ω θ` κ`

θ2
` + ω2

1 +

N∑
`=1

ω2 κ`

θ2
` + ω2

. (28)
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The main idea in Emmerich & Korn (1987) is then to minimize the distance between Q−1(ω) and a given Q−1
ref (ω) in a band

of angular frequencies [ωmin, ωmax], which of course depends on the spectrum of the source under study, i.e., on the frequency

content of the data or experiment that one wants to model. For this purpose in Emmerich & Korn (1987) the relaxation

frequencies θ` are evenly distributed over N points in logarithmic scale

θ` = ωmin

(
ωmax

ωmin

) `−1
N−1

, ` = 1, ..., N, (29)

in the band of angular frequencies [ωmin, ωmax]. The coefficients κ` are then obtained by identifying the reciprocal of the

quality factor (28) with a given Q−1
ref (ω). From (28), one obtains the set of equations

N∑
`=1

ωk
(
θ` − ωkQ−1

ref (ωk)
)

θ2
` + ω2

k

κ` = Q−1
ref (ωk), k = 1, · · · ,K, (30)

where the angular frequencies are distributed linearly on a logarithmic scale of K points

ωk = ωmin

(
ωmax

ωmin

) k−1
K−1

, k = 1, · · · ,K. (31)

If K = N , one obtains a square linear system. The choice K = 2N − 1 is often made (Groby & Tsogka 2006), leading to an

over-determined system. Nothing in this method prevents from obtaining negative values κ` < 0 when solving (30), yielding

τε` < τσ` via (22), which is unsuitable both physically and mathematically as mentioned in Property 1. In practice this can

(and does) happen in particular when N is large, typically N ≥ 5 or so, as we will see in Section 3.

2.3 Optimization with constraints

Let us introduce the objective function

J ({κ`, θ`} ; N, K) =

K∑
k=1

(
N∑
`=1

ωkQref(ωk)
(
θ` − ωkQ−1

ref (ωk)
)

θ2
` + ω2

k

κ` − 1

)2

. (32)

Minimizing (32) with respect to the κ` only recovers the Emmerich & Korn (1987) expressions (30). Here we propose to

minimize (32) in terms of both variables, imposing decay of total energy with time as in Eq. (20), i.e. imposing τε` > τσ` > 0

∀`, which in turn means imposing the positivity constraints κ` > 0 and θ` > 0. We introduce the additional constraint

θ` < θmax in order to avoid too large values of θ`, which could result in stiff equations and thus in numerical instabilities in

the time-marching of memory variables (Blanc et al. 2013).

These 3N constraints are relaxed by setting κ` = κ
′2
` and θ` = θ

′2
` and solving the following problem with only N

constraints:

minJ
{κ′
`
,θ
′
`
}

(
{κ
′2
` , θ

′2
` } ; N, K

)
, with θ

′2
` ≤ θmax for ` = 1, . . . , N. (33)

As Problem (33) is nonlinear and nonquadratic with respect to abscissas θ
′
`, to solve it we resort to the SolvOpt algorithm

(Kappel & Kuntsevich 2000; Rekik & Brenner 2011), which is based on the iterative Shor’s method (Shor 1985). As starting

values for that iterative optimization technique we use the values κ
′(0)
` and θ

′(0)
` obtained based on the Emmerich & Korn

(1987) procedure (29)-(30) (even if some of them are negative, since our nonlinear optimization procedure will then ensure

positivity).

To determine the 2N coefficients κ
′
` and θ

′
`, the minimal number of relaxation frequencies is K = 2N . In practice, we

have observed better accuracy when taking the larger value K = 4N . The angular frequencies ωk are chosen evenly spaced in

logarithmic scale over the optimization band [ωmin, ωmax], as in the linear approach, and thus Equation (31) remains valid.

3 NUMERICAL VALIDATION OF THE APPROACH

3.1 Approximation and coefficients obtained

Let us illustrate the improved accuracy of the approximation obtained as well as the fact that the coefficients κ` and θ`
obtained are always positive. To do so, let us perform several numerical experiments with different numbers of relaxation

mechanisms N . Optimization is performed over K = 4N angular frequencies ωk (31), as explained in Section 2.3. We set the

lower and upper bounds of the angular frequency range to

ωmin = ωc/10, ωmax = 10ωc, (34)

where ωc = 2π fc is the dominant angular frequency of the source. We take a constant quality factor Qref = 5 and a dominant

frequency of the source fc = 1.5 Hz. Figure 1 shows the exact value of Q−1
ref and the numerical approximation (28) obtained
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N = 2 N = 3
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Nonlinear optimization
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N = 4 N = 5
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N = 6 N = 7
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Emmerich and Korn
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Figure 1. Reciprocal of the quality factor when using a Zener approximation with N = 2 (upper left) to N = 7 (bottom right) relaxation

mechanisms based on the linear approach of Emmerich & Korn (1987) (red line) and nonlinear optimization (blue line). The vertical

dotted lines denote the interval of optimization [fmin,fmax]. The horizontal axis is in logarithmic scale.
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Table 1. Coefficients of Equation (21) obtained when resorting to (a) the method of Emmerich & Korn (1987) and (b) nonlinear

optimization with constraints, for a quality factor Q = 5 modeled with N = 6 relaxation mechanisms. One can note that one gets a
negative weight for ` = 5 in the case of the linear approach of Emmerich & Korn (1987).

(a) κ` θ` (b) κ` θ`

` = 1 +2.81 10−1 1.50 10−1 ` = 1 +2.93 10−1 9.18 10−2

` = 2 +1.29 10−1 3.77 10−1 ` = 2 +1.92 10−1 3.57 10−1

` = 3 +1.07 10−1 9.46 10−1 ` = 3 +2.00 10−1 1.01 100

` = 4 +3.54 10−1 2.38 100 ` = 4 +2.26 10−1 2.75 100

` = 5 −1.00 10−1 5.97 100 ` = 5 +2.84 10−1 7.75 100

` = 6 +7.85 10−1 1.50 101 ` = 6 +7.39 10−1 3.38 101

using optimization based on N = 2 to N = 7 relaxation mechanisms in the angular frequency band [ωmin, ωmax]. In the interval

of optimization, the linear approach of Emmerich & Korn (1987) yields oscillations whereas the nonlinear optimization with

constraints gives a curve that is almost constant and fits the exact value very well.

The numerical values of the coefficients κ` and θ` obtained with N = 6 are given in Table 1. The κ5 weight is negative

in the linear Emmerich & Korn (1987) procedure, which could lead to unstable results if used in a numerical simulation, as

illustrated in Section 4, because the set of coefficients does not necessarily honor the constraint of decay of energy with time

of Equation (20).

To evaluate the effect of the optimization more quantitatively, it is useful to introduce the following quantities:

• uQex the unknown exact solution of the model with a truly constant Qref factor, which obeys a fractional-order partial

differential equation (Carcione et al. 2002);

• uZex the unknown exact solution of the Zener model approximation of that constant Qref , which obeys a standard partial

differential equation with memory variables;

• uZnum the known numerical solution of the partial differential equation with memory variables, obtained using the numerical

scheme selected to solve the wave equation (1).

The triangular inequality then yields the total error

εt = ||uQex − uZnum|| ≤ ||uQex − uZex||︸ ︷︷ ︸
εm

+ ||uZex − uZnum||︸ ︷︷ ︸
εn

, (35)

in which εn is the numerical error due to discretization. That error depends on the numerical scheme chosen to discretize the

wave equation and can be analyzed using standard numerical analysis tools (which is classical in the literature and out of the

scope of this article). Here we focus on the physical modeling error εm, which is related to the quality of the optimization

process:

εm ∼ ||Q−1
ref (ω)−Q−1(ω)||2 (36)

in the interval of optimization. Values of εm for Qref = 5 and various values of the number of relaxation mechanisms N are

given in Table 2. With N = 6 we get εm = 1.21% in the case of Emmerich & Korn (1987) and εm = 0.0156% in the case

of nonlinear optimization with constraints. When making the number of relaxation mechanisms N vary from 2 to 6 we get

the relative errors of Table 2. For N = 2 we get drastic improvement, for N = 3 the difference is less pronounced but then

for N ≥ 4 the difference becomes very significant again. These errors are displayed in Figure 2. When nonlinear optimization

is used the error keeps decaying in a very significant fashion, while in the case of the linear approach of Emmerich & Korn

(1987) it does not.

Let us illustrate the effect of the physical modeling error εm on time-domain results of 1D wave propagation. The only

Table 2. Relative physical modeling error (36) in the case of the linear approach of Emmerich & Korn (1987) and in the case of nonlinear
optimization, when making the number of relaxation mechanisms vary from N = 2 to N = 7. Nonlinear optimization always leads to

more accurate results.

N Linear optimization Nonlinear optimization

2 εm = 34.2% ε = 10.7%
3 εm = 3.08% ε = 2.17%

4 εm = 1.99% ε = 0.42%
5 εm = 1.49% ε = 0.08%
6 εm = 1.21% ε = 0.0156%

7 εm = 0.86% ε = 0.0030%
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Figure 2. Value of the objective function of Equation (32) as a function of frequency, using a Zener approximation with N = 2 (green

curve), N = 4 (blue curve), and N = 6 (red curve) relaxation mechanisms, with the linear approach of Emmerich & Korn (1987) (left)
and with nonlinear optimization (right). The vertical dotted lines denote the interval of optimization [fmin, fmax]. Both axes are in

logarithmic scale. Note that the vertical logarithmic scale has about twice more decades on the right figure than on the left figure, i.e.,

the error levels are very significantly different.

linear and causal model of viscoelasticity having a constant quality factor Q was introduced by Kjartansson (1979). We

compare the exact solution for the velocity obtained with that truly constant Q model (uQex), which is the reference solution,

with the exact solution obtained with the Zener model approximation of that constant Q (uZex). These exact solutions are

computed semi-analytically based on Fourier synthesis. Details about how to compute the solution in the case of the Zener

model can be found in Appendix D of Favrie et al. (2015). We consider a homogeneous one-dimensional domain extending

from xmin = −5000 m to xmax = +5000 m. The constant density is ρ = 2000 kg.m−3, the reference frequency is fr = 1.5 Hz,

and the celerity at that frequency is cr = 2000 m.s−1. The source is a Ricker wavelet force with dominant frequency fc = fr
located at x = 0. Figure 3 shows the time history of velocity recorded at two receivers r1 and r2 located in xr1 = 1000 m

and xr2 = 3000 m respectively. Since dispersion is a cumulative effect, as expected the errors are more pronounced after a

larger distance of propagation. In the case of linear optimization a visible error remains even when using N = 4 relaxation

mechanisms; on the contrary an almost perfect agreement is obtained if nonlinear optimization is used with N = 4 relaxation

mechanisms.

3.2 Dispersion curves

The dispersion of the Kjartansson (1979) model is

c(ω) = cr

(
ω

ωr

) 1
π

arctan 1
Q

. (37)

An important remark from (37) is that one can see that the phase velocity of this model is not bounded at infinite frequency,

contrary to that of the Zener model. A consequence is that in such a model the reference velocity needs to be given at a finite

frequency, it cannot be an unrelaxed value at infinite frequency as in the Zener model.

Figure 4 compares the phase velocities of the Zener model (obtained with the two methods of optimization) with the

reference phase velocity of the Kjartansson (1979) model. The parameters used are cr = 2000 m.s−1, fr = 1.5 Hz, and Q = 5.

The optimization is performed in the frequency range [fc/10, fc×10], where fc = fr. The choice fr = fc is natural, it amounts

to choosing the dominant frequency of the source as the reference frequency. For N = 2 relaxation mechanisms the linear

optimization largely over-estimates the phase velocity of the Zener model (a), whereas nonlinear optimization under-estimates

the phase velocity of the Zener model at f > fc (b). For N = 4 a good agreement is observed between the Zener model and

the Kjartansson (1979) model if nonlinear optimization is used (b).
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Figure 3. Time history of velocity recorded at receivers r1 (top) and r2 (bottom), comparing the exact solution of the Kjartansson (1979)

model (red curve) to the exact solution of the Zener model obtained with linear optimization (left row) and with nonlinear optimization

(right row), for N = 2 (green curve) and N = 4 (blue curve) relaxation mechanisms.

4 VALIDATION FOR WAVE PROPAGATION

4.1 Accuracy in a layer-cake medium

In Section 3, we have illustrated how the choice of the relaxation times in the Zener model affects the accuracy of time

domain solutions of the viscoelastic wave equation in a homogeneous medium. Let us now turn to a more realistic example of

three-dimensional propagation in a one-dimensional medium with strong contrasts in viscoelastic properties. For this purpose,

we consider the viscoelastic medium described in Table 3. The elastic version of this model was used by Chaljub et al. (2015)

to study the accuracy of numerical predictions of earthquake ground motion in the Mygdonian basin in northern Greece.

The model consists in a stiff elastic half-space overlaid by three sedimentary layers with lower seismic impedances, which

cause large amplification of earthquake ground motion (so-called site effects). The shear quality factors in the sediments are

approximated by a simple, frequency-independent scaling from the shear velocities, QS = VS/10, as done in site effect studies

in the (general) situation in which no other constraints on intrinsic attenuation can be used; the P quality factors are defined

by QP = 2QS .

The viscoelastic medium is excited by a double-couple point source with a vertical strike-slip focal mechanism. The source

is set at 80 m depth in order to excite high-frequency surface waves propagating within the sedimentary layers. In realistic

cases, those surface waves would be generated locally by conversion of incoming body waves at strong lateral heterogeneities

located close to the surface (for example at basin edges) and would contribute to the amplification and duration lengthening

of ground motion. The source time function is a step with a rising time τ = 0.1 s. It radiates a far-field displacement with a

flat spectrum up to 1 Hz and gradual decay between 1 Hz and 10 Hz.

The computations are performed with the AXITRA software package (Coutant 1989), which implements a discrete
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Figure 4. Dispersion curves obtained with linear optimization (a) and with nonlinear optimization (b) in the case of the Kjartansson

(1979) model (red curve), the Zener model with N = 2 relaxation mechanisms (green curve), and the Zener model with N = 4 relaxation
mechanisms (blue curve). The solid vertical line indicates the reference frequency fr = 1.5 Hz. The vertical dotted lines denote the

frequency range [fc/10, fc × 10] in which optimization is performed. The horizontal line denotes the celerity c(fr) = 2000 m.s−1 on

which all the models are locked, i.e., where they are by definition identical.

wavenumber method (Bouchon 1981). As in Section 3 we compute the solutions for the truly constant Q model of Kjartansson

(1979), and for Zener models with different numbers of mechanisms, whose relaxation times are obtained based either on linear

or nonlinear optimization. We use a reference frequency fr = 1 Hz and solve for the relaxation times of the Zener models in

the two-decade frequency range [fr/10, 10fr].

Figure 5-a shows 25 seconds of horizontal ground acceleration computed at 4-km epicentral distance for the truly constant

Q model (black line) and for the Zener models with N = 3 mechanisms and relaxation times inverted using linear (red line) or

nonlinear (blue line) optimization. Note that the overall agreement between traces is quite good even for late surface waves,

mainly because anchoring the dispersion of the different models at the reference frequency has the effect of minimizing phase

misfit. The differences in amplitude can be analyzed by comparing Fourier amplitude spectra (Figure 5-b). The solutions of

the Zener models either under-predict (around fr = 1 Hz) or over-predict (around 2.5 Hz) the amplitude of the constant Q

solution, as expected from Figure 1. The maximum differences reach about 10 % around the dominant, reference frequency. A

more precise measure is to quantify time-frequency misfits, or goodness-of-fit scores as proposed by Kristeková et al. (2009).

When applied to very similar signals the envelope (resp. phase) misfits or goodness-of-fit scores mainly reflect the differences

or similarities in amplitude (resp. phase) between the traces. In Figure 5-c we plot the envelope goodness-of-fit scores as a

function of time. Each goodness-of-fit value g(t) corresponds to a frequency average over the range [0.2 Hz – 5 Hz] of the

envelope time-frequency misfit, m(t), which is further scaled to a score between 0 (no fit) and 10 (perfect fit) based on the

nonlinear mapping g(t) = 10 exp[−m(t)]. The figure shows that nonlinear optimization of the relaxation times in the Zener

model always yields a more accurate approximation of the constant Q model, even for N = 3.

From the analysis of Figure 1, we expect that this trend should be even more pronounced if we increase the number of

relaxation mechanisms. This is indeed the case for the results obtained with N = 4 relaxation mechanisms, which are shown

in Figure 6: the improvement of the prediction of the Zener model with nonlinear optimized relaxation times is clearly seen,

both in the Fourier amplitude spectra and in the time evolution of the goodness-of-fit scores.

The global (i.e. time- and frequency-averaged) phase and envelope goodness-of-fit scores are given in Table 4 for N =

3, 4, 6, 10. They confirm (i) that the phase misfits are negligible after the adjustment of the physical dispersion at the reference

frequency and (ii) that for N ≥ 4 mechanisms, the solution of the Zener model with nonlinear optimization of the relaxation

times matches the solution of the constant Q model almost perfectly, whereas N ≥ 6 mechanisms are needed to obtain the

same accuracy when the relaxation times are computed based on classical linear optimization.

4.2 Stability in a 2D medium

Let us finally illustrate a realistic case for which classical linear optimization to calculate the relaxation times of the Zener

model leads to unstable results. We consider a sedimentary valley with a simple rectangular geometry (Figure 7-a). The width

of the valley is W = 4.5 km and the sedimentary filling is defined by the three-layer model of Table 3. We compute the 2D

viscoelastic response of the valley with the SPECFEM2D software package, which implements the spectral-element method
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Table 3. Layered viscoelastic model used in the validation examples of Section 4. The Li, i = 1 . . . 3 refer to the sedimentary layers and

B to the surrounding bedrock. h stands for layer thickness, VS , VP , QS , QP stand for S and P seismic velocities and quality factors,

and ρ stands for mass density.

h (m) VP (m/s) VS (m/s) ρ (kg/m3) QP QS

L1 17.3 1500 200 2100 40 20

L2 72.5 1800 350 2100 70 35
L3 115.6 2500 650 2200 130 65

B - 4500 2600 2600 ∞ ∞

(e.g. Komatitsch & Vilotte 1998; Vai et al. 1999; Tromp et al. 2010) in two-dimensional space and an explicit second-order

finite-difference Newmark scheme in time. We use an unstructured, geometrically-conforming mesh of quadrangles (Figure

7-b). We select a polynomial degree P = 4 for the spectral elements and a maximal element size of 40 m in the first and

second layers, 80 m in the third layer and 160 m in the bedrock. This allows for accurate calculations for frequencies up to

about 5 Hz. The valley is excited by a vertical strike-slip line source located at 2-km depth, and the source time function is a

Ricker wavelet (i.e., the second derivative of a Gaussian) with dominant frequency fc = 2 Hz.

The constant Q viscoelastic model is approximated by a Zener model with N = 4 relaxation mechanisms. The reference

frequency is fr = 1 Hz and we use a four-decade frequency range to fit the Q values: [fr/100, 100fr]. As often done in

geophysics we consider bulk attenuation Qκ as infinite, i.e. we replace the QP values in Table 3 with QP = QS V
2
P /V

2
S (in the

3D case QP = 3
4
QS V

2
P /V

2
S , see e.g. Dahlen & Tromp (1998), which in the 2D case becomes QP = QS V

2
P /V

2
S ). We compute

the relaxation times both with linear optimization and with our new, nonlinear methodology. The coefficients obtained based

on linear optimization are displayed in Table 5. Note that many of the κl coefficients are negative, even for moderate values

of Q.

Figure 8 shows vertical ground velocity computed by SPECFEM2D at two surface receivers located 500 m outside (a)

and 500 m inside (b) the valley for the Zener model with the relaxation times given in Table 5 (red) and with those obtained

based on nonlinear optimization (blue). The numerical solution computed with the linear coefficients is wrong: an instability

is triggered in the upper sedimentary part of the model and quickly propagates everywhere in the computational domain.

Note that halving the time step does not solve the problem, confirming that the instability is not numerical but rather stems
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Figure 5. (a) Time evolution of horizontal ground acceleration in cm/s2 at 4-km epicentral distance for a constant Q model (black
line), and for the Zener model with N = 3 relaxation mechanisms obtained based on linear (red) or nonlinear (blue) optimization. (b)
Corresponding Fourier amplitude spectra. (c) Time evolution of the envelope goodness-of-fit with respect to the reference solution of the

constant Q model.
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Figure 6. Same as Figure 5 but using N = 4 relaxation mechanisms.

from the (un)physical viscoelastic model. On the contrary, the numerical solution computed for the Zener model in which the

relaxation times are obtained based on nonlinear optimization remains stable, as expected.

It is important to stress that the instability observed in this example neither depends on the numerical method used to

solve the wave equation nor on the spatial dimension. It is inherent to the unphysical viscoelastic model that results from the

non-positivity of some of the κl coefficients in Equation 21.

5 CONCLUSIONS AND FUTURE WORK

We have developed a nonlinear methodology based on the SolvOpt algorithm of Kappel & Kuntsevich (2000) to optimize the

coefficients of the Zener viscoelastic model that is significantly more accurate, for a given number of relaxation mechanisms,

than the classical linear approach of Emmerich & Korn (1987), or equivalently that can reach similar accuracy for a smaller

number of relaxation mechanisms. The approach also ensures the positivity of the coefficients obtained, thus always honoring

the constraint of decay of total energy with time and resulting in a stable algorithm when used in viscoelasticity applications,

even in the case of very strong attenuation. We have illustrated the improved accuracy obtained based on several numerical

experiments, first for a simple wave pulse propagating in a homogeneous medium with strong attenuation and then for a

more realistic wavefield propagating in a stratified medium with large contrasts in seismic velocities and attenuation. We have

then shown that for a 2D realistic example the classical approach of Emmerich & Korn (1987) yields an unstable numerical

solution while the proposed nonlinear approach remains stable.

Although the examples presented here were in 2D for simplicity, the methodology introduced does not depend on the

spatial dimension of the problem and can thus be used in 3D without any change. In future work we plan to extend our

applications of this technique to fitting a non-constant Q(ω) profile; such an extension could be useful e.g. for non destructive

testing or in ocean acoustics. Since the approach used is not specific to the Zener model, we also plan to apply it to other,

Table 4. Average envelope (E) and phase (P) goodness-of-fits of horizontal ground acceleration for the Zener viscoelastic models with
relaxation times obtained based on linear and nonlinear optimization.

N Linear optimization Nonlinear optimization

3 E=9.36 P=9.76 E=9.57 P=9.82

4 E=9.64 P=9.88 E=9.84 P=9.93
6 E=9.83 P=9.90 E=9.90 P=9.95
10 E=9.89 P=9.94 E=9.90 P=9.96
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(a)
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w
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Figure 7. (a) Vertical cross-section (not to scale) of the three-layer-over-a-half-space valley model used in this article. The medium is

excited by a double-couple point source whose position is indicated by the beach ball. Two surface receivers, located 500 m inside and

outside the valley, are indicated with triangles. The width of the valley is W = 4.5 km. The properties of the three layers are given in
Table 3. (b) Close-up on the unstructured, geometrically-conforming spectral-element mesh used to perform the 2D calculations.

more complex or less classical models, which may even involve fractional derivatives; in viscoelasticity one can think of the

Andrade model (e.g., Ben Jazia et al. 2014), the fractional Kelvin-Voigt model (Caputo 1967) or the fractional Zener model

(Nasholm & Holm 2013), and in poroelasticity of the widely-used model based on the Biot-Johnson-Koplik-Dashen theory

(e.g., Blanc et al. 2013).
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Figure 8. Time evolution of vertical ground velocity computed by the spectral-element method at two surface receivers located (a) 500
m outside and (b) 500 m inside the 2D valley (black triangles in Figure 7). The viscoelastic model of Table 3 is approximated with
the Zener model using four relaxation mechanisms obtained based on linear (red) or nonlinear (blue) optimization. In this example the

model defined by the linear relaxation coefficients yields an unstable solution.
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Table 5. Coefficients of Equation (21) used to produce the unstable results shown in Figure 8. The coefficients were obtained by linear

optimization using N = 4 relaxation mechanisms in the frequency range [0.01 Hz – 100 Hz]. The target values of the S quality factors
are those of the 1D model of Table 3.

Q θ1 κ1 θ2 κ2 θ3 κ3 θ4 κ4

20 1.00 10−2 −1.14 100 2.15 10−1 −2.44 100 4.64 100 +3.90 10−1 1.00 102 +2.17 10−1

35 1.00 10−2 −1.33 100 2.15 10−1 −3.52 100 4.64 100 +1.24 10−1 1.00 102 +8.81 10−2

65 1.00 10−2 −3.17 100 2.15 10−1 +1.12 10−1 4.64 100 +6.84 10−2 1.00 102 +6.10 10−2
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