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Null controllability and finite time stabilization for the heat

equations with variable coefficients in space in one dimension

via backstepping approach

Jean-Michel Coron ∗ Hoai-Minh Nguyen †

Abstract

Using the backstepping approach we recover the null controllability for the heat equa-
tions with variable coefficients in space in one dimension and prove that these equations
can be stabilized in finite time by means of periodic time-varying feedback laws. To this
end, on one hand, we provide a new proof of the well-posedness and the “optimal” bound
with respect to damping constants for the solutions of the kernel equations; this allows
to deal with variable coefficients, even with a weak regularity of these coefficients. On
another hand, we establish the well-posedness and estimates for the heat equations with
a nonlocal boundary condition at one side.

Keywords. Null controllability, time-varying feedback laws, stabilization in finite time,
backstepping, heat equation.
AMS subject classification. 93B05, 93B17, 93B52.

1 Introduction

The null controllability of the heat equations has been extensively investigated since
several decades. This was pioneered in [12] by the moment method. Since then, there have
been a few other methods to prove the null controllability of the heat equations. One is
based on the construction of the fundamental solution as proposed [18, 24]. One is based
on Carleman estimates, as initiated in [14, 23]; see also [11] and references therein for recent
results. One, as proposed in [29], is via the transmutation method, which relates the null-
controllability of the heat equation to the exact controllability of the wave equation. One,
as proposed in [28], is via the flatness approach; in this approach, x is considered as the
time-variable, see also [15].

In this paper, we give a new approach to obtain the null controllability for the heat
equations with Dirichlet boundary control. This new approach is based on backstepping
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design in which the kernel also depends on time. The backstepping method has been used
as a standard tool to stabilize finite dimensional control systems, see, e.g., [4, 20]. This
method was initiated in [5, 26] to design feedback laws stabilizing control systems modeled
by partial differential equations. Later on, Krstic and his collaborators introduced a key
modification of the method: Using a Volterra transform of the second kind, coming from
the application of the classical backstepping method applied to a spatial discretization of the
partial differential equation, they map the original equation into an asymptotically stable
one. In this context, the first continuous backstepping designs were proposed for the heat
equation [25, 32]. The applications to wave equation appeared later in [19, 34, 31]. Since
then, it has been applied to study the stability of parabolic equations in [32, 33], of hyperbolic
systems in [21, 8, 9, 16, 17], of nonlinear parabolic equations in [35], of Korteweg-de Vries
equations in [3] and of Kuramoto–Sivashinsky equations [27]. A concise introduction of this
method applied to numerous partial differential equations can be found in [22]. In this paper,
we implement the backstepping idea to obtain the null-controllability of 1-d heat equations.
We also provide a new method to prove the existence of and to establish the “optimal” bound
for a solution to the kernel equation. Finally, we show how this approach can be used to
stabilize in finite time these equations by means of time-varying feedback laws. For this
end, we establish the well-posedness and estimates for the heat equations with a nonlocal
boundary condition at one side.

Remark 1. For some equations, one needs to use more general transformations than the one
given by the backstepping approach (i.e. a Volterra transform of the second kind). See, in
particular, [1] for wave equations, [2] for compensating the distributed effect of diffusion and
counter-convection in Multi-Input and Multi-Output LTI systems, [6] for KdV equations, [7]
for Kuramoto–Sivashinsky equations. In these last two papers, the existence of these more
general transformations is shown to be equivalent to the controllability (of the linearized
control system).

We consider the control system{
ut(t, x) = (a(x)ux(t, x))x + c(x)u(t, x) in (τ1, τ2)× [0, 1],

u(t, 0) = 0, u(t, 1) = U(t) for t ∈ (τ1, τ2),
(1.1)

where, at t ∈ (τ1, τ2), the state is u(t, ·) ∈ L2(0, 1) and the control is U(t) ∈ R. Throughout
this paper, we assume that a ∈ H2(0, 1), c ∈ H1(0, 1), and

a(x) > 0 for every x ∈ [0, 1], (1.2)

which implies the existence of Λ ≥ 1 such that 0 < 1/Λ ≤ a(x) ≤ Λ in [0, 1] since a is
continuous on [0, 1].

The first goal of this paper is to provide a new way (via backstepping design) to obtain
constructive controls U which steer the control system (1.1) from a given u0 ∈ L2(0, 1) to 0
during the interval of time [0, T ], with T > 0 given, i.e., u(t, ·)→ 0 as t→ T− where u is the
solution of 

ut(t, x) = (a(x)ux(t, x))x + c(x)u(t, x) in (0, T )× [0, 1],

u(t, 0) = 0, u(t, 1) = U(t) for t ∈ (0, T ),

u(t = 0, ·) = u0 for x ∈ [0, 1].

(1.3)
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Let us denote by L2(0, 1)∗ the set of continuous linear maps from L2(0, 1) into R. We have
the following theorem.

Theorem 1. Let T > 0. There exists a piecewise constant functional K : [0, T )→ L2(0, 1)∗

such that, for every u0 ∈ L2(0, 1), if u ∈ C0
(
[0, T );L2(0, 1)

)
is the solution of (1.3) with U(t)

defined by
U(t) := K(t)u(t, ·), (1.4)

then

u(t, ·)→ 0 in L2(0, 1) as t→ T−, (1.5)

U(t)→ 0 as t→ T−, (1.6)

where u is the solution of (1.3).

Let us briefly describe here the idea of the proof of Theorem 1. The operator K(t) in
Theorem 1 is of the form

K(t)v =

∫ 1

0
kn(1, y)v(y) dy for every v ∈ L2(0, 1), (1.7)

for tn ≤ t < tn+1 for some sequence (tn)n∈N → T− and for some sequence of functions (called
kernels) (kn)n∈N defined in D which is defined by

D := {(x, y) ∈ [0, 1]2; y ≤ x}.

The choice of (tn)n∈N and (kn)n∈N are derived from the backstepping approach as follows.
Let (tn)n∈N be a strictly increasing sequence of real numbers such that t0 = 0 and tn → T
as n → ∞. We construct the kernel kn (used for the interval of time [tn, tn+1)) using
backstepping design: define, for tn ≤ t < tn+1,

w(t, x) = u(t, x)−
∫ x

0
kn(x, y)u(t, y) dy, (1.8)

where kn is chosen such that, for tn ≤ t < tn+1 and for u solution of (1.1),

wt(t, x)−
(
a(x)wx(t, x)

)
x

+ λnw(t, x) = 0 for x ∈ [0, 1], (1.9)

for some λn > 0, damping coefficients. By requiring that (1.9) holds for any u satisfying (1.1)
with (τ1, τ2) = (tn, tn+1), one obtains the following system for kn:

2a(x)
d

dx
kn(x, x) + ax(x)kn(x, x) + [λn + c(x)] = 0 for x ∈ [0, 1],

kn(x, 0) = 0 for x ∈ [0, 1],(
a(x)kn,x(x, y)

)
x
−
(
a(y)kn,y(x, y)

)
y
− [λn + c(y)]kn(x, y) = 0 in D.

(1.10)

Here and in what follows, we use the notation:

d

dx
k(x, x) := kx(x, x) + ky(x, x),

3



where kx and ky denotes the partial derivative of k : D → R with respect to x and y. In fact,
we can verify that such a kn exists (Lemma 2) and that, indeed, (1.9) holds if u satisfies (1.1)
with (τ1, τ2) = (tn, tn+1) and if w is defined by (1.8) with kn satisfying (1.10) (see Lemma 3).
The control U in (1.4) is chosen as usual by requiring (1.7) in order to have

w(t, 1) = 0 for tn < t < tn+1. (1.11)

Let us point out that, from (1.1) and (1.8), we have

w(t, 0) = 0 for tn < t < tn+1. (1.12)

We derive from (1.9), (1.11), and (1.12) that

‖w(t, ·)‖L2 ≤ e−λn(t−tn)‖w(tn+, ·)‖L2 . (1.13)

From (1.13), we obtain the decay of w as t → T−. To compute u from w, one searches the
kernel ln such that

u(t, x) = w(t, x) +

∫ x

0
ln(x, y)w(t, y) dy. (1.14)

By requiring that, for tn ≤ t < tn+1,

ut(t, x) =
(
a(x)ux(t, x)

)
x

+ c(x)u(t, x) for x ∈ [0, 1], (1.15)

one gets
2a(x)

d

dx
ln(x, x) + ax(x)ln(x, x) + λn + c(x) = 0 for x ∈ [0, 1],

ln(x, 0) = 0 for x ∈ [0, 1],(
a(x)ln,x(x, y)

)
x
−
(
a(y)ln,y(x, y)

)
y

+ [λn + c(x)]ln(x, y) = 0 in D.

(1.16)

In fact, we can prove that ln exists (Lemma 2) and that, if ln satisfies (1.16) and if w is
defined by (1.8) where kn satisfies (1.10), then (1.14) holds (Lemma 4). We establish the
following crucial estimates for kn and ln (Lemma 2):

‖kn‖H1(D) ≤ eCλ
1/2
n and ‖ln‖H1(D) ≤ Cλn, (1.17)

for some positive constant C which depends only on a and c: it does not depend on n.
Let us point out that related estimates already appear in [23, Proposition 1]. These related
estimates are proved thanks to Carleman estimates. Our approach is completely different.
From (1.13) and (1.17), we can derive that u(t, ·) → 0 in L2(0, 1) and U(t) → 0 in R as
t → T− by appropriate choices of (tn)n∈N and of (λn)n∈N (see also [23, p. 343-344]). More
precisely, we prove the following proposition.

Proposition 1. Let T > 0, (λn)n≥0 be an increasing sequence of positive numbers converging
to infinity, and let (tn)n≥0 be an increasing sequence which converges to T with t0 = 0. Define,
for tn ≤ t < tn+1,

U(t) :=

∫ 1

0
kn(1, y)u(t, y) dy, (1.18)
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where kn is given in (1.10). Set s0 := 0 and sn :=
∑n−1

k=0 λk(tk+1− tk) for n ≥ 1. There exists
a positive constant γ, depending only on a and c, such that if, for large n,

(tn+1 − tn)λn ≥ γ
√
λn+1, (1.19)

then, for tn ≤ t ≤ tn+1,

‖u(t, ·)‖L2 ≤ Ce−sn−1/4+C(n−1)‖u0‖L2 , (1.20)

|U(t)| ≤ Ce−sn−1/4+C(n−1)+C
√
λn‖u0‖L2 . (1.21)

for some positive constant C independent of n and u0. In particular, if in addition that

lim
n→+∞

sn

n+
√
λn+1

= +∞, (1.22)

then

lim
t→T−

‖u(t, ·)‖L2 = 0, (1.23)

lim
t→T−

U(t) = 0. (1.24)

There are sequences (tn)n∈N and (λn)n∈N which satisfy (1.19) and (1.22): for example the
sequences such that tn = T − 1/n2 and λn = n8 for large n. Hence, Theorem 1 is a corollary
of Proposition 1.

In this paper, we therefore provide a new constructive control to reach the null control-
lability for the heat equation with variable coefficients via backstepping approach. Our idea
is to use a sequence of kernels (kn)n∈N in an appropriate choice of time interval [tn, tn+1)
corresponding for a sequence of positive numbers (λn)n∈N used for damping effect converg-
ing to infinity to stabilize the equations more and more as t goes to T . To implement this
idea, we need to prove the existence of kn and ln, and establish estimates given in (1.17).
Our analysis is variational and different from the standard one and hence requires some new
ideas. First, to handle the existence of kn and ln in the variable coefficients case, we show, in
Lemma 1, a connection of (1.10) and (1.16) with the wave equation defined in [0, 1]2. To this
end, we establish a property of the finite speed of propagation type (see (2.6) in Lemma 1).
Known methods to prove the existence of kn and ln (in the case a is constant) are based on
special functions or by fixed point arguments (see, in particular, [22, Chapter 4] and [10]).
Second, the proof of (1.17) is only known for constant a and c using the information of special
functions (see, e.g., [22, Chapter 4]). In the case, a is constant and c is not, it is known that

(1.17) holds provided that the exponent λ
1/2
n is replaced by λn (see, e.g., [22, Chapter 4]).

Nevertheless, exponent λn is not sufficient to get the decay of un to 0 due to (1.13). Estimates
in (1.17) are given in (2.5) of Lemma 1. These follow from an energy type estimate for the
wave equation which is somehow nonstandard in the sense that the energy not only contains
the gradient of the solutions but also the solutions, see (2.14); the standard energy estimate
only gives the exponent λn.

The second goal of this article is to show that the control system (1.1) can be semi-globally
stabilized in arbitrary time by means of time-varying feedback laws (t, v) ∈ R × L2(0, 1) 7→
F (t, v) ∈ R. We look for feedback laws F satisfying the following three properties.
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(P1). The feedback law F is T -periodic with respect to time:

F (t, v) = F (t+ T, v) for every (t, v) ∈ R× L2(0, 1). (1.25)

(P2). There exists a strictly increasing sequence (tn)n∈N of real numbers such that

t0 = 0, (1.26)

lim
n→+∞

tn = T, (1.27)

F is of class C1 in [tn, tn+1)× L2(0, 1) for every n ∈ N. (1.28)

(P3). The map F vanishes on R × {0} and there exists a continuous function M : [0, T ) →
[0,+∞) such that

|F (t, v2)−F (t, v1)| ≤M(t)‖v2−v1‖L2 ∀ (t, v1, v2) ∈ [0, T )×L2(0, 1)×L2(0, 1). (1.29)

Before stating our second result, let us comment on the Cauchy problem
ut(t, x) =

(
a(x)ux(t, x)

)
x

+ c(x)u(t, x) for (t, x) ∈ (s, τ)× [0, 1],

u(t, 0) = 0, u(t, 1) = F (t, u(t, ·)) for t ∈ (s, τ),

u(s, ·) = u0 for x ∈ [0, 1],

(1.30)

where −∞ < s < τ < +∞ and u0 ∈ L2(0, 1) are given. We use the following definition:
u : [s, τ) × (0, 1) → R is a solution of (1.30) if u is in C0

(
[s, τ);L2(0, 1)

)
is such that, for

every ξ ∈ C2([s, τ) × [0, 1]) with compact support in [s, τ) × [0, 1] and which vanishes on
[s, τ)× {0, 1}, one has

−
∫ 1

0
u0(x)ξ(s, x) dx−

∫ τ

s

∫ 1

0
u(t, x)ξt(t, x) dx, dt+

∫ τ

s
a(1)F (t, u(t, ·))ξx(t, 1) dt

−
∫ τ

s

∫ 1

0
u(t, x)

(
(a(x)ξx(t, x))x + c(x)ξ(t, x)

)
dx = 0. (1.31)

Using, properties (P1) and (P3), one gets the uniqueness of the solution to the Cauchy problem
(1.30): two solutions u1 : [s, τ1)× (0, 1)→ R and u2 : [s, τ2)× (0, 1)→ R to (1.30) are equal
on [s,min{τ1, τ2})× (0, L) (see the proof of Lemma 6). A solution u1 : [s, τ1)× (0, 1)→ R to
the Cauchy problem (1.30) is said to be maximal if there is no solution u2 : [s, τ2)×(0, 1)→ R
to the Cauchy problem (1.30) with τ2 > τ1 and u1 = u2 on [s, τ1)× (0, 1). From now on, all
the solutions to the Cauchy problem (1.30) considered are maximal. As just mentioned this
solution is unique. We denote by t ∈ [s, t(s, u0))→ Φ(t, s, u0) this solution. Let us point out
that, as proved in Lemma 6, Properties (P1), (P2), and (P3) imply that t(s, u0) > s for every
(s, u0) ∈ R× L2(0, 1).

Our second result states that the control system (1.1) can be semi-globally stabilized in
arbitrary time by means of time-varying feedback laws (t, v) ∈ R × L2(0, 1) 7→ F (t, v) ∈ R
satisfying Properties (P1), (P2), and (P3).
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Theorem 2. Let T > 0 and Γ > 0. There exists a time-varying feedback laws (t, v) ∈
R× L2(0, 1) 7→ F (t, v) ∈ R satisfying Properties (P1), (P2), and (P3) such that

∃(C, T̄ ) ∈ (0,+∞)× (0, T ) such that |F (t, v)| ≤ C‖v‖1/2
L2 ∀ (t, v) ∈ [T̄ , T )× L2(0, 1), (1.32)

t(s, u0) = +∞ for every (s, u0) ∈ R× L2(0, 1), (1.33)

Φ(t+ 2T, t, u0) = 0 for every (t, u0) ∈ R× L2(0, 1) such that ‖u0‖L2 ≤ Γ, (1.34)

and such that the following uniform stability condition{
∀ ε > 0, ∃η > 0 such that, ∀ t′ ∈ R, ∀ t ∈ [t′,+∞), and ∀u0 ∈ L2(0, 1),

(‖u0‖L2 ≤ η)⇒ (‖Φ(t, t′, u0)‖ ≤ ε)
(1.35)

holds

The paper is organized as follows. In Section 2, we establish several lemmas which are
used in the proof of Proposition 1 and Theorem 2. In particular, we prove the existence and
uniqueness of kn and ln, together with estimates on these functions. The proof of Proposi-
tion 1 is given in Section 3. (Let us recall that, as already observed above, Proposition 1
implies Theorem 1.) In Section 4, we establish the well-posedness of (1.30) and various
estimates for the flow Φ. Finally, in Section 5, we give the proof of Theorem 2.

2 Preliminaries

In this section, we establish several lemmas used in the proof of Proposition 1 and Theo-
rem 2. The first one is on the stability and a property of the wave equation, which plays an
important role in our analysis and is interesting in itself.

Lemma 1. Let λ ∈ R, f ∈ L2
(
(0, 1)2

)
, and let a1, a2, b1, b2 and c be bounded measurable

functions defined in [0, 1]2 such that a1 and a2 are Lipschitz and

1/Λ ≤ a1(x, y), a2(x, y) ≤ Λ and |b(x, y)|, |c(x, y)| ≤ Λ for (x, y) ∈ [0, 1]2, (2.1)

for some Λ ≥ 1, where b = (b1, b2). There exists a unique solution

K ∈ L2
(
(0, 1);H1

0 (0, 1)
)
∩H1

(
(0, 1)2

)
(2.2)

to the equation(
a1(x, y)Kx(x, y)

)
x
−
(
a2(x, y)Ky(x, y)

)
y

+ b(x, y) · ∇K(x, y)− [λ+ c(x, y)]K(x, y) = f(x, y) in [0, 1]2, (2.3)

such that

K(x, 0) = K(x, 1) = 0 for x ∈ [0, 1] and K(0, y) = Kx(0, y) = 0 for y ∈ [0, 1]. (2.4)
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Moreover,∫ 1

0
|∇K(x, y)|2 dy ≤ C max{eCsign(λ)

√
|λ|, 1}

∫ 1

0

∫ 1

0
|f(x, y)|2 dy dx for x ∈ [0, 1]. (2.5)

Assume in addition that a1(x, x) ≥ a2(x, x) for x ∈ [0, 1] and supp f ⊂ D. We have

K(x, y) = 0 in [0, 1]2 \D. (2.6)

Here C denotes a positive constant depending only on Λ and the Lipschitz constant of (a1, a2).

We consider (2.3) and (2.4) as a wave system in which x is seen as time variable and y is
seen as space variable and use the following definition for solutions: A function K : (0, 1)2 →
R is said to be a solution of (2.3) and (2.4) if (2.2) is satisfied, (2.3) holds in the distributional
sense, and

K(0, ·) = 0, (2.7)

Kx(0, ·) = 0. (2.8)

(Equality (2.7) is an equality in L2(0, 1), while (2.8) is an equality in H−1(0, 1): note that
by (2.2) and (2.3), K ∈ H2

(
(0, 1);H−1(0, 1)

)
).

Proof. The existence and uniqueness of K are standard and left to the reader. We next
prove (2.5) and (2.6). We only give the proof in the case a1, a2, b, c, and f are smooth and
satisfy suitable compatibility conditions (which are automatically satisfied if the support of
f is included in a compact subset of (0, 1]× [0, 1]). The proof in the general case follows by
a standard regularizing argument. Since a1, a2, b, c, and f are smooth, from the standard
regularity theory of the wave equation, it follows that K is smooth. We begin with the proof
of (2.5). We only consider the case λ > 0 and large enough. The proof in the other case
is similar and even simpler. Multiplying the equation of K by Kx(x, y), integrating with
respect to y from 0 to 1, and using an integration by parts, we have∫ 1

0

1

2

[ d
dx

(
a1(x, y)K2

x(x, y)
)
+a1,x(x, y)K2

x(x, y)+
d

dx

(
a2(x, y)K2

y (x, y)
)
−a2,x(x, y)K2

y (x, y)

+ 2b(x, y) · ∇K(x, y)Kx(x, y)− [λ+ c(x, y)]
d

dx
K2(x, y)

]
dy =

∫ 1

0
f(x, y)Kx(x, y) dy.

This implies

d

dx

∫ 1

0

[
a1(x, y)K2

x(x, y) + a2(x, y)K2
y (x, y)− λK2(x, y)

]
dy

= 2

∫ 1

0
f(x, y)Kx(x, y) dy −

∫ 1

0

[
a1,x(x)K2

x(x, y)− a2,x(x, y)K2
y (x, y)

+ 2b(x, y) · ∇K(x, y)Kx(x, y)− 2c(x, y)Kx(x, y)K(x, y)
]
dy. (2.9)
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Integrating (2.9) from 0 to x, using the ellipticity and the Lipschitz property of a1 and a2
and the boundedness of b and c, we obtain, for x ∈ [0, 1],∫ 1

0

[
K2
x(x, y) +K2

y (x, y)
]
dy

≤ C
∫ 1

0
λK2(x, y) dy + C

∫ x

0

∫ 1

0

[
K2
x(s, y) +K2

y (s, y)
]
dy ds+ ‖f‖2L2(0,1)2 (2.10)

Set
K̂(x, y) = K(λ−1/2x, y) for (x, y) ∈ [0, λ1/2]× [0, 1].

We derive from (2.10) that, for x ∈ [0, λ1/2],∫ 1

0

[
K̂2
x(x, y) + λ−1K̂2

y (x, y)
]
dy

≤ C
∫ 1

0
K̂2(x, y) dy + C

∫ x

0

∫ 1

0
[K̂2

x(s, y) + λ−1K̂2
y (s, y)

]
dy ds+ ‖f‖2L2 . (2.11)

Define

V1(x) =

∫ 1

0

[
K̂2
x(x, y) + λ−1K̂2

y (x, y)
]
dy and V2(x) =

∫ 1

0
K̂2(x, y) dy.

We have

V ′2(x) = 2

∫ 1

0
K̂x(x, y)K̂(x, y) dy ≤ 2V

1/2
1 (x)V

1/2
2 (x), (2.12)

and from (2.11) we obtain

V1(x) ≤ C
(
V2(x) +

∫ x

0
V1(s) ds+ ‖f‖2L2

)
. (2.13)

A combination of (2.12) and (2.13) yields

V1(x) + V ′2(x) ≤ C
(
V2(x) +

∫ x

0
V1(s) ds+ ‖f‖2L2

)
. (2.14)

We derive that ∫ x

0
V1(s) ds+ V2(x) ≤ C‖f‖2L2e

Cx;

which, together with (2.11), implies that∫ 1

0

[
K̂2
x(x, y) + λ−1K̂2

y (x, y)
]
dy ≤ C‖f‖2L2e

Cx.

Estimate (2.5) now follows by a change of variables and the definition of K̂.
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We next establish that K(x, y) = 0 in [0, 1]2 \D. Define

E(x) =
1

2

∫ 1

x

(
a1(x, y)K2

x(x, y) + a2(x, y)K2
y (x, y)

)
dy.

We have

E′(x) =

∫ 1

x

(
a1(x, y)Kxx(x, y)Kx(x, y) +

1

2
a1,x(x, y)K2

x(x, y)
)
dy

+

∫ 1

x

(
a2(x, y)Ky(x, y)Kxy(x, y) +

1

2
a2,x(x, y)K2

y (x, y)
)
dy

− 1

2

[
a1(x, x)K2

x(x, x) + a2(x, x)K2
y (x, x)

]
.

An integration by parts yields

E′(x) =

∫ 1

x

[(
a1(x, y)Kx(x, y)

)
x
−
(
a2(x, y)Ky(x, y)

)
y

]
Kx(x, y) dy

+

∫ 1

x

(
− 1

2
a1,x(x, y)K2

x(x, y) +
1

2
a2,x(x, y)K2

y (x, y)
)
dy

− 1

2

[
a1(x, x)K2

x(x, x) + a2(x, x)K2
y (x, x)− 2a2(x, x)Kx(x, x)Ky(x, x)

]
.

Since a1(x, x) ≥ a2(x, x), we derive that

E′(x) ≤ C(λ)E(x).

Since E(0) = 0, it follows that E = 0. The proof is complete. �

Remark 2. The Lipschitz assumption on a1 and a2 can be weakened; however the uniqueness
does not hold if one only assumes (2.1): see [30, Theorem 9].

Using Lemma 1, we can establish the following lemma.

Lemma 2. Let λ ∈ R, g ∈ H1(0, 1) be such that x3/2[g(x)/x]′′ ∈ L2(0, 1). There exists a
unique solution k ∈ H1(D) to the system

k(x, x) = g(x) for x ∈ [0, 1],

k(x, 0) = 0 for x ∈ [0, 1],(
a(x)kx(x, y)

)
x
−
(
a(y)ky(x, y)

)
y
− [λ+ c(y)]k(x, y) = 0 in D.

(2.15)

Moreover, for every x ∈ [0, 1],∫ x

0
|∇k(x, y)|2 dy ≤ C max{eCsign(λ)

√
|λ|, 1}

(
‖g‖2L2 + ‖s1/2g′(s)‖2L2 + ‖s3/2[g(s)/s]′′‖2L2

)
(2.16)

for some positive constant C independent of g, x ∈ [0, 1], and λ.
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Remark 3. The existence, uniqueness, and estimate of k are known in the case where a and
c are constant, see [22, Chapter 4].

Proof. We first establish the uniqueness of k. Assume that g = 0. We prove that k = 0.
Extend k = 0 in [0, 1]2 \D and still denote the extension by k. Then(

a(x)kx(x, y)
)
x
−
(
a(y)ky(x, y)

)
y
− [λ+ c(y)]k(x, y) = 0 in [0, 1]2,

k(x, 0) = k(x, 1) = 0 for x ∈ [0, 1], and k(0, y) = kx(0, y) = 0 for y ∈ [0, 1]. Hence k = 0 by
Lemma 1. To prove the existence of k, we proceed as follows. Define

ϕ(x, y) = g(x)y/x in D

and set k1 = k − ϕ in D. Then
k1(x, x) = 0 for x ∈ [0, 1],

k1(x, 0) = 0 for x ∈ [0, 1],(
a(x)k1,x(x, y)

)
x
−
(
a(y)k1,y(x, y)

)
y
− [λ+ c(y)]k1(x, y) = f1(x, y) in D,

(2.17)
where

f1(x, y) = −
(
a(x)ϕx(x, y)

)
x

+
(
a(y)ϕy(x, y)

)
y

+ [λ+ c(y)]ϕ(x, y) in D.

One has
‖f1‖L2(D) ≤ C

(
‖g‖L2 + ‖s1/2g′(s)‖L2 + ‖s3/2[g(s)/s]′′‖L2

)
.

By Lemma 1, there exists k2 the unique solution to the system(
a(x)k2,x(x, y)

)
x
−
(
a(y)k2,y(x, y)

)
y
− [λ+ c(y)]k2(x, y) = f2(x, y) in [0, 1]2, (2.18)

k2(x, 0) = k2(x, 1) = 0 for x ∈ [0, 1], and k2(0, y) = k2,x(0, y) = 0 for y = [0, 1]. Here
f2 = 1Df1 where 1D denotes the characteristic function of D. Applying Lemma 1, we also
have

k2(x, y) = 0 in [0, 1]2 \D.
Hence k1 can be chosen as the restriction of k2 in D and k = k1 + ϕ in D. Estimate (2.16)
follows immediately from the one of k2 obtained from Lemma 1. �

From Lemma 2, we get the following corollary, which gives the existence and uniqueness
of kn together with the first inequality of (1.17).

Corollary 1. Let λ0 > 0. For every λ ≥ λ0, there exists a unique solution k ∈ H1(D) of the
system

2a(x)
d

dx
k(x, x) + ax(x)k(x, x) + λ+ c(x) = 0 for x ∈ [0, 1],

k(x, 0) = 0 for x ∈ [0, 1],(
a(x)kx(x, y)

)
x
−
(
a(y)ky(x, y)

)
y
− [λ+ c(y)]k(x, y) = 0 in D.

(2.19)

Moreover,

‖k‖H1(D) ≤ eCλ
1/2
, (2.20)

for some positive constant C independent of λ ∈ [λ0,+∞).
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Proof. Since a ∈ H2
(
(0, 1); (0,+∞)

)
and c ∈ H1(0, 1), there exists (a unique) g ∈ H2(0, 1)

such that

2a(x)g′(x) + ax(x)g(x) + λ+ c(x) = 0 in [0, 1] and g(0) = 0.

One easily checks that x3/2[g(x)/x]′′ ∈ L2(0, 1). Then (2.19) is equivalent to
k(x, x) = g(x) for x ∈ [0, 1],

k(x, 0) = 0 for x ∈ [0, 1],(
a(x)kx(x, y)

)
x
−
(
a(y)ky(x, y)

)
y
− [λ+ c(y)]k(x, y) = 0 in D.

The existence and uniqueness of k now follow from Lemma 2 and estimate (2.20) is a conse-
quence of (2.16). �

Similar to Corollary 1, we have the following consequence of Lemma 2, which gives the
existence and uniqueness of ln together with the second inequality of (1.17) .

Corollary 2. Let λ0 > 0. For every λ ≥ λ0, there exists a unique solution l ∈ H1(D) of the
system

2a(x)
d

dx
l(x, x) + ax(x)l(x, x) + λ+ c(x) = 0 for x ∈ [0, 1],

l(x, 0) = 0 for x ∈ [0, 1],(
a(x)lx(x, y)

)
x
−
(
a(y)ly(x, y)

)
y

+ [λ+ c(y)]l(x, y) = 0 in D.

(2.21)

Moreover,
‖l‖H1(D) ≤ Cλ, (2.22)

for some positive constant C independent of λ ∈ [λ0,+∞).

The third lemma, whose proof is quite standard and which is known in the case where a
is constant, is on the link between (1.1) and (1.9).

Lemma 3. Let λ > 0 and τ2 > τ1 ≥ 0. Assume that u ∈ L2
(
(τ1, τ2);H

1(0, 1)
)

is a solution
to the system

ut(t, x)−
(
a(x)ux(t, x)

)
x
− c(x)u(t, x) = 0 in (τ1, τ2)× [0, 1], (2.23)

u(t, 0) = 0 for t ∈ (τ1, τ2). (2.24)

Define, for τ1 < t < τ2,

w(t, x) = u(t, x)−
∫ x

0
k(x, y)u(t, y) dy, (2.25)

where k ∈ H1(D) is the unique solution of the system (2.19). Then w ∈ L2
(
(τ1, τ2);H

1(0, 1)
)

and satisfies the equation

wt(t, x)−
(
a(x)wx(t, x)

)
x

+ λw(t, x) = 0 in (τ1, τ2)× [0, 1]. (2.26)
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Proof. We assume that a and c are smooth and establish (2.26); the general case follows by
a regularizing argument. The smoothness of a and c imply that k and u and hence w are
smooth in (τ1, τ2)× [0, 1]. We have, from (2.25),

wt(t, x) = ut(t, x)−
∫ x

0
k(x, y)ut(t, y) dy. (2.27)

Using the fact that ut(t, x) =
(
a(x)ux(t, x)

)
x

+ c(x)u(t, x) in (τ1, τ2) × [0, 1] and integrating
by parts, we derive from (2.27) that

wt(t, x) = ut(t, x)−
∫ x

0

[(
a(y)ky(x, y)

)
y

+ c(y)k(x, y)
]
u(t, y) dy

− k(x, y)a(y)uy(t, y)
∣∣∣x
0

+ a(y)ky(x, y)u(t, y)
∣∣∣x
0
.

This implies, using also (2.24),

wt(t, x) = ut(t, x)−
∫ x

0

[(
a(y)ky(x, y)

)
y

+ c(y)k(x, y)
]
u(t, y) dy

− k(x, x)a(x)ux(t, x) + a(x)ky(x, x)u(t, x) + k(x, 0)a(0)ux(t, 0). (2.28)

From (2.25), we also have

(
a(x)wx(t, x)

)
x

=
(
a(x)ux(t, x)

)
x
−
∫ x

0

(
a(x)kx(x, y)u(t, y)

)
x
dy − d

dx

(
a(x)k(x, x)

)
u(t, x)

− a(x)k(x, x)ux(t, x)− a(x)kx(x, x)u(t, x). (2.29)

Using the fact that ut(t, x) −
(
a(x)ux(t, x)

)
x
− c(x)u(t, x) = 0 in (τ1, τ2) × [0, 1], we derive

from (2.25), (2.28), and (2.29) that

wt(t, x)−
(
a(x)wx(t, x)

)
x

+ λw(t, x)

=
[
2a(x)

d

dx
k(x, x) + ax(x)k(x, x) + λ+ c(x)

]
u(t, x) + k(x, 0)a(0)ux(t, 0)

+

∫ x

0

[(
a(x)kx(x, y)

)
x
−
(
a(y)ky(x, y)

)
y
− [λ+ c(y)]k(x, y)

]
u(t, y).

With the choice k in (2.19), we have

wt(t, x)−
(
a(x)wx(t, x)

)
x

+ λw(t, x) = 0 in (τ1, τ2)× [0, 1].

The proof is complete. �

The fourth lemma deals with the inverse transform of the map u 7→ w, where w is defined
by (1.8).
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Lemma 4. Let λ > 0, let k ∈ H1(D) be the unique solution of (2.19), and let l ∈ H1(D) be
the unique solution of (2.21). Let u ∈ L2(0, 1) and define

w(x) := u(x)−
∫ x

0
k(x, y)u(y) dy for x ∈ [0, 1].

We have

u(x) = w(x) +

∫ x

0
l(x, y)w(y) dy in [0, 1]. (2.30)

Proof. In what follows, we assume that a and c are smooth, the general case follows by a
regularizing argument. Since a and c are smooth, it follows that k and l are smooth. We
claim that

l(x, y) = k(x, y) +

∫ x

y
k(x, ξ)l(ξ, y) dξ. (2.31)

Admitting this claim, we prove (2.30). We have, by Fubini’s theorem,

u(x)−
∫ x

0
k(x, y)u(y) +

∫ x

0
l(x, y)

[
u(y)−

∫ y

0
k(y, ξ)u(ξ) dξ

]
dy

= u(x) +

∫ x

0

[
l(x, y)− k(x, y)−

∫ x

y
l(x, ξ)k(ξ, y) dξ

]
u(y) dy = u(x) :

(2.30) is proved.
It remains to establish (2.31). Define

l̂(x, y) = k(x, y) +

∫ x

y
k(x, ξ)l(ξ, y) dξ. (2.32)

We prove that l̂ = l. It is clear that l̂(x, x) = k(x, x) = l(x, x) and l̂(x, 0) = k(x, 0) = l(x, 0) =
0 for x ∈ [0, 1]. We have, from (2.32),

l̂x(x, y) = kx(x, y) +

∫ x

y
kx(x, ξ)l(ξ, y) dξ + k(x, x)l(x, y).

It follows that(
a(x)l̂x(x, y)

)
x

=
(
a(x)kx(x, y)

)
x

+

∫ x

y

(
a(x)kx(x, ξ)

)
x
l(ξ, y) dξ + a(x)kx(x, x)l(x, y)

+
d

dx

[
a(x)k(x, x)

]
l(x, y) + a(x)k(x, x)lx(x, y).
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Using the fact that
(
a(x)kx(x, y)

)
x

= (a(y)ky(x, y))y + [λ+ c(y)]k(x, y) in [0, 1]2, we have(
a(x)l̂x(x, y)

)
x

=
(
a(x)kx(x, y)

)
x

+

∫ x

y

[
(a(ξ)ky(x, ξ))yl(ξ, y) + [λ+ c(ξ)]k(x, ξ)l(ξ, y)

]
dξ

+ a(x)kx(x, x)l(x, y) +
d

dx

[
a(x)k(x, x)

]
l(x, y) + a(x)k(x, x)lx(x, y)

=
(
a(x)kx(x, y)

)
x

+

∫ x

y

[
k(x, ξ)

(
a(ξ)lx(ξ, y)

)
x

+ [λ+ c(ξ)]k(x, ξ)l(ξ, y)
]
dξ

+ a(ξ)ky(x, ξ)l(ξ, y)
∣∣x
y
− k(x, ξ)a(ξ)lx(ξ, y)

∣∣x
y

+ a(x)kx(x, x)l(x, y)

+
d

dx

[
a(x)k(x, x)

]
l(x, y) + a(x)k(x, x)lx(x, y).

This implies(
a(x)l̂x(x, y)

)
x

=
(
a(x)kx(x, y)

)
x

+

∫ x

y

[(
a(ξ)lx(ξ, y)

)
x

+ [λ+ c(ξ)]l(ξ, y)
]
k(x, ξ) dξ

+ a(x)ky(x, x)l(x, y)− a(y)ky(x, y)l(y, y) + k(x, y)a(y)lx(y, y)

+ a(x)kx(x, x)l(x, y) +
d

dx

[
a(x)k(x, x)

]
l(x, y).

Then, using the first equality of (2.21), it follows that(
a(x)l̂x(x, y)

)
x

=
(
a(x)kx(x, y)

)
x

+

∫ x

y

[(
a(ξ)lx(ξ, y)

)
x

+ [λ+ c(ξ)]l(ξ, y)
]
k(x, ξ) dξ

− [λ+ c(x)]l(x, y)− a(y)ky(x, y)l(y, y) + k(x, y)a(y)lx(y, y). (2.33)

Similarly, from (2.32), we obtain

l̂y(x, y) = ky(x, y) +

∫ x

y
k(x, ξ)ly(ξ, y) dξ − k(x, y)l(y, y).

It follows that(
a(y)l̂y(x, y)

)
y

=
(
a(y)ky(x, y)

)
y

+

∫ x

y
k(x, ξ)

(
a(y)ly(ξ, y)

)
y
dy − a(y)k(x, y)ly(y, y)

− k(x, y)
(
a(y)l(y, y)

)
y
− ky(x, y)a(y)l(y, y). (2.34)

Using the last equation of (2.19) and (2.21), we derive from (2.33) and (2.34) that(
a(x)l̂x(x, y)

)
x
−
(
a(y)l̂y(x, y)

)
y

= −[λ+ c(x)]l(x, y).

On the other hand, (
a(x)lx(x, y)

)
x
−
(
a(y)ly(x, y)

)
y

= −[λ+ c(x)]l(x, y).

Hence l̂ = l by the uniqueness of the solution to (2.21). The proof is complete. �
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3 Proof of Proposition 1

This section is devoted to the proof of Proposition 1. We implement the ideas presented in
the introduction. For tn ≤ t < tn+1, Define w by (1.8) where kn is given in (1.10). Applying
Corollary 1, we have

‖w(t, ·)‖2L2 ≤ CeC
√
λn‖u(t, ·)‖2L2 for tn < t < tn+1. (3.1)

By Lemma 4, (1.14) holds where ln is given by (1.16). We have, by applying Corollary 2,

‖u(t, ·)‖2L2 ≤ Cλ2n‖w(t, ·)‖2L2 for tn ≤ t < tn+1. (3.2)

and, by using Lemma 3,

wt(t, x)−
(
a(x)wx(t, x)

)
x

+ λnw(t, x) = 0 for x ∈ [0, 1].

From the choice of the control (1.18), we obtain

w(t, 0) = w(t, 1) = 0 for tn < t < tn+1.

It follows that

‖w(ξ2, ·)‖2L2 ≤ ‖w(ξ1, ·)‖2L2e
−2λn(ξ2−ξ1) for tn ≤ ξ1 < ξ2 < tn+1. (3.3)

A combination of (3.1), (3.2), and (3.3) yields

‖u(tn+1, ·)‖2L2 ≤ Cλ2ne−2λn(tn+1−tn)+C
√
λn‖u(tn, ·)‖2L2 . (3.4)

We derive from (1.19) and (3.4) that, if γ is large enough, which will be always assumed,

‖u(tn+1, ·)‖2L2 ≤ Ce−λn(tn+1−tn)‖u(tn, ·)‖2L2 . (3.5)

This, together with the definition of sn, implies

‖u(tn+1, ·)‖2L2 ≤ e−sn+1+Cn‖u(0, ·)‖2L2 . (3.6)

We have, for tn ≤ t < tn+1,

‖u(t, ·)‖2L2 ≤ Cλ2n‖w(t, ·)‖2L2 ≤Cλ2ne−2λn(t−tn)‖w(tn+, ·)‖2L2

≤Cλ2ne−2λn(t−tn)+C
√
λn‖u(tn, ·)‖2L2

≤Ce−λn−1(tn−tn−1)/2‖u(tn−1, ·)‖2L2

≤e−sn−1/2+C(n−2)‖u(0, ·)‖2L2 , (3.7)

which gives (1.20). Here we use (3.2) in the first inequality of (3.7), (3.3) in the second
inequality, (3.1) in the third inequality, (1.19) and (3.5) in the fourth inequality, and (3.6)
(for tn−1 instead of tn+1) in the last inequality. Finally (1.21) follows from (1.17), (1.18), and
(1.20). �
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4 Some properties of the flow Φ

In this section, we are interested in the flow Φ introduced in the Introduction (Section 1).
We start by mentioning a maximum principle for the Cauchy problem

ut(t, x) = (a(x)ux(t, x))x + c(x)u(t, x) + f(t, x) in (τ1, τ2)× (0, 1),

u(t, 0) = α(t), u(t, 1) = β(t) for t ∈ (τ1, τ2),

u(0, x) = u0(x), for x ∈ (0, 1),

(4.1)

which we will use many times in this section. Let τ1 and τ2 be two real numbers such that
τ1 < τ2, let α and β ∈ L2(τ1, τ2), let f ∈ L2((τ1, τ2) × (0, 1)), and let u0 ∈ H−1(0, 1). Let
us recall that, with this regularity on α, β and f , the Cauchy problem (4.1) is well posed in
C0
(
[τ1, τ2];H

−1(0, 1)
)
: it has one and only one solution in this set and there exists a constant

C > 0 independent of α and β ∈ L2(τ1, τ2), f ∈ L2((τ1, τ2)× (0, 1)), and u0 ∈ H−1(0, 1) such
that

‖u‖C0([τ1,τ2],H−1(0,1)) ≤ C(‖α‖L2(τ1,τ2)+‖β‖L2(τ1,τ2)+‖f‖L2((τ1,τ2)×(0,1))+‖u0‖H−1(0,1)). (4.2)

The notion of solution to the Cauchy problem (4.1) has to be understood in the transposition
sense (compare with (1.31)): a solution u of (4.1) is a function u in C0

(
[τ1, τ2];H

−1(0, 1)
)

such that, for every s ∈ [τ1, τ2] and for every ξ ∈ L2
(
(τ1, s);H

2(0, 1)
)
∩H1

(
(τ1, s);H

1
0 (0, 1)

)
such that

− ξt = (a(x)ξx)x + c(x)ξ in L2((τ1, s)× (0, 1)), (4.3)

one has

− 〈u0, ξ(τ1, ·)〉H−1,H1
0

+ 〈u(s, ·), ξ(s, ·)〉H−1,H1
0

+

∫ s

τ1

a(1)β(t)ξx(t, 1) dt

−
∫ τ

s
a(0)α(t)ξx(t, 0) dt−

∫ s

τ1

∫ 1

0
f(t, x)ξ(t, x) dxdt = 0. (4.4)

See, e.g., [4, Definition 2.36 and Section 2.7.1] for this notion of solution, the well-posedness
and (4.2). Then using a standard smoothing procedure and the classical maximum principle
(see, e.g. [13, Chapter 2]) one gets the following proposition.

Proposition 2 (Maximum principle). Let α and β ∈ L2(τ1, τ2), let f ∈ L2((τ1, τ2) × (0, 1),
and let u0 ∈ H−1(0, 1) be such that

α ≥ 0, β ≥ 0, f ≥ 0, u0 ≥ 0. (4.5)

then, for every t ∈ [τ1, τ2],
u(t, ·) ≥ 0. (4.6)

In the next lemma, we derive from this maximum principle an a priori estimate on the
solutions of (1.30).
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Let us denote by S(t) : L2(0, 1)→ L2(0, 1), t ≥ 0, the semigroup generated by the operator
v 7→

(
a(x)vx

)
x

+ c(x)v(t, x) with Dirichlet boundary condition: for t ≥ 0 and u0 ∈ L2(0, 1),

(S(t)u0)(x) = v(t, x) where v ∈ C0
(
[0,+∞);L2(0, 1)

)
is the unique solution of

vt(t, x) =
(
a(x)vx(t, x)

)
x

+ c(x)v(t, x) in (0,+∞)× (0, 1),

v(t, 0) = v(t, 1) = 0 for t ∈ (0,+∞),

v(0, ·) = u0.

(4.7)

Lemma 5. Assume that F satisfies Properties (P1), (P2), and (P3) and that |F (t, v)| ≤
C‖v‖1/2

L2 for (t, v) ∈ [T1, T )×L2(0, 1) for some C > 0 and for some 0 < T1 < T . Then, there
exists C1 > 0 such that, for every u0 ∈ L2(0, 1), for every T1 ≤ s < s′ < T and for every
solution u ∈ C0

(
[s, s′];L2(0, 1)

)
of

ut(t, x) =
(
a(x)ux(t, x)

)
x

+ c(x)u(t, x) for (t, x) ∈ (s, s′)× [0, 1],

u(t, 0) = 0, u(t, 1) = F (t, u(t, ·)) for t ∈ (s, s′),

u(s, ·) = u0 for x ∈ [0, 1],

(4.8)

one has

‖u(t, ·)− S(t− s)u0‖L2 ≤ C1(t− s)1/4(1 + ‖u0‖L2)1/2 ∀T1 ≤ s ≤ t ≤ s′. (4.9)

Proof. Let v(t, x) be the unique solution of the system
vt(t, x) =

(
a(x)vx(t, x)

)
x

+ c(x)v(t, x) in (s, s′)× (0, 1),

v(t, 0) = v(t, 1) = 0 for t ∈ (s, s′),

v(s, ·) = u0.

Set w(t, x) = u(t, x)− v(t, x). Then
wt(t, x) =

(
a(x)wx(t, x)

)
x

+ c(x)w(t, x) in (s, s′)× (0, 1),

w(t, 0) = 0, |w(t, 1)| ≤ C
(
‖w(t, ·)‖1/2

L2 + ‖v(t, ·)‖1/2
L2

)
for t ∈ (s, s′),

w(τ, ·) = 0.

(4.10)

Let t ∈ (s, s′]. Define

W (τ, x) =
1√

τ − s+ τ0
e
−

(1−x+τ1/20 )2

λ(τ−s+τ0) for (τ, x) ∈ [s, t]× [0, 1], (4.11)

where τ0 = t− s. By choosing λ > 0 small enough, the smallness of λ depends only on a and
c, we have

Wτ (τ, x) ≤
(
a(x)Wx(τ, x)

)
x

+ c(x)W (τ, x) in (s, t)× [0, 1].

Set
W(τ, x) = ĈAW (τ, x) for (τ, x) ∈ (s, t)× (0, 1), (4.12)
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where Ĉ is a positive constant defined later and

A = (t− s)1/2 + (t− s)1/2‖u0‖1/2L2 . (4.13)

We have, for τ ∈ (s, t),

W(τ, 1) = ĈA(τ − s+ τ0)
−1/2e

− τ0
λ(τ−s+τ0) ≥ ĈA[2(t− s)]−1/2e−1/λ, (4.14)

and

‖W(τ, ·)‖L2 ≤ λ1/4ĈA(τ − s+ τ0)
−1/4e

− τ0
4λ(τ−s+τ0) ≤ λ1/4ĈA(t− s)−1/4e−1/(4λ). (4.15)

Here in the first inequality we used the fact that, for m > 0,∫ ∞
m

e−y
2
dy ≤

√
π

2
e−m

2/2.

Fixing λ > 0 small, taking Ĉ large enough, the largeness of Ĉ being independent of s, t, and
u0, we obtain, for t− s ≤ e−7/λ,

W(τ, 1) ≥ 2C
(
‖W(τ, ·)‖1/2

L2 + ‖u0‖1/2L2

)
≥ 2C

(
‖W(τ, ·)‖1/2

L2 + ‖v(τ, ·)‖1/2
L2

)
for τ ∈ (s, t). (4.16)

Let us check that, by the maximum principle (Proposition 2), this implies that

|w(t, x)| ≤ W(t, x) for almost every x ∈ (0, 1). (4.17)

Indeed, the maximum principle leads to (4.17) if

|w(τ, 1)| ≤ W(τ, 1) ∀τ ∈ [s, t]. (4.18)

Let us assume that (4.18) does not hold. Then, there exists t′ ∈ (s, t) such that

|w(τ, 1)| ≤ W(τ, 1)∀τ ∈ [s, t′], (4.19)

|w(t′, 1)| =W(t′, 1). (4.20)

From (4.19) and the maximum principle, we get that

|w(t′, x)| ≤ W(t′, x) for almost every x ∈ (0, 1), (4.21)

which, together with the second line of (4.10) leads to

|w(t′, 1)| ≤ C
(
‖W(t′, ·)‖1/2

L2 + ‖v(t′, ·)‖1/2
L2

)
. (4.22)

From (4.16), (4.20) and (4.22), we get a contradiction, which shows that (4.18) and therefore
also (4.17) hold. Finally (4.17) yields (4.9) for t − s ≤ e−7/λ. The conclusion in the general
case follows immediately from this. �

Concerning the existence and uniqueness of the flow Φ, let us prove the following lemma.
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Lemma 6. Assume that F satisfies Properties (P1), (P2), and (P3). Let 0 ≤ s < T . There
exists T0 = T0(s) > 0 such that, for every u0 ∈ L2(0, 1), there exists a unique solution
u ∈ C0

(
[s, s+ T0);L

2(0, 1)
)

of (1.30). Moreover,

‖u(t, ·)‖L2 ≤ C‖u0‖L2 for t ∈ (s, s+ T0), (4.23)

for some positive constant C = C(s) independent of u0 and the functions T0 : [0, T ) →
(0,+∞) and C : [0, T )→ [0,+∞) can be chosen such that, for every δ ∈ (0, T ],

inf{T0(s); s ∈ [0, T − δ]} > 0 and sup{C(s); s ∈ [0, T − δ]} < +∞. (4.24)

Proof. Let us first deal with the uniqueness. Let u1 and u2 be two solutions having the same
initial data at time s and defined at least on [s, s′]×(0, 1), with s < s′. Let w : (s, s′)×(0, 1)→
R be defined by w = u2 − u1. One has, for some C > 0,

wt(t, x) =
(
a(x)wx(t, x)

)
x

+ c(x)w(t, x) in (s, s′)× (0, 1),

w(t, 0) = 0, |w(t, 1)| ≤ C‖w(t, ·)‖L2 for t ∈ (s, s′),

w(s, ·) = 0,

(4.25)

It suffices to prove that

w(t, ·) = 0 for t > s close enough to s. (4.26)

We proceed as in the proof of Lemma 5. We define W as in (4.11)-(4.12), with (4.13) now
replaced by

A = 1. (4.27)

From (4.14) and (4.15), fixing λ > 0 small, we obtain, for t− s ≤ e−4/λ and for every Ĉ > 0,

W(τ, 1) ≥ 2C‖W(τ, ·)‖L2 for τ ∈ (s, t). (4.28)

(Compare with (4.16).) Then, proceeding as in the proof of (4.17), we get, using the maximum
principle,

|w(t, x)| ≤ W(t, x) for almost every x ∈ (0, 1). (4.29)

However, since Ĉ > 0 is arbitrary, it follows from (4.29) that w(t, ·) = 0. This concludes the
proof of the uniqueness.

Let us now establish the existence of u using a fixed point argument. For notational ease,
we assume that s = 0. Set U0 = 0 and, for n ≥ 1, let Un be the unique solution of

Un,t(t, x) = (a(x)Un,x(t, x))x + c(x)Un(t, x) in (0, T )× (0, 1),

Un(t, 0) = 0, Un(t, 1) = F
(
t, Un−1(t, ·)

)
for t ∈ (0, T ),

Un(t = 0, ·) = u0 in L2(0, 1).

(4.30)

Define
Wn(t, x) = Un+1(t, x)− Un(t, x) in (0, T )× (0, 1).

20



Let 0 < T0 < T . Then, for some C ∈ (0,+∞) independent of n and u0,

Wn,t(t, x) =
(
a(x)Wn,x(t, x)

)
x

+ c(x)Wn(t, x) in (0, T )× [0, 1],

Wn(t, 0) = 0 for t ∈ (0, T ),

|Wn(t, 1)| ≤ C‖Wn−1(t, ·)‖L2 for t ∈ (0, T0),

Wn(t = 0, ·) = 0 in L2(0, 1).

(4.31)

By the maximum principle (Proposition 2) applied to the function

(t, x) 7→ ReRt sup
τ∈(0,T0)

‖Wn−1(τ, ·)‖L2 ±Wn(t, x)

with R > 0 large enough, we have

|Wn(t, x)| ≤M sup
τ∈(0,T0)

‖Wn−1(τ, ·)‖L2 for (t, x) ∈ (0, T0)× (0, 1), (4.32)

for some M > 0 independent of n and u0. For 0 < r < 1, let ϕ ∈ C1(R) be such that ϕ(x) = 1
for x ≤ 1 − r, ϕ(x) = 0 for x ≥ 1 − (r/2) and |ϕ′(x)| ≤ 4/r for x ∈ [0, 1]. Multiplying the
equation of Wn by Wn(t, x)ϕ2(x) and integrating by parts, we obtain∫ 1

0
|Wn(t, x)ϕ(x)|2 dx+

∫ t

0

∫ 1

0

∣∣∣(Wn(t, x)ϕ(x)
)
x

∣∣∣2
≤ C

∫ t

0

∫ 1

0
|Wn(t, x)|2

(
|ϕx(x)|2 + |ϕ(x)|2

)
dx dt.

It then follows from (4.32) that, for 0 < r < 1,∫ 1−r

0
|Wn(t, x)|2 dx+

∫ t

0

∫ 1−r

0
|Wn,x(t, x)|2 ≤

Cr−2T0M
2 sup
τ∈(0,T0)

‖Wn−1(τ, ·)‖2L2 for t ∈ (0, T0). (4.33)

A combination of (4.32) and (4.33) yields the existence of C̄ independent of r ∈ (0, 1), of n,
and of u0, such that

sup
τ∈(0,T0)

‖Wn(τ, ·)‖L2 ≤ C̄M
(
r−1T

1/2
0 + r1/2

)
sup

τ∈(0,T0)
‖Wn−1(τ, ·)‖L2 .

Let us fix r ∈ (0, 1) small enough so that C̄Mr1/2 ≤ 1/4. Then, by choosing T0 small enough,
we obtain

sup
τ∈(0,T0)

‖Wn(τ, ·)‖L2 ≤
1

2
sup

τ∈(0,T0)
‖Wn−1(τ, ·)‖L2 . (4.34)

Hence (Un)n∈N is a Cauchy sequence in C0
(
[0, T0];L

2(0, 1)
)
. Let u ∈ C0

(
[0, T0];L

2(0, 1)
)

be
it’s limit. One can easily verify that u is a solution of (1.30) on (0, T0). Moreover, by (4.34),∫ 1

0
|u(t, x)|2 dx ≤ C‖u0‖2L2 for t ∈ (0, T0). (4.35)
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Finally, it follows from our proof that (4.24) can also be imposed.
�

As a consequence of Lemma 6 we have the following corollary.

Corollary 3. Assume that F satisfies Properties (P1), (P2), and (P3). Let 0 ≤ s′ < T .
Then there exist C > 0 such that, for every s ∈ [0, s′) and for every u0 ∈ L2(0, 1), there exists
a unique solution u ∈ C0

(
[s, s′];L2(0, 1)

)
of (1.30) and this solution satisfies

‖u(t, ·)‖L2 ≤ C‖u0‖L2 for every t ∈ [s, s′]. (4.36)

We now assume that F satisfies Properties (P1), (P2), and (P3) and that (1.32) holds.
It follows from Corollary 3 that the flow Φ is well defined on {(t, s, u0) ∈ [0, T ) × [0, T ) ×
L2(0, 1); t ≥ s}. In order to prove that

Φ is well defined on {(t, s, u0) ∈ R× R× L2(0, 1); t ≥ s}, (4.37)

it only remains to check that, for every u0 ∈ L2(0, 1) and for every s ∈ [0, T ),

Φ(t, s, u0) is converging in L2(0, 1) as t→ T−. (4.38)

Let u0 ∈ L2(0, 1) and let s ∈ [0, T ). Define, for t ∈ [s, T ), u(t) = Φ(t, s, u0). Let ε > 0. It
follows from Lemma 5 and Corollary 3 that t ∈ [s, T ) 7→ ‖u(t)‖L2 is bounded. It then follows
from Lemma 5, that there exists δ > 0 such that

‖u(t)− S(t− T + δ)u(T − δ)‖L2 ≤ ε ∀t ∈ [T − δ, T ). (4.39)

Let δ′ ∈ (0, δ) be such that

‖S(t− T + δ)u0 − S(δ)u0‖L2 ≤ ε ∀t ∈ [T − δ′, T ]. (4.40)

From (4.39) and (4.40), one gets

‖u(t)− u(t′)‖L2 ≤ 4ε ∀t ∈ [T − δ′, T ), ∀t′ ∈ [T − δ′, T ). (4.41)

This shows that, for every sequence (tn)n∈N of real numbers in (0, T ) converging to T as
n→ +∞, the sequence (u(tn))n∈N is a Cauchy sequence in L2(0, 1). This concludes the proof
of (4.38) and therefore of (4.37).

5 Proof of Theorem 2

In this section we prove Theorem 2. Let us first point out that the uniform stability
property (1.35) follows from the other conditions. Indeed, we have, by Lemma 5,

‖Φ(t, s, u0)‖L2 ≤ C1

(
‖u0‖L2 + (t− s)1/4(1 + ‖u0‖L2)1/2

)
∀ T̄ ≤ s ≤ t < T, ∀u0 ∈ L2(0, 1). (5.1)
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and, by Corollary 3,

‖Φ(t, s, u0)‖L2 ≤ C1‖u0‖L2 ∀ 0 ≤ s ≤ t < (T + T̄ )/2, ∀u0 ∈ L2(0, 1), (5.2)

for some positive constant C1 independent of u0. Let r ≥ 0, B(r) denote the closed ball of
radius r in L2(0, 1). Let ε > 0. We derive from (5.1) and (5.2) that there exists δ > 0 such
that

‖Φ(t, t′, u0)‖L2 ≤ ε ∀ 0 ≤ t′ ≤ t ≤ T, ∀u0 ∈ B(δ). (5.3)

Here we also use the fact

Φ(t, t′, u0) = Φ
(
t, τ,Φ(τ, t′, u0)

)
∀ t′ ≤ τ ≤ t, ∀u0 ∈ L2(0, 1) (5.4)

and take T̄ close to T . Using (5.4) again, we derive from (5.3) the existence of η > 0 such
that

‖Φ(t, t′, u0)‖L2 ≤ ε ∀ 0 ≤ t′ ≤ t ≤ 3T, ∀u0 ∈ B(η), (5.5)

which, together with (1.25) and (1.34), gives (1.35) provided that we decrease η > 0 if
necessary so that η ≤ Γ. This implies the uniform stability (1.35).

We next construct F . For n ∈ N, let λn and tn be defined by

λn = (n+ 1)8 for every n ∈ N, (5.6)

t0 = 0, (5.7)

tn = T

(
1− 1

2n2

)
for every n ∈ N \ {0}. (5.8)

By Corollary 1, for some C1 large enough,

‖kn‖L2 ≤ eC1λ
1/2
n for every n ∈ N. (5.9)

We also know from Proposition 1 that there exists some C2 > 0 such that, for tn ≤ t < tn+1,

‖u(t, ·)‖L2 ≤ C2e
−sn−1/4+C2(n−1)‖u0‖L2 , (5.10)

|U(t)| ≤ C2e
−sn−1/4+C2(n−1)+C2

√
λn‖u0‖L2 , (5.11)

where sn =
∑n−1

k=0 λk(tk+1 − tk) for n ≥ 1 and s0 = 1. It is easy to verify that

lim
n→+∞

(tn+1 − tn)λn√
λn+1

= +∞ and lim
n→+∞

sn

n+
√
λn+1

= +∞.

Fix α and β be two real numbers such that

4 < α < β < 5. (5.12)

Let (µn)n∈N and (νn)n∈N be defined by

µn := e−n
α

and νn := e−n
β ∀n ∈ N. (5.13)
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For n ∈ N, we choose a function ϕn ∈ C1(R) such that 0 ≤ ϕn ≤ 1, ϕn(s) = 1 for s ≤ µn
and ϕn(s) = 0 if s ≥ 2µn. Fix N a large (see below) positive integer. We define F in the
following way for tn ≤ t < tn+1,

F (t, v) :=

∫ 1

0
kn(1, y)v(y) dy ∀ t ∈ [tn, tn+1) with n ≤ N − 1, (5.14)

F (t, v) := ϕn
(
‖v‖L2

) ∫ 1

0
kn(1, y)v(y) dy ∀ t ∈ [tn, tn+1) with n ≥ N. (5.15)

We derive from (5.9) that, if N is large enough, which is always assumed from now on,

‖kn‖L2 ≤ eC1λ
1/2
n ≤

(
1/(2µn)

)1/2 ∀n ≥ N. (5.16)

It follows that, for tn < t < tn+1 with n ≥ N ,

|F (t, v)| ≤ 2‖v‖1/2
L2 ,

which gives (1.32). From (the proof of) Proposition 1 we get that

Φ(T, t, u0) = 0 ∀u0 ∈ B (νn) , ∀ t ∈ [tN−1, tN ], (5.17)

Φ(T, t, u0) = 0 ∀ t ∈ [tn, tn+1) with n ≤ N − 2, ∀u0 ∈ B (1/νn) . (5.18)

Let Γ be a positive real number. It follows from (5.18) that

Φ(T, t, u0) = 0 ∀ t ∈ [tn, tn+1) with n ≤ N − 2, ∀u0 ∈ B (Γ) . (5.19)

(Let us recall that we always assume N large enough and how large N is depends now on Γ.)
Again, from the proof of Proposition 1, we have

‖Φ(tN , t, u0)‖L2 ≤
1

µn
∀u0 ∈ B (Γ) ,∀ t ∈ [tN−1, tN ]. (5.20)

From (1.25), (5.1), and (5.18), we get that

Φ(2T, t, u0) = Φ(2T, T,Φ(T, t, u0)) = 0 ∀ t ∈ [tN , T ], ∀u0 ∈ B(1/µn), (5.21)

which, together with (5.19) and (5.20), concludes the proof of Theorem 2. �
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