
HAL Id: hal-01228872
https://hal.science/hal-01228872v1

Submitted on 12 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextual-Timed Planning Management for Ambient
Systems

Radja Boukharrou, Ahmed Chawki Chaouche, Jean-Michel Ilié, Djamel
Eddine Saïdouni

To cite this version:
Radja Boukharrou, Ahmed Chawki Chaouche, Jean-Michel Ilié, Djamel Eddine Saïdouni. Contextual-
Timed Planning Management for Ambient Systems. 26th IEEE International Conference on Tools
with Artificial Intelligence, Nov 2014, Limassol, Cyprus. pp.107-114, �10.1109/ICTAI.2014.26�. �hal-
01228872�

https://hal.science/hal-01228872v1
https://hal.archives-ouvertes.fr

Contextual-Timed Planning Management for Ambient Systems

Radja Boukharrou∗, Ahmed-Chawki Chaouche∗§, Jean-Michel Ilié§ and Djamel Eddine Saı̈douni∗

∗MISC Laboratory

University Constantine 2, Constantine, Algeria
§LIP6 Laboratory

University of Pierre and Marie Curie, Paris, France

Emails: boukharrou@misc-umc.org, ahmed.chaouche@lip6.fr,

jean-michel.ilie@lip6.fr and saidouni@misc-umc.org

Abstract— In this paper, we propose an algebraic language,
called Time-AgLOTOS, which is dedicated to express BDI
agent plans, according to the features and requirements of
Ambient Intelligence (AmI) systems. Plan expressions are
written and composed using Time-AgLOTOS, so that plans
are built automatically and on the fly, as a system of con-
current processes. This language describes the time-dependent
behavior of the agent and provides a theoretical foundation
for performing planning under timing constraints, taking into
account the duration of actions. Also, it allows to express
behavioral capabilities such as communication, mobility and
cooperation. In this context, we show how to achieve a powerful
mechanism for a contextual guidance based on a specific and
formal construction called Contextual Time Planning System
(CTPS).

Keywords-Real-time ambient system; time planning language
and semantics; timing constraints; action duration; planning
consistency.

I. INTRODUCTION

Ambient intelligence (AmI) is an emerging technology

area embedding heterogeneous electronic devices and of-

ten forming an open, dynamic and complex environment.

Complexity here refers too to pro-actively, but sensibly,

assisting people during their various daily activities. Ac-

tually, such systems have more and more impact over

people’s lifestyles [1], [2]. Usually, multi-agent systems

(MAS) approaches offer interesting and powerful framework

for the design of such complex systems, since their agents

are considered as intelligent, autonomous, pro-active and

flexible [3]. Several modeling approaches are proposed for

potentially improving the software engineering of these

systems and which partially focus on some of MAS aspects,

e.g. [4], [5], [6]. In fact, the major problem for the sys-

tem entities consists in recognizing environmental context,

including location, the discovery of other agents, planning

and handling information in a more semantic manner within

temporal reasoning.

To verify/reason about MAS we need to capture the

desired properties in the right way as well as model-

ing agent’s abilities and functionalities. The Belief-Desire-

Intention (BDI) agent model can flexibly handle the entire

agent modeling and developing in an AmI system [5].

Indeed, agents are able, thanks to their mental attitudes, to

use their Beliefs, Desires, and Intentions in order to select

and execute a plan of actions i.e., to cope easily with the

real world.

The Higher-order Agent Model (HoA), presented in [7],

provides necessary theoretical foundations for design-

ing/studding of BDI agents in AmI systems. On the other

hand, it offers a useful framework, based on an agent-

centric approach, to capture the behavior changes of the

agent as consequence to its mental evolution according to

the context-awareness ability. Therefore, At any instant of

time the current state of an agent is expressed as an HoA

configuration capturing the evolution of the agent in both

its mental and planning states. This allows to maintain

state consistency which yet appears to be absent from BDI

theories.

In practice, in addition to the Mental process, the architec-

ture of the agent is enriched within an efficient component,

so-called Planning process ,with the aim to introduce more

formal techniques for the description and the validation of

ambient agent. Planning process is based on an algebraic

language dedicated to the specification and the construction

of a plan automatically from the intentions set of the agent

and the library of elementary plans. The AgLOTOS [7] is a

process algebra describing agent behaviors in a modular and

concurrent manner. It takes into account the AmI aspects

i.e. mobility and communication. This allows designing a

powerful planning management. Indeed, the semantics of

AgLOTOS automatically produces a Contextual Planning

System (CPS), that is a state transition system which captures

the evolution of the plan according to updated information,

enhancing ways to guide the agent with respect to the

predicted context changes.

Most research works for AmI systems assume that agents

have an unlimited amount of time available to perform and

execute plan, which is often not the case in many dynamic

real world environments. In this context, the conditions

are highly dynamic and requiring real-time reasoning ca-

pabilities. Moreover, within this complex environment, the

agent (especially BDI agent) must make often time-critical

decisions and should execute right actions in the right

time. So, within the absence of an appropriate mechanism

considering the concepts of time, the production of good

decisions would not be easy, if not impossible. In order

to verify the quantitative timing properties, we argue the

necessity of these two levels of time specification: timing

constraints and action duration where real time performance

is required.

The environment may place constraints on agents and

their actions, like time issues, handling connectivity, lo-

calization and physical conditions (e.g. power/battery re-

sources) which defined the key concepts of context. In [8],

depending on the nature of the context, the context in-

formation is categorized in four types: (1) computational

context−available resources, network quality and related

information; (2) user context−profile of the user, people

nearby, social situation; (3) physical context−lighting, tem-

perature, traffic conditions, noise levels, etc., and (4) time

context−time of day, date of the year. Another aspect of

context that is considered in some works is activity [9].

Although, more importantly, when the computing, user

and physical contexts are recorded across a time span, this

gives rise to a context history [8]. This type of context is

important for predicting future values of context and de-

veloping appropriate models/planning for context evolution.

It can be useful for establish trends and guidance service

for the agent. In this paper, our presented work deals with

the main types of context: spatial context, temporal context,

social context (agent nearby) and the context history.

To address the design-time issue for more complete and

correct specifications of real-time AmI systems, we propose

at first an extension of AgLOTOS language, called Time-

AgLOTOS, describing the time-dependent behavior of the

agent. Time-AgLOTOS provides a theoretical foundation for

performing planning under timing constraints taking into

account the duration of actions.

Other aim of this paper is to investigate true concurrency

semantics instead of interleaving ones for two reasons: (1) to

support structural and temporal non-atomicity of actions, i.e.,

actions may be divisible and of non-null duration. To escape

from these assumptions, most of works consider actions as

two instantaneous events: their start and their completion,

in addition to the wait between these events. Although this

approach seems to be attractive, it may contribute toward

graph explosion in state-transition models. (2) to capture and

express concurrent and parallel behaviors in a more natural

and intuitive way, i.e. to distinguish between sequential and

parallel runs of actions which appears interesting for the

design/reasoning about the agent ability to pursue multiple

desires and intentions concurrently.

Then, we give true-concurrency semantics to Time-

AgLOTOS in terms of maximality semantics [10], [11], [12].

The underlying semantics is a Contextual Time Planning

System (CTPS) which is very close to Durational Action

Timed Automata model [13]. As a main result, CTPS allows

the verification of new properties related to simultaneous

progress of actions at different states of the system. More-

over, based on the possible evolution specified in a plan, we

aim at offering a predictive service helping the agent on the

fly to take time-critical decisions and to guide it to achieve

its adopted desires concurrently.

II. AMBIENT ALGEBRAIC LANGUAGE FOR PLAN

SPECIFICATION

The Higher-order Agent Model (HoA) [7] provides a

formal modeling for BDI agent, expressing reasoning mech-

anism and planning process explicitly. The building of the

agent plan is described by using a process-algebra-based

language, called AgLOTOS [7]. Focusing on Intention based

reasoning, the agent plan is structured to explicit the parts

of the plan associated with each intention selected by the

agent.

Planning

P

P̂0 P̂1 P̂j

P0,0 P0,1 P0,k

E0,0

process

♦

I = {iw0

0
, iw1

1
, ..., i

wj
j }

⊙ ∈ {|||,≫}

⊙

E0,1 E0,k

Agent plan

Intention plans

Elementary plans

Behavior expressions

Plan Library

LibP

Figure 1. Planning Process

As highlighted in Figure 1, The planning structure is com-

posed of three levels of plans: elementary plans, intention

plans and finally agent plan. The agent plan is obtained by

sequential and/or a parallel composition of intentions plans

where each one is dedicated to achieve its corresponding

intention. Moreover, an Intention plan is viewed as an alter-

nate of several elementary plans to express the possibility to

achieve the intention. In the HoA architecture, elementary

plans are assumed to be already specified so can be extracted

from the so-callled LibP library. This library is assumed to

be indexed by the set of the possible intentions that the agent

can commit.

As a process algebraic language, AgLOTOS provides a

way to describe plans in terms of algebraic process ex-

pressions, composed in modular and concurrent ways. This

language uses actions as its primitives and some of them

have a special meaning e.g., mobility and communication.

Actions can then be combined to describe elementary plans

using a variety of defined operators. Over operators are

used (1) to form the alternation of elementary plans and

(2) to compose the intention plans leading to the agent

plan. AgLOTOS has an operational semantics that takes the

planning structure into account to offer a clear separation of

the different executions related to the intention plans.

Let us now detail the highlights of the AgLOTOS-based

specifications for plans.

Agent plan level: The set of intention plans can be

globally handled by using the concurrent ||| or sequential

≫ AgLOTOS composition between intention plans, leading

to the specification of an Agent plan. Let P be the set of

names qualifying the possible agent plans and P̂ ∈ P be

the set of names used to identify the possible intention plans

with P̂ ∈ P̂ , such that P is any agent plan defined by:

P ::= P̂ | P ||| P | P ≫ P

Intention plan level: An intention plan can be ex-

pressed by an alternate of several elementary plans, such

that each one can be launched to solve the corresponding

intention. This is captured in AgLOTOS by using the al-

ternate composition operator ♦ which allows to specify an

alternate of elementary plans. In particular, an intention is

satisfied iff at least one of the associated elementary plans

is successfully terminated. Formally, we define an intention

plan P̂ as:

P̂ ::= P | P̂ ♦ P̂

Elementory plan level: Elementary plans are descried

by AgLOTOS expressions, referring to a finite set of ob-

servable actions. Any AgLOTOS expression is associated

with contextual information relating to the (current) BDI

state of an agent. For that, let Θ be a finite set of space

locations where an agent can move and Λ be the set of

agents with which it can communicate. Let O be the (finite)

set of observable actions which are viewed as instantiated

predicates, ranged over by a, b, ... and let L be any subset

of O. H ⊂ O is the set of the so-called AmI primitives

which represent the mobility and communication. The agent

mobility is expressed by the primitive move(ℓ) which is

used to handle the agent move to some location ℓ (ℓ ∈ Θ).

The syntax of the communication primitives is defined by the

expression χ!(ν) which specifies the emission to the agent

χ (χ ∈ Λ) of some message ν and the expression χ?(ν)
means that the message ν is received from some agent χ.

Let Act = O ∪ {τ, δ}, be the set of actions, where

τ is the internal action and δ is a particular observable

action which features the successful termination of a plan.

The AgLOTOS language specifies pairs for each elementary

plan composed of a name to identify it and an AgLOTOS

expression to feature its behavior. Consider that elementary

plan’s names are ranged over P1, P2, ... and that the set of

all the possible behavior expressions is denoted B, ranged

over E1, E2, The AgLOTOS expressions are written by

composing actions through LOTOS operators. The syntax of

an AgLOTOS elementary plan P is defined inductively as

follows:

P ::= E
E ::= exit | stop

| a;E | E ⊙ E | τ ;E (a ∈ O)
| hide L in E

H ::= | move(ℓ) (H ⊂ O, ℓ ∈ Θ)
| χ!(ν) | χ?(ν) (χ ∈ Λ)

⊙ = { |||, |[L]|, ||, [],≫, [> }

The elementary expression stop specifies a plan behavior

without possible evolution and exit represents the successful

termination of some plan. In the syntax, the set ⊙ represents

the standard LOTOS operators: E []E specifies a non-

deterministic choice, hide L in E a hiding of the actions of

L that appear in E, E ≫ E a sequential composition and

E [> E the interruption. The LOTOS parallel composition,

denoted E |[L]|E, can model both synchronous composi-

tion, E ||E if L = O, and asynchronous composition,

E |||E if L = ∅.

To be pragmatic considering any BDI state of the agent,

we propose that the agent can label the different elements

of the set I of intentions1 by using a weight function

W : I −→ N. The ones having the same weight are

composed by using the concurrent parallel operator |||.
In contrast, the intention plans corresponding to distinct

weights are ordered by using the sequential operator ≫.

For instance, let I = {i10, i
2
1, i

1
2, i

0
3} be the considered set of

intentions, such that the superscript information denotes a

weight value, and let P̂0, P̂1, P̂2, P̂3 be their corresponding

intention plans, the constructed agent plan could be viewed

as: P = P̂1 ≫ (P̂0|||P̂2) ≫ P̂3.

The AgLOTOS operational semantics is basically derived

from the one of LOTOS and can be found in [7].

A Simple AmI Example: Let Alice and Bob be two agents

of an AmI University system. Such a system is clearly

dynamic and open since agents can enter and leave at any

moment. Furthermore, the agents are context-aware; they

can perceive the enter and the location of each agent within

the system and they are able to communicate through this

system. Let ℓ1, ℓ2 ∈ Θ be two locations of the studied system

where the two agents can behave. The proposed problem of

Alice is that she wants to realize the two tasks at the same

time: (a) meet Bob in ℓ1, and (b) get her exam copies from

ℓ2. Clearly, the Alice’s desires are inconsistent since Alice

cannot be in two distinct locations simultaneously. At the

considered moment, Alice is in ℓ1 and she expresses the two

inconsistent desires, whereas Bob is already arrived in ℓ2 and

has expressed the desire to work with Alice. Because of the

conflictual desires, the current intention of Alice is only to

meet Bob first. Consequently, the initial HoA configurations

1We assume that the BDI agent itself can solve conflicting situations that
could arise between intentions for some context, by means of a scheduling
process applied on the set of intentions.

of Alice and Bob are respectively qA0 and qB0 in Table I. The

actions in plans are simply expressed in AgLOTOS language

by using instantiated predicates, like get copies(ℓ2). Note

Table I
INITIAL HOA CONFIGURATIONS FOR ALICE AND BOB

Alice’s scenario

B0 = {in(me, ℓ1), in(copies, ℓ2)}
qA0 D0 = {meeting(Bob, ℓ1), getting copies(ℓ2)}

I0 = {meeting(Bob, ℓ1)}
P0 = meet(Bob, ℓ1); exit

Bob’s scenario

B0 = {in(me, ℓ2)}
qB0 D0 = {meeting(Alice, ℓ1)}

I0 = {meeting(Alice, ℓ1)}
P0 = move(ℓ1);meet(Bob, ℓ1); exit

that Alice and Bob are specified separately and that they are

able to coordinate for improving the satisfaction of more

desires (see Section IV).

III. REAL-TIME AMBIENT ALGEBRAIC LANGUAGE

Another key requirement of AmI environment is real

time reasoning capabilities, when timing constraints become

increasingly important to the proper functioning of AmI

agent.

By way of example, let us consider the example of Table I

but in the context of timing dependencies of actions. For

instance, Alice is already in ℓ1, she wants to meet Bob in

this location as soon as possible because she has a limited

time for going to get her exam copies e.g just a delay of 5
time units. Also, she has only 2 time units for that meeting.

Then, she will take her exam copies from ℓ2 in the required

time. On the other hand, Bob wants to terminate his work

in the current location before leaving it to ℓ1. This takes a

certain amount of time (at least 1 time unit). In this case

both agents should respond in a timely manner to changes

that occur in environment and to its timing constraints.

According to this example, we can define different types

of real-time constraints. Hence, These constraints can limit

the enabling domains regardless of the duration of other

actions by delaying for example an action of a certain

quantity of time before it will be feasible; or by limiting the

time during which an action is offered to its environment

(temporal restriction). In this paper,we define an algebraic

language called Time-AgLOTOS to specify the syntax and

the semantics of an agent plan considering the classical

timing operators similar to those introduced in temporal

extensions of LOTOS, such as D-LOTOS [13] and RT-

LOTOS [14] for the description of such constraints.

The delaying aspect can be specified by means of

a new operator ∆dE that describes time delays. This

operator means that no evolution of E is allowed be-

fore the end of a delay equal to d. For example, the

specification of Bob’s plan for achieving its intention

meeting(Alice, ℓ1) is described by the use of the delaying

operator as: ∆1(move(ℓ1);meet(Alice, ℓ1); exit). We al-

ready know how to describe syntactically the sequencing of

action occurrences by means of the action-prefixing operator

of AgLOTOS. We can extend this operator to deal with the

notion of temporal constraint for an action through two new

prefixing operators a{d};E and a@t[SP];E. The temporal

restriction for the occurrence of an action can be expressed

using the operator a{d} which means that action a is

offered during at most d time units. Whereas, in the operator

a@t[SP];E (resp. τ@t{d};E), SP is a selection predicate

that constrains the occurrence of action a (resp. τ) and t is a

temporal variable recording the time taken after the enabling

of action a (resp. τ). For instance in Alice’s scenario, its

ongoing desires are depending strongly on time limit which

can be expressed by: meet(Bob, ℓ1)@t1[t1 6 2]; exit{0} ≫
move(ℓ2)@t2[t2 6 5− t1]; get copies(ℓ2); exit{1}.

Moreover, we should reason on the internal action τ as a

specific action that cannot be delayed and must be performed

as soon as it becomes available because it refers to the local

behavior of the agent. This introduces the notion of urgency

when the action must occur immediately and while time

progression is stopped. This notion is useful for describing

features like time-outs and time deadlocks. Another question

arises addressing the reasoning about time in quantitative

sense. In this context, we argue that the action duration must

be explicitly taken into account by the Time-AgLOTOS. In

what follows, we show how to explicitly introduce action

duration in AgLOTOS. This is became possible by the use of

a function that gives to each action a non-null duration. The

idea is based on the principle of the maximality semantics

allowing the expression of the structural and temporal non-

atomicity of actions in a similar way introduced for D-

LOTOS.

Syntax: We now define Time-AgLOTOS in which both

timing constraints and actions duration are considered. Ab-

solutely, as far AgLOTOS, the language allows the spec-

ification of dynamism and context-aware of AmI system.

The syntax of a Time-AgLOTOS agent plan directly relates

to the building of a behavior expression representing the

whole agent behavior according to the construction approach

discussed above in Section II. Indeed, we propose a temporal

extension to the syntax of elementary plan taking into

account time aspects and preserving the overall structure of

the agent plan. The syntax of an Time-AgLOTOS elementary

plan is defined inductively as follows:

P ::= E
E ::= exit{d} | stop

| ∆dE | E ⊙ E
| a@t[SP];E | τ@t{d};E (a ∈ O)
| hide L in E

⊙ = { |||, |[L]|, ||, [],≫, [> }

Let D be a domain of time like Q+ or R+. Υ : Act → D
is the duration function which associates to each action its

duration. Let a be an action, E a behavior expression and

d ∈ D a value in the temporal domain. We recall that

a{d} expresses the temporal restriction, ∆dE represents a

time delay and a@t[SP];E and τ@t{d};E describe timing

dependencies. Thereby, the elementary expression stop spec-

ifies a plan behavior without possible evolution and exit{d}
represents the successful termination of some plan which

must be taken within the interval [0, d]. We assume also that

the stop and exit are of null duration. We denote that at both

agent plan and intention plan levels, only the order of plan

executions is expressed within time specification abstraction

(as in untimed case). The specification of time-dependency

is allowed explicitly at elementary plans.

IV. TIME-AGLOTOS SEMANTICS

As far as Time-AgLOTOS is concerned, the operational

semantics of elementary plans is given by rules of Def-

inition 4.5. This semantics is basically derived from the

one of D-LOTOS [13] and which captures the evolution

of a concurrent processes. A pair (E,P) represents an

elementary plan configuration, viewed as a process and

identified by P such that its behavior expression is E. A

transition relation between configurations, embodying the

behavior expressions of elementary plans, is expressed in the

context of maximality semantics and which gives as a result

a well-structured state transition system. In Time-AgLOTOS,

observable actions are not urgent as their occurrences depend

on the willingness of the environment. Whereas, for the

internal action τ , the situation is more complex as one may

want to express urgent occurrence of this action.

A. Formalization

In the following, H is a set of clocks with non-negative

values (within a time domain T, like Q+ or R+). The set

Φt(H) of temporal constraints γ over H is defined by γ ::=
x ∼ t where x is a clock in H, ∼∈ {=, <,>,≤,≥} and

t ∈ T. Fx will be used to indicate a constraint of the form

x ∼ t. A valuation (or interpretation) v for H is a function

which associates to each x ∈ H a value in T. A valuation v
for H satisfies a temporal constraint γ over H iff γ is true

by using clock values given by v. For U ⊆ H, [U → 0]v
indicates the valuation for H which assigns value 0 to each

x ∈ U , and agrees with v over the other clocks of H. The

set of all valuations for H is noted Ξ(H). The satisfaction

relation |= for temporal constraints is defined over the set of

valuations for H by : v |= x ∼ t⇔ v(x) ∼ t such that v ∈
Ξ(H). The set of all the possible elementary configurations

is denoted C and given by Definition 4.1.

Definition 4.1: The set C of elementary configurations is

defined by:

• ∀E ∈ B, ∀F ∈ 2Φt(H) : F [E] ∈ C
• ∀P ∈ P , ∀F ∈ 2Φt(H) : F [P] ∈ C

• if E ∈ C then hide L in E ∈ C
• if E ∈ C and F ∈ B then E ≫ F ∈ C
• if E ,F ∈ C then E opF ∈ C with op ∈

{ [], |||, ||, |[L]|, [> }
• ∀E ∈ C, ∀d ∈ D : △dE∈ C
• if E ∈ C and {a1, ..., an}, {b1, ..., bn} ∈ 2O then

E [b1/a1, ..., bn/an] ∈ C

In order to determine a set of duration conditions w.r.t. some

configuration C, we use the function ψ : C → 2Φt(H) such

that for each configuration of the form F [E] ∈ C we have

ψ(F [E]) = F .

Definition 4.2: The function ψH : 2Φt(H) → 2H, deter-

mines the set of used clocks in a duration conditions set and

is defined recursively by:

ψH (∅) = ∅
ψH ({x ∼ t}) = {x}
ψH (F1 ∪ F2) = ψH (F1) ∪ ψH (F2)

such as F1, F2 ∈ 2Φt(H), x ∈ H, ∼∈ {=, <,>,≤,≥} and

t ∈ R+.
If F [E] is an elementary configuration then F [E]\K in-

dicates the new configuration obtained by removing the set K of
timing constraints from the set F s.t. the concerning clocks are used
in F . F [E]\K=F\K [E]) with F\K given by the Definition 4.3.

Definition 4.3: Let F be a set of ending conditions; F\K
indicates the set obtained by removing (starting from F) all the
duration conditions which are related to the clocks of K from F .
F\K is recursively defined on F as follows:

∅\K = ∅
(F1 ∪ F2) \K = F1\K ∪ F2\K

{x ∼ t}\K =

{
∅ if x ∈ ψH(K)
{x ∼ t} otherwise

such that F1, F2 ∈ 2Φt(H), K ∈ 2Φt(H), x ∈ H, ∼∈
{=, <,>,≤,≥} and t ∈ R+.
The specification of delays and timing constraints in the generation
process requires the following Definition.

Definition 4.4: Let G ∈ 2Φt(H) be a timing constraint and t be
time units:

• The function shift(G, t) dealing with the move of a temporal
domain G by a time units t is defined by

shift(G, t)
def
= {(min+t ∼ x ∼ max+t) |

(min ∼ x ∼ max) ∈ G} and ∼∈ {<,≤}
• The function maxval(G), which restricts a temporal domain
G on its upper bound, is defined as
maxval(G) = ∨{min∼x∼max}∈G (x = max) with
∼∈ {<,6}

Now, we introduce the operational semantics for Time-AgLOTOS
elementary plan as rules of Definition 4.5.

Definition 4.5: The maximality transition relation

−→⊆ C × 2Φt(H) × 2Φt(H) × Act × H × C is defined as
being the smallest relation satisfying the following rules:

•

∅[exit{u}]
G={c∅≤u},D={false},δ,x

−−−−−−−−−−−−−−−−−→ {x≥0}[stop]

x=get(M)

•

F [exit{u}]
G={∪h∈H{shift(0≤h≤u,t)}\Fh={h≥t}}

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
D={false},δ,x

{x≥0}[stop]

x=get(M)

•

∅[a{u};E]
G={c∅≤u},D={false},a,x

−−−−−−−−−−−−−−−−−→ {x≥τ(a)}[E]

x=get(M)

•

F [a{u};E]
G={∪h∈H{shift(0≤h≤u,t)}\Fh={h≥t}}

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
D={false},a,x

{x≥τ(a)}[E]

x=get(M)

•

∅[h{u};E]
G={c∅≤u},D:=G,h,x

−−−−−−−−−−−−−−→ {x≥0}[E]

x=get(M)

•

F [h{u};E]
G={∪h∈H{shift(0≤h≤u,t)}\Fh={h≥t}}

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
D:=G,h,x

{x≥0}[E]

x=get(M)

•
SP={min∼t∼max} ∼∈{<,≤}

∅[a@t[SP];E]
G={[c∅/t]SP},D={false},a,x

−−−−−−−−−−−−−−−−−−−−→ {x≥τ(a)}[E]

x=get(M)

•
SP={min∼t∼max} ∼∈{<,≤}

F [a@t[SP];E]
G={∪h∈H{[h/t]shift(SP,d)}\Fh={h≥d}}
−−−−−−−−−−−−−−−−−−−−−−−−−−→

D={false},a,x
{x≥τ(a)}[E]

x=get(M)

•
E
G,D,a,x
−−−−−→ E′

F [] E
G,D,a,x
−−−−−→ E′ E [] F

G,D,a,x
−−−−−→ E′

•
E
G,D,a,x
−−−−−→ E′ a/∈L∪{δ}

E |[L]| F
G,D,a,y
−−−−−→ E′[y/x] |[L]| F\G

y=get(M−(ψH(ψ(E)∪ψ(F))−ψH(G)))

•
E
G,D,a,x
−−−−−→ E′ a/∈L∪{δ}

F |[L]| E
G,D,a,y
−−−−−→F\G |[L]| E′[y/x]

y=get(M−(ψH(ψ(E)∪ψ(F))−ψH(G)))

•
E
G,D,a,x
−−−−−→E′ F

G′,D′,a,y
−−−−−−→F′ a∈L∪{δ}

E |[L]| F
G∪G′,D∪D′ ,a,z
−−−−−−−−−−→ E′[z/x]\G′ |[L]| F′[z/y]\G

z=get(M−(ψH(ψ(E)∪ψ(F))−(ψH(G)∪ψH(G′))))

•
E
G,D,a,x
−−−−−→E′ a/∈L

hide L in E
G,D,a,x
−−−−−→ hide L in E′

•
E
G,D,a,x
−−−−−→E′ a∈L

hide L in E
G,D:=G,h,x
−−−−−−−−→ hide L in E′

•
E
G,D,a,x
−−−−−→ E′ d≥0

∆dE
shift(G,d),shift(D,d),a,x
−−−−−−−−−−−−−−−−−→ E′

•
E
G,D,a,x
−−−−−→E′ a 6=δ

E≫F
G,D,a,x
−−−−−→ E′≫F

•
E
G,D,δ,x
−−−−−→E′

E≫E
G,D,h,x
−−−−−→ {x≥0}[E]

•
E
G,D,a,x
−−−−−→E′ a 6=δ

E [> F
G,D,a,y
−−−−−→ E′[y/x] [> F\G

y=get(M−(ψH(ψ(E)∪ψ(F))−ψH(G)))

•
E
G,D,δ,x
−−−−−→E′ ∀z∈ψ(F)

E [>F
G,D,δ,y
−−−−−→ E′[y/x] [> ψ(F)−Gz

[stop]

y=get(M−(ψH(ψ(E)∪ψ(F))−ψH(G)))

•
F

G,D,a,x
−−−−−→F′ ∀z∈ψ(E)

E [>F
G,D,a,y
−−−−−→ ψ(E)−Gz

[stop] [>F′[y/x]

y=get(M−(ψH(ψ(E)∪ψ(F))−ψH(G)))

•
E
G,D,a,x
−−−−−→E′ a/∈{a1,...,an}

E[b1/a1,...,bn/an]
G,D,a,x
−−−−−→ E′[b1/a1,...,bn/an]

•
E
G,D,a,x
−−−−−→E′ a=ai (1≤h≤n)

E[b1/a1,...,bn/an]
G,D,bi,x−−−−−−→ E′[b1/a1,...,bn/an]

•
P :=E F [E]

G,D,a,x
−−−−−→F

F [P]
G,D,a,x
−−−−−→ F

Such as, c∅ is a particular clock which is created and initialized
at the enabling time of the agent system.

Let us consider now another of level of plan and its semantics.
The behavior expression of the agent plan P under evolution is
called agent plan configuration and denoted [P]. Definition 4.6

specifies how an agent plan configuration is formed composition

manner from the intention plan configurations like (E, P̂), them-
selves built from an alternate of elementary plan configurations as
(♦k=1..nEk, P).

Definition 4.6: Any Agent plan configuration [P] has a canon-
ical representation defined by the following two rules:

1)
P ::=P̂ P̂ ::=♦k=1..n Pk Pk::=Ek

[P]::=(♦k=1..n Ek, P̂)

2)
P ::=P1 ⊙ P2 ⊙∈{|||,≫}

[P]::=[P1] ⊙ [P2]
Notice that the contextual planning state takes into account

the agent location and the termination information concerning the
different intention plans already achieved; its definition is given as
follows:

Definition 4.7: A contextual planning state is a tuple (ps, ℓ, T),
where ps is any plan configuration [P], ℓ corresponds to an
expected location for the agent, and T is the subset of intention
plans which are terminated.
Table II shows the operational semantic rules defining the so-called
contextual planning state changes for the agent. These rules are
applied to produce a Contextual Time Planning System (CTPS).
Thereby, the initial contextual planning state (ps0, ℓ, ∅) means that
the agent is initially at location ℓ, and its plan configuration is
ps0 = [P] with no specific plan termination.

B. Contextual Planning Construction

From any HoA configuration q, we are now able to build a
transition system representing the agent plan and its state changes.
Further, from the set of intentions represented in q, denoted I(q),
the CTPS is built using the former rules defined above. In addition
to the timing constraints and the maximality information (ending
condition and concurrent execution) of actions, CTPS takes into
account three kinds of information represent the contextual ones
as : (a) the reached location in a given planning state, (b) the
set of intention plans that are terminated when reaching this
planning state, and (c), more globally, the set Λ(q) of neighbors
currently known by the agent. Considering q = (bdi, ps) any HoA
configuration of the agent, its CTPS in q, starting from ps, is given
by the following Definition.

Definition 4.8: A Contextual Time Planning System is a tuple
〈S, s0, Ls, T r,L, T 〉 of the support Act where :

• S is a finite set of contextual planning states s.t s =
(ps, ℓ, T) ∈ S,

• s0 = (ps, ℓ, ∅) ∈ S is the initial contextual planning state of

the agent, such that ps = [P] and ℓ represents the current
location of the agent,

• Ls: S → 2Φt(H) is a function which corresponds to each
state s the set F of ending conditions (duration conditions)
of actions possibly in execution in s,

• Tr ⊆ S × 2Φt(H) × 2Φt(H) × Act × H × S is the set of
transitions of the form (s,G,D, a, x, s′)2,

• L : S → Θ is the location labeling function,

• T : S → 2P̂ is the termination labeling function which
captures the terminated intention plans.

A transition (s,G,D, a, x, s′) represents a switch from the state
s to the state s′ by starting execution of action a and resetting
clock x. G is the corresponding guard which must be satisfied
to fire this transition. D is the corresponding deadline which
requires, at the moment of its satisfaction, that action a must occur.

(s,G,D, a, x, s′) can be written s
G,D,a,x
−−−−→ s′.

2We assume that D ⇒ G for each transition.

Table II
SEMANTIC RULES OF BOTH INTENTION AND AGENT CONFIGURATIONS

Intention plan level

(Action)
E

G,D,a,x
−−−−−−−→E′ a∈O∪{τ}

(E,P̂)
G,D,a,x

−−−−−−−→(E′,P̂)

E
G,D,δ,x

−−−−−−−→E′

(E,P̂)
G,D,τ,x

−−−−−−−→
P̂

(E′,P̂)

Agent plan level

(Action)
ps

G,D,a,x
−−−−−−−→ps′ a∈G∪{τ}

(ps,ℓ,T)
G,D,a,x

−−−−−−−→(ps′,ℓ,T)

ps
G,D,τ,x

−−−−−−−→
P̂

ps′

(ps,ℓ,T)
G,D,τ,x

−−−−−−−→(ps′,ℓ,T∪{P̂})

(Communication)
ps

G,D,χ!(ν),x
−−−−−−−−−−→ps′ χ∈Λ

(ps,ℓ,T)
G,D,χ!(ν),x

−−−−−−−−−−→(ps′,ℓ,T)

ps
G,D,χ?(ν),x

−−−−−−−−−−→ps χ∈Λ

(ps,ℓ,T)
G,D,χ?(ν),x

−−−−−−−−−−→(ps′,ℓ,T)

(Mobility)
ps

G,D,move(ℓ′),x
−−−−−−−−−−−→ps′

(ps,ℓ,T)
G,D,move(ℓ′),x
−−−−−−−−−−−→(ps′,ℓ′,T)

(Sequence)
ps1

G,D,a,x
−−−−−−−→ps′1 a∈O∪{τ}

(ps1≫ps2,ℓ,T)
G,D,a,x

−−−−−−−→(ps′1≫ps2,ℓ,T)

ps1
G,D,τ,x

−−−−−−−→
P̂

ps′1

(ps1≫ps2,ℓ,T)
G,D,τ,x

−−−−−−−→(ps2,ℓ,T∪{P̂})

(Parallel)
ps1

G,D,a,x
−−−−−−−→ps′1 a∈O∪{τ}

(ps1|||ps2,ℓ,T)
G,D,a,x

−−−−−−−→(ps′1|||ps2,ℓ,T)

ps1
G,D,a,x

−−−−−−−→ps′1 a∈O∪{τ}

(ps2|||ps1,ℓ,T)
G,D,a,x

−−−−−−−→(ps2|||ps
′
1,ℓ,T)

ps1
G,D,τ,x

−−−−−−−→
P̂1

ps′1 ps2
G′,D′,τ,y

−−−−−−−−→
P̂2

ps′2

(ps1|||ps2,ℓ,T)
G∪G′,D∪D′ ,τ,z

−−−−−−−−−−−−−→(ps′1|||ps
′
2,ℓ,T∪{P̂1,P̂2})

As usual in real-time formal model, like [13], the semantics of
a CTPS is defined as an infinite timed transition system ΣA of the
same alphabet Act.

Definition 4.9: The semantics of a Contextual Time Planning
System A = 〈S, s0, Ls, T r,L, T 〉 associates to the CTPS an
infinite transition system ΣA defined over Act ∪ R+. A state of
ΣA is a pair 〈s, v〉 such that s is a state of A and v a valuation for
the clocks of H. A state 〈s0, v0〉 is initial if s0 is the initial state of
A and ∀x ∈ H, v0(x) = 0. Two types of transitions are specified
in-between the configurations of ΣA. The time passing transitions
are specified according to the rules RA1 and RA2 whereas the
action transition, which refers to the launching of transition from
A, is related to the rule RD.

(RA1)
d ∈ R+, d > η ∀d′ ≤ d, v + d′ 2 D

〈s, v〉
d
−→ 〈s, v + d〉

(1)

(RA2)
ε ∈ R+ v + ε � D ∧ ε ∈ η

〈s, v〉
ε
−→ 〈s, v + ε〉

(2)

(RD)
(s,G,D, a, x, s′) ∈ TD v � G

〈s, v〉
a
−→ 〈s′, [{x} 7→ 0]v〉

(3)

Where η is the smallest real quantity of time in which no action
occurs.

Remark: According to the proposed operational semantics
for the Time-AgLOTOS language, the obtained CTPS structure is
an extension of the Durational Action Timed Automata (or DATA
for short) of [13], enhancing contextual and intention termination
information.

As a simple example, consider the following expression plan
P1 = meet(Bob, ℓ1)@t1[t1 6 2]; exit{0} ≫ move(ℓ2)@t2[t2 6

5− t1]; get copies(ℓ2); exit{1}, the generated CTPS is illustrated
in Figure 2. For instance, state S5 captures the current action under
execution which is mentioned by the corresponding clock x, the
reached location ℓ2 and the set of intention plans that are terminated

successfully (here it is expressed by {P̂1, P̂2}).

S0 S1

{∅}, ℓ1 {x ≥ 2}, ℓ1

meet(Bob, ℓ1), x

G = {C∅ ≤ 2}

S2 S3

{x ≥ 0}, ℓ1, {P̂1} {x ≥ 1}, ℓ2, {P̂1}

move(ℓ2), x

G = {0 ≤ x ≤ 3− val(C∅)}

τ, x

G = {2 ≤ C∅ ≤ 2}

D = {x ≥ 2}

S4

{x ≥ 1}, ℓ2, {P̂1}

τ, x

G = {1 ≤ x ≤ 2}

get− copies(ℓ2), x

G = {1 ≤ x ≤ 2}

S5

{x ≥ 0}, ℓ2, {P̂1, P̂2}

Figure 2. CTPS corresponding to the agent plan P1 of Alice

V. DISCUSSION AND RELATED WORK

In this paper, we present an expressive model that provides
theoretical foundations and a practical reasoning framework which
are dedicated to real-time AmI systems based on agent approach.
Up to our knowledge; many works have proposed multi-agent
modeling based on logics or behavioral languages, but few of them
have dealt timing constraints.

The works of Hoogendoorn et al., e.g. [15], present a multi-
agent-based model for a medicine usage, associated with formal
analysis methods. In fact, both multi-agent system and correspond-
ing ambient agents are specified in the logical language TTL. This
language supports the formal specification and analysis of some
dynamic properties. Further, the beliefs and intentions of an agent
are presented as predicates in temporal rules which can be used by
the agent to perform some simulations. Nevertheless, there is no
explicit expression referring to the agent desires or capacities like
mobility, rationality, adaptability or context-awareness .

In contrast, our proposed AmI agent model provides a powerful
framework for real-time AmI system design, which covers the
major features and functionalities of such system. It also combines
the mental reasoning of a BDI agent as well as its behavior
evolution represented in a powerful algebraic construction within
time specification.

In [16], the authors propounded a specification process and a set
of formal tools for ambient design activities.They collected some
existing languages and techniques which are combined in order to
handle different aspects of AmI applications: formal ontology to
define the entities of the application domain, ambient calculus (AC)
with its related logic to specify the moves of the mobile agents

in MAS and finally, real-time temporal logic (RTTL) to express
temporal constraints for reasoning about time.

In contrast to such tool box based on multiple semantics, our ap-
proach provides an unified and well-founded algebra methodology
for describing plans and checking within them real-time behavioral
properties with respect to rich and unique semantics.

Outside of the agent-centric approaches, the methodology pro-
posed in [17] aims at verifying the logical and temporal properties
of an intelligent domotic environment. It checks the correctness of
such system by using UCTL model checking techniques over the
UML State Charts model describing the system.

Unlike to our formal approach which is intended to be concrete,
this methodology presents an abstract specification of timing con-
straints while taking into account concurrency. However, the major
features of AmI systems are not handled explicitly in this model.

Another category of works used some algebraic formalisms a-
la-LOTOS to specify distributed real-time systems. In [18], the
authors present the MDD-LOTOS language as a calculus modeling
the mobility in distributed systems under time requirements. This
model allows to specify the migration of processes over a set
of distributed locations and also the dynamic creation of new
processes. Two types of communication are presented, the local
communication and the remote one. Like in our approach, they
also propose a semantics model for the building of automatic
verification tools, based on the maximality semantics. Moreover,
it takes into account timing constraints and duration expressions.
Due to the AmI requirements, in our agent-based model, the remote
communications are between agents, whereas, the synchronized
ones are defined locally inside the agent and are related to the
parallel composition of its behaviors. So, we provide two distinct
designing levels for MAS, the inside agent and outside one includ-
ing moving ability.

VI. CONCLUSION

The proposed Time-AgLOTOS agent algebraic language appears
to be a powerful way to express agent plan as an hierarchical
structure made of concurrent processes. This language provides
a theoretical basis to deal with timing constraints, taking into
account the duration of actions. The formal semantics of Time-
AgLOTOS associates a Contextual Time Planning System (CTPS)
with each BDI state of the agent. Hence, from some current set of
intentions, this allows one to capture all the possible evolutions of
the agent plan, in respect to the timing constraints of the executed
actions, under various environmental contexts. Observing that the
presented work provides an original time mechanism that works
contextually to guide the agent for its future executions, we now
aim at combining the CTPS approach with learning techniques,
viewed as a guidance mechanism based on past-experiences.

REFERENCES

[1] J. Augusto, “Ambient intelligence: The confluence of perva-
sive computing and artificial intelligence,” Schuster, A. (ed.)
Intelligent Computing Everywhere. Springer, Heidelberg, pp.
213–234, 2007.

[2] D. Preuveneers and P. Novais, “A survey of software engineer-
ing best practices for the development of smart applications
in ambient intelligence,” JAISE, vol. 4, no. 3, pp. 149–162,
2012.

[3] R. H. Bordini, L. Braubach, M. Dastani, A. El Fal-
lah Seghrouchni, J. J. Gmez-Sanz, J. Leite, G. M. P. O’Hare,
A. Pokahr, and A. Ricci, “A survey of programming languages
and platforms for multi-agent systems.” Informatica (Slove-
nia), vol. 30, no. 1, pp. 33–44, 2006.

[4] D. Cook, M. Youngblood, and S. Das, “A multi-agent ap-
proach to controlling a smart environment,” in Designing
Smart Homes, ser. LNCS. Springer, 2006, vol. 4008, pp.
165–182.

[5] K. E. Nygard, D. Xu, J. Pikalek, and M. Lundell, “Multi-agent
designs for ambient systems,” in Proceedings of Ambi-Sys’08.
ICST, 2008, pp. 10:1–10:6.

[6] L. de Silva, A. Dekker, and J. Harland, “Planning with time
limits in bdi agent programming languages,” in Proceedings
of CATS’07, vol. 65. Darlinghurst, Australia: Australian
Computer Society, Inc., 2007, pp. 131–139.

[7] A.-C. Chaouche, A. El Fallah Seghrouchni, J.-M. Ilié, and
D. E. Saı̈douni, “A Higher-order Agent Model with Con-
textual Management for Ambient Systems,” in Transactions
on Computational Collective Intelligence XVI, ser. LNCS.
Springer Berlin Heidelberg, 2014, vol. 8780, pp. 1–24.

[8] G. Chen and D. Kotz, “A Survey of Context-Aware Mobile
Computing Research,” Dartmouth College, Computer Sci-
ence, Hanover, NH, Tech. Rep. TR2000-381, November 2000.

[9] K. Henricksen and J. Indulska, “Developing context-aware
pervasive computing applications: Models and approach,”
Pervasive Mob. Comput., vol. 2, no. 1, pp. 37–64, Feb. 2006.

[10] D. E. Saı̈douni, “Sémantique de maximalité : Application au
raffinement d’actions en LOTOS,” Ph.D. dissertation, LAAS-
CNRS, Toulouse, France, 1996.

[11] J. P. Courtiat and D. E. Saı̈douni, “Relating maximality-based
semantics to action refinement in process algebras,” In D.
Hogrefe and S. Leue, editors, IFIP TC6/WG6.1, Int. Conf. on
FORTE’94, pp. 293–308, 1995.

[12] D. E. Saı̈douni, N. Belala, and M. Bouneb, “Using
maximality-based labelled transition system as a model for
petri nets,” (IAJIT’2009), vol. 5, no. 6, pp. 440–446, 2009.

[13] D. E. Saı̈douni and N. Belala, “Actions duration in timed
models,” Proceedings of ACIT’2006, 2006.

[14] J.-P. Courtiat, C. A. S. Santos, C. Lohr, and B. Outtaj,
“Experience with rt-lotos, a temporal extension of the lotos
formal description technique,” Computer Communications,
vol. 23, no. 12, pp. 1104–1123, 2000.

[15] M. Hoogendoorn, M. C. A. Klein, Z. A. Memon, and J. Treur,
“Formal specification and analysis of intelligent agents for
model-based medicine usage management,” Comp. in Bio.
and Med., vol. 43, no. 5, pp. 444–457, 2013.

[16] A. Coronato and G. D. Pietro, “Formal design of ambient
intelligence applications,” December 2010, pp. 60–68.

[17] F. Corno and M. Sanaullah, “Design time methodology for
the formal verification of intelligent domotic environments,”
in ISAmI 2011.

[18] T. M. Maarouk, D. E. Saı̈douni, and M. Khergag, “Towards
a calculus for distribu-ted, real-time and mobile systems,”
Journal of Software, vol. 7, no. 3, pp. 564–574, 2012.

	Introduction
	Ambient Algebraic Language for Plan Specification
	Real-Time Ambient Algebraic Language
	Time-AgLOTOS Semantics
	Formalization
	Contextual Planning Construction

	Discussion and Related Work
	Conclusion
	References

